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Seasonal dynamics of diet–gut microbiota interaction in
adaptation of yaks to life at high altitude
Na Guo1,6, Qunfu Wu2,6, Fuyu Shi1,6, Jiahuan Niu 1, Tao Zhang2, A. Allan Degen3, Qiangen Fang4, Luming Ding1, Zhanhuan Shang1✉,
Zhigang Zhang2,5✉ and Ruijun Long 1✉

Dietary selection and intake affect the survival and health of mammals under extreme environmental conditions. It has been
suggested that dietary composition is a key driver of gut microbiota variation; however, how gut microbiota respond to seasonal
dietary changes under extreme natural conditions remains poorly understood. Sequencing plant trnL (UAA) region and 16S rRNA
gene analysis were employed to determine dietary composition and gut microbiota in freely grazing yaks on the Tibetan plateau.
Dietary composition was more diverse in winter than in summer, while Gramineae and Rosaceae were consumed frequently all
year. Turnover of seasonal diet and gut microbiota composition occurred consistently. Yaks shifted enterotypes in response to
dietary change between warm and cold seasons to best utilize nitrogen and energy, in particular in the harsh cold season. Our
findings provide insights into understanding seasonal changes of diet–microbiota linkages in the adaptation of mammals to high
altitudes.
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INTRODUCTION
The Tibetan plateau, called ‘the third pole’, forms the largest and
highest year-round grazing area in the world. The region is
characterized by a harsh climate of extreme cold and aridity, and
high ultraviolet radiation and hypoxia, which challenge the
survival of humans and other mammals1. The yak (Bos grunniens),
an iconic symbol of high altitude and a mainstay for Tibetan
people2, has anatomical and physiological adaptations and a
genetic basis for mammalian adaptations3, as well as a co-evolved
microbiome4, that equip the animal for the high altitude and
extreme environment. Yet gut microbiota of the yak and their
relationship to seasonal dietary shifts in their natural habitat
remain largely unknown, although this information could con-
tribute to the understanding of adaptation to the high-altitude
Tibetan plateau.
Gut microbiota are complex and dynamic5, being sensitive to

perturbations, such as dietary changes, environmental factors6

and enteric pathogens. They play an integral role in nutrient
intake, behavior, metabolism, immune function, and development
of the host7,8. Substantial changes in mammalian microbiota
composition have been observed in response to seasonal diet
availability among and within individuals, as evidenced by
longitudinal analyses of gut microbiota in Hadza hunter-
gatherers9, wild wood mice (Apodemus sylvaticus)10, red squirrels
(Tamiasciurus hudsonicus)6, giant pandas (Ailuropoda melano-
leuca)11, wild great apes12,13 and North American bison (Bison
bison)14. However, most studies on mammalian gut microbiota
dynamics were done in non-stressful environments and without
quantitative dietary information related to habitats. Recent reports
on gut microbiota composition from large herbivores in the semi-
arid East African savanna revealed a greater seasonal turnover and

diet–microbiota association in domesticated than in wild
species15. These studies provide a better understanding of intra-
specific and inter-specific diet–microbiota associations in wild and
domesticated species. Yet studies on seasonal diet and microbiota
relations are lacking in high-altitude mammals.
To examine the fine-scale relationship between quantitative

dietary consumption and gut microbiota, we conducted a spatio-
temporal study of the impact of seasonal diet on gut microbiota
from 302 individual yaks. Using DNA metabarcoding and 16S rRNA
gene analyses, measurements were made in free-grazing yaks
across four seasons on the eastern part of the Tibetan plateau, in
which either a transhumance (TH) or open-continuous grazing
(OCG) regime was followed. These in-depth and longitudinal
analyses could contribute to the understanding of the adaptations
of mammals to the harsh, high altitude environment.

RESULTS
Established reference database for DNA metabarcoding
analysis
According to the National Center for Biotechnology Information
(NCBI) and Bold system databases, there were 199 plant species in
the study areas. Combined with plant taxonomic identification,
this study generated an additional 212 local plant species DNA
barcode reference library using P6 loop of the chloroplast trnL
(UAA) intron marker genes16 (see the “Methods” section). This
revised library was used for DNA metabarcoding analysis. In total,
our library comprised 411 plant species (included all species from
the sampling region; local plant list recorded 386 species17)
throughout the alpine grassland area of the study in the TH and
OCG regimes.
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Diet diversity and composition across seasons
The diet data included 30,534,414 high-quality sequences, 81,530
unique sequences after removal of singletons and 2010 opera-
tional taxonomic units (OTUs) (Supplementary Table 3). All dietary
sequences represented 41 plant families, 83 genera, and
80 species. Dietary composition was more diverse in winter than
in summer in both grazing regimes and displayed an evident
separation seasonally (Fig. 1a, b and Supplementary Figs. 4, 5b, e).
Gramineae and Rosaceae were consumed by yaks frequently
throughout the year in both TH and OCG grasslands (Fig. 2a, c).
The highest relative abundances were Polygonaceae, Rosaceae,
and Gramineae in spring and summer, and Gramineae, Rosaceae,
and Compositae in winter in both TH and OCG grasslands. In
autumn, Gramineae and Rosaceae were highest in both TH and
OCG grasslands, and Salicaceae was also high in TH. As indicator

plant species, Polygonaceae was identified in spring, Scrophular-
iaceae and Compositae in winter in both TH and OCG regimes,
Polygonaceae in TH and Rosaceae in OCG in summer and
Salicaceae in TH and Gramineae in OCG in autumn (Fig. 2b, d;
Supplementary Fig. 7a, b). The distinct seasonal diets provided a
sound basis to identify the effects of seasonal diet patterns on yak
gut microbiota.
In the OCG regime, above-ground biomass (AGB) was highest in

the warm season (from June to September), with 2891 ± 148 kg
DM/ha in September, and was lowest in the cold season (from
October to May) with 99 ± 10.8 kg DM/ha in May (Fig. 3a). Neutral
detergent fiber (NDF) and acid detergent fiber (ADF) were higher
by 10% and 16%, respectively, while crude protein (CP) and ether
extract (EE) were lower by 53% and 25%, respectively, in the cold
than the warm season (Fig. 3b). Specifically, the highest CP (166 ±
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Fig. 1 Seasonal changes in both diet and gut microbiota community structures of yaks in transhumance and open-continuous grazing
regimes. Within and among seasons, Bray–Curtis dissimilarity in diet and microbiota are presented in Supplementary Table 2. Rows show the
same ordinations for diet (a and b) and microbiota (c and d) compositions. Diet composition and gut microbiota represent transhumance
(a and c) and open-continuous grazing (b and d) regimes. Individual yak diet compositions from samples collected in (a) spring (n= 32),
summer (n= 33), autumn (n= 37), and winter (n= 45) in transhumance grassland (anosim analysis: R= 0.94, p= 0.0001; adonis analysis: R2=
0.78, p= 0.0001), (b) spring (n= 31), summer (n= 39), autumn (n= 38), and winter (n= 47) in open-continuous grazing grassland (anosim
analysis: R= 0.88, p= 0.0001; adonis analysis: R2= 0.67, p < 0.0001), and gut microbiota compositions in (c) spring (n= 31), summer (n= 31),
autumn (n= 37) and winter (n= 48) in transhumance grassland (anosim analysis: R= 0.50, p < 0.0001; adonis analysis: R2= 0.16, p < 0.0001)
and (d) spring (n= 31), summer (n= 37), autumn (n= 38), winter (n= 47) in open-continuous grazing grassland (anosim analysis: R= 0.47,
p < 0.0001; adonis analysis: R2= 0.16, p < 0.0001) plotted on nonmetric multidimensional scaling (NMDS) according to the Bray–Curtis
dissimilarity. Analysis of similarities (ANOSIM), adonis analysis and permutational multivariate analysis of variance (PERMANOVA) were used for
statistical testing of treatment similarities. The dotted ellipse borders represent the 95% confidence interval.
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10.2 g/kg DM) occurred in June, and the lowest (39 ± 5.5 g/kg DM)
in April. Similar trends were observed in the TH regime
(Supplementary Fig. 3a, b). Consequently, yaks were forced to
cope with sparse forage of low-nitrogen content in the cold
season.

Gut microbiota diversity and composition across seasons
The gut microbiota included 25,375,771 high-quality sequences,
1,125,235 unique sequences after removal of singletons and
14,239 OTUs (Supplementary Table 3). Seasonal shifts in gut
microbiota were evident in both the TH and OCG regimes (Fig. 1c,
d). In total, 18 gut bacteria phyla were identified, with Firmicutes
and Bacteroidetes the most abundant, regardless of season and
grazing regime (Supplementary Fig. 6, Supplementary Fig. 7c, d).
Distinct seasonal dynamics were exhibited at the genus-level in
both TH and OCG grasslands, with Ruminococcaceae_UCG-010,
Ruminococcaceae_UCG-005, Rikenellaceae_RC9_gut_group, unclas-
sified Ruminococcaceae and unclassified Bacteroidales the most
abundant across seasons (Fig. 4a, c). Moreover, the relative
abundance of Prevotellaceae_UCG-004 increased during the
summer. Indicators at the genus-level displayed seasonal and
spatial differences. In the TH regime, in spring, autumn, and
winter, the indicator species were Ruminococcaceae_UCG-010 and
Clostridiales_vadinBB60_group; whereas, in summer, they were
Ruminococcaceae_UCG-005 and Prevotellaceae_UCG-004. In the
OCG regime, in spring and summer, the indicator species were
Ruminococcaceae_UCG-010 and Clostridiales_vadinBB60_group; in

autumn, they were Flavonifractor, Ruminococcaceae_UCG-005, and
Prevotellaceae_UCG-004; whereas, in winter it was the unclassified
Paludibacteraceae (Fig. 4b, d; Supplementary Fig. 7e, f).

Diet associated with overall microbiota composition across
seasons
We applied Procrustes analysis to test diet and microbiota
variations across seasons. When analyzed using Bray–Curtis (BC)
dissimilarities, seasonal diet composition was associated with
microbiota composition consistently in both TH (p= 0.0001, Fig.
5a) and OCG regimes (p= 0.0001, Fig. 5b). However, microbiota
richness was not correlated with dietary richness (Supplementary
Fig. 8).
Diet and microbiota dissimilarities were consistently higher

among than within seasons (Fig. 6 and Supplementary Table 2).
Diet separations across seasons were smallest between spring and
summer (0.482) in TH and between autumn and winter (0.566) in
OCG (Supplementary Table 2), and were greatest between
summer and winter (0.779) in TH and between spring and autumn
(0.734) in OCG, suggesting that consumption of plant species
occurred according to availability (Supplementary Table 2). Most
overlapping microbiota occurred between autumn and winter
while most non-overlapping microbiota occurred between spring
and summer in both TH and OCG, which indicated that microbiota
remained relatively stable (Supplementary Table 2). Within season,
there was a larger difference in diet dissimilarity (0.117–0.385)
than in microbiota dissimilarity (0.432–0.486) in the two grazing

0.00

0.25

0.50

0.75

1.00

Spring Summer Autumn Winter

R
el

at
iv

e 
ab

un
da

nc
e

Family
 Polygonaceae
 Rosaceae
 Gramineae
 Compositae

 Others

 Cyperaceae
 Umbelliferae
 Ranunculaceae
 Leguminosae
 Scrophulariaceae
 Gentianaceae
 Salicaceae
 Elaeagnaceae

0.00

0.25

0.50

0.75

1.00

Spring Summer Autumn Winter

R
el

at
iv

e 
ab

un
da

nc
e Family

 Polygonaceae
 Rosaceae
 Cyperaceae
 Gramineae

 Others

 Compositae
 Ranunculaceae
 Leguminosae
 Plantaginaceae
 Primulaceae
 Scrophulariaceae

Gentianaceae
Leguminosae
Gramineae
Compositae

Scrophulariaceae
Elaeagnaceae
Salicaceae

Ranunculaceae

Cyperaceae

Umbelliferae

Rosaceae

Polygonaceae

Winter

Autumn

Summer

Spring

Compositae

Scrophulariaceae

Gramineae
Ranunculaceae

Leguminosae

Plantaginaceae

Rosaceae

Primulaceae

Cyperaceae

Polygonaceae

Winter

Autumn

Summer

Spring

a b

c d

***
***
***
***
***
***
***
***
***
***
***
***

*

***
***
***

***

***
***

***

***

***

Transhumance

Open-continuous grazing

Plant families

Seasons

Plant families

Seasons

Transhumance

Open-continuous grazing

Fig. 2 Seasonal changes of dietary compositions of yaks in transhumance and open-continuous grazing regimes. Stream-graph displays
the relative abundance of plant family-level taxa in spring, summer, autumn, and winter in transhumance (a) and open-continuous grazing (c)
regimes. Low abundance taxa (<5%) are grouped together as “others”. Indicator families that are related to each season are tracked using
Sankey plots in transhumance (b) and open-continuous grazing (d) regimes. Lines represent associations between indicator families and
seasons, which are colored by plant family. Line width is scaled to reflect indicator value (higher indicator value of family is more strongly
associated with season). Indicator values are presented in Supplementary Fig. 7. The statistical p values mean the family associated with
seasons, *p < 0.05, **p < 0.01, ***p < 0.001.

N. Guo et al.

3

Published in partnership with Nanyang Technological University npj Biofilms and Microbiomes (2021)    38 



regimes, suggesting that stable gut microbiota communities may
contribute to host adaptation to the extreme environment (Fig. 6
and Supplementary Table 2).

Gut enterotypes and functional context represented by
Akkermansia and uncultured Eubacterium WCHB1-41 for
underlying cold adaptation
Based on the report that enterotypes exhibit functional differ-
ences18, we examined whether yak gut microbiota partitioned into
clusters that differ in functional properties according to seasonal
dietary intake. Principal component analysis (PCA) revealed that
the samples formed three distinct enterotype clusters based on BC
dissimilarities. Each cluster was driven by the variation of its
representative genera level: Akkermansia and uncultured Eubac-
terium WCHB1-41 in Enterotype 1, Ruminococcaceae_UCG-005 in
Enterotype 2 and Ruminococcaceae_UCG-010 in Enterotype 3
(Fig. 7a, d–g; Supplementary Figs. 9 and 10). In TH and OCG, there
was a change in enterotype assignment across seasons. Enter-
otype 1 occurred predominantly in the cold season (spring,
autumn, and winter), Enterotype 2 in the warm season (summer)
(Fig. 7b, c; p < 0.05, Fisher’s exact test) and Enterotype 3 was
prevalent throughout the year (Fig. 7b, c). This study identifies the
distribution of different enterotypes across seasons in high
altitude yaks.
These seasonal distributions of gut enterotypes led us to

hypothesize that the fixed gut enterotype, represented by
Akkermansia and uncultured Eubacterium WCHB1-41, plays a vital
role in regulating nutritional requirements in the cold season with

sparse forage. To test this hypothesis, we examined the functional
relevance of Akkermansia and Kiritimatiellaeota based on genus-
level pan-genomes in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. Both Akkermansia and Kiritimatiel-
laeota showed convergent enrichment of enzymes that are
involved in arginine and fatty acid biosynthesis pathways
(map00220 and map00061) (Fig. 8). Pyruvate generated acetyl-
CoA, mediated by both Akkermansia and Kiritimatiellaeota, enters
the tri-carboxylic acid (TCA) cycle and involves arginine biosynth-
esis, and also regulates fatty acid synthesis. Notably, we observed
12 enzymes that play key roles in arginine biosynthesis, but no
enzyme is involved in urea synthesis to reduce nitrogen loss in
urine under conditions of low-nitrogen stress. Six of a total of
seven enzymes participated directly in fatty acids biosynthesis and
contributed to energy deposition. These results indicated that
both arginine and fatty acid biosynthesis pathways evolved in
high altitude mammals for efficient nitrogen utilization and
energy deposition in the cold season.

DISCUSSION
We determined seasonal shifts in diet and gut microbiota in a
high-altitude large herbivore. Yaks graze the grasslands of the
Tibetan plateau all year, and face severe challenges, in particular
extreme cold and limited food availability during the cold season.
To survive under such conditions, yaks have evolved anatomical
and physiological adaptations. Furthermore, convergent evolution
was reported for yaks and their rumen microbiota. The rumen
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microbiota follow unique maturation strategies19 and differ in
composition from microbiota of lowland ruminants4.
In this study, seasons constrained both diet and gut microbiota,

but less so for microbiota than diet. Such effect of season on
microbiota composition in response to food availability and
chemical composition might be due to a re-assembly of the
community structure of the gut microbiota resulting from
substrate availability. Surprisingly, among seasons, the changes
in gut microbiota composition were relatively stable compared
with changes in dietary composition, which suggests that high
altitude mammals evolved stable patterns of gut microbiota
composition across seasons. By contrast, gut microbiota in
humans and other mammals differed markedly with seasonal
dietary shifts9,10. In response to cyclic seasonal dietary fluctuations
of the host, gut microbiota could alter their metabolic rate and
energy extraction from complex carbohydrates, and, ultimately,
promote the co-evolution of hosts and microbes6. Furthermore,
our findings support the present grassland polices of TH of
moving yaks to different landscapes and searching for favorable
diet. This practice mitigates grazing pressure, thereby enhancing
animal performance. As demonstrated by our diet and microbiota
analyses, a better understanding of relations between yaks and
plants can yield key insights in supporting TH with a proper
stocking rate and improving grassland management strategies.
The key microbiota associated with feed efficiency could provide
an alternative solution for strengthening microbiota-led breeding

programs to increase yak performance, particularly in the cold
season.
The lack of precise methods to assess and identify the complex

diet consumed by grazing herbivorous mammals has been a long-
standing obstacle in field studies. Conventional methods include
field observations, microhistology and natural n-alkanes from
plant cuticular waxes20,21. However, these methods are not
suitable for diet analyses of herbivorous mammals feeding on
pasture with high plant diversity. Field observations require high
visibility and are prone to omission of plant species22, while
histology is very tedious and often inaccurate23. The n-alkane
method is limited when the animal consumes a large number of
plant species24. When the n-alkane method was used to
determine diet composition of grazing yaks on the Tibetan
plateau, only the two or three main dietary components could be
detected20. Studies of DNA metabarcoding identified the level of
forb dominance in megafaunal diets from permafrost sediment
samples25 and allowed fine-grained niche separation from seven
large mammalian herbivores26. These studies indicated that
ingested plants can be effectively identified and quantified using
the DNA metabarcoding method27.
This present study provides biological insights into the clusters

and functionality of gut enterotypes. In particular, we describe gut
enterotypes as well as the functional genomic information
following seasonal dietary changes in free grazing yaks. The
Ruminococcaceae_UCG-005 enterotype was associated with high
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protein and low fiber diets in the warm season and the
Akkermansia and uncultured Eubacterium WCHB1-41 enterotype
with low protein and high fiber diets in the cold season. It was
suggested that the proportion of protein and carbohydrate
contents in the diet mediates the host’s enterotype shift, at least
in baboons28,29. Seasonal variations in dietary protein and
carbohydrate contents could provide an attractive explanation
in terms of enterotype dynamics, and also contribute to determine

the enterotype for high altitude herbivores. Gut enterotype in
humans remained stable when on a 10-day low-fat/high-fiber diet
intervention30. However, the most compelling evidence for
seasonal diet shifts in enterotypes in the present study was that
enterotypes 1 and 2 shifted consistently between seasons and
Ruminococcaceae_UCG-01 enterotype 3 remained stable through-
out the year. This might be the result of long-term co-evolution
between the host and environment and suggests that the fixed
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seasonal enterotype dynamics play a key role in species formation
and adaptation of mammals to the extreme environment at high
altitude.
Akkermansia resides in the mucus layer of the gut and is known

for its degradation of mucin9,31. It was reported that A. muciniphila

plays a pivotal role in the prevention of obesity and type 1 and
type 2 diabetes and, hence, promotes health in humans32,33. In
addition, there is evidence that A. muciniphila functions as an
energy sensor and regulates energy homeostasis for host
microbial mutualism34,35. The present study demonstrated a
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substantial increase in Akkermansia and uncultured Eubacterium
WCHB1-41 enterotype 1 with low nitrogen and low energy intake
in the cold season, suggesting that this enterotype responds to a
high fiber and low protein diet. Previous studies reported that a
high fat diet decreased mucus thickness32, whereas, a fiber-rich
diet increased mucus thickness, which improved the gut positive
barrier function36. Akkermansia and uncultured Eubacterium
WCHB1-41 degraded mucins and converted them into short-

chain fatty acids (SCFAs), which provided nutrients for other
resident bacteria and cells37.
Genetic studies in yaks demonstrated enrichments in the

amino-acid metabolism gene (Whsc1, Glul), fatty acid biosynthesis
and metabolism gene (Hsd17b12)3, and up-regulation in 36 genes
that were related to volatile fatty acids transport and absorption in
the ruminal epithelium of high-altitude ruminants4. These studies
provide additional adaptive responses to insufficient energy
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intake that yaks experience. In addition, it was reported that yaks
have a relatively low N requirement and utilize dietary N more
efficiently than cattle in the cold season38–41. The current study
also provides a mechanistic explanation as Akkermansia and
Kiritimatiellaeota are involved in arginine and fatty acid biosynth-
esis pathways to utilize dietary N and generate energy in the cold
season. In the context of the increased metabolic disease
prevalence, this study provides an insight on the influence of
Akkermansia and uncultured Eubacterium WCHB1-41 enterotype in
nitrogen and energy utilization in the host, and implies that this
enterotype plays a key role in mediating the nutritional home-
ostasis in high altitude animals with large therapeutic potential of
metabolic diseases in humans. Further analyses of genomic
functions of gut microbiota of yaks would be beneficial for a
better understanding of mammals living in an extreme environ-
ment. Findings in the present study demonstrate that gut
microbiota respond to seasonal dietary shifts, which allows yaks
to better utilize poor forage of low protein content. The
understanding of diet–gut microbiota interaction improves our
understanding of how yaks adapt to extreme environments.

METHODS
Fecal sample collection and processing
The Tibetan plateau forms the high-altitude core of Asia and presents a
challenge for mammals to survive1. In this study, yaks grazed on the
Tibetan plateau in both TH and OCG regimes (Supplementary Fig. 1). In
OCG, the yaks grazed freely on the same area at 3010–3300m above sea
level (2000 ha; 37°10′–37°12′N, 102°44′–102°51′E) year-round. Dominant
and associated plant species included Kobesia humilis, K. capillifolia,
Polygonum viviparum, Stipa capillata, Elymus nutans, Thalictrum alpinum,
Medicago ruthenica, and Artemisia smithii. In the TH regime, yaks grazed
pasture at 2930–3000m above sea level (13.3 ha; 37°12′N, 102°46′E) in
winter-spring; at 3130–3300m above sea level (666.7 ha; 37°10′N, 102°44′E)
in summer; and at 3015–3100m above sea level (11.3 ha; 37°11′N, 102°44′
E) in autumn. The dominant and associated species in winter-spring
pasture included E. nutans, K. humilis, K. capillifolia, S. capillata, Leymus
secalinus, P. viviparum, and A. smithii; in summer included P. fruticose, P.
viviparum, Juncus himalensis, Deschampsia cespitosa, Festuca ovina,
Saussurea amara, Carex atrofusca, and C. moorcroftii; in autumn included
P. fruticose, Salix oritrepha, P. viviparum, E. nutans, D. cespitosa, K. tibetica, K.
humilis, C. kansuensis, J. castaneus, P. anserine, T. alpinum, and S. katochaete.
The annual mean temperature was −0.1 °C in the TH and 0 °C in the OCG
with a peak in summer (June–August) and a trough in winter
(December–February). The grassland was alpine meadow and alpine shrub
meadow and the plant growing season was 90–120 days.
According to previous studies42,43, and the average monthly temperature

and precipitation recoded by a nearby meteorological station in the study
area, four seasons can be identified as spring (April–May), summer
(June–August), autumn (September–October), and winter (November–March
the following year) (Supplementary Fig. 2). In this study, sampling periods
spanned the four seasons in 2017, namely, spring (May), summer (August),
autumn (October), and winter (December) (for TH: n= 32, spring; n= 33,
summer; n= 37, autumn; n= 45, winter and for OCG: n= 31, spring; n= 39,
summer; n= 38, autumn; n= 47, winter). Fresh yak feces were collected from
the TH and OCG grasslands, mixed thoroughly in an unused freezing tube,
placed immediately into liquid nitrogen containers in the field, and
transported to Lanzhou University until further processing. An amount of
0.2 g of fresh feces was used for DNA extraction with QIAamp® Fast DNA Stool
Mini Kit (50, QIAgen GmbH) and an extraction blank was processed to monitor
for cross-contamination. DNA was quantified using the NanoDrop-2000
UV–Vis Spectrophotometer (Thermo Scientific, Wilmingtoo, DE, USA). The DNA
samples were used for both diet (n= 302) and microbiota (n= 300) analyses.
The studies and all procedures involving the animals were approved by
experimental field management protocols (EAF2021012) of Lanzhou
University.

AGB and chemical composition analysis
Three plots (100m × 100m) were selected randomly in each of the TH and
OCG grasslands in each of the four seasons. Within each plot, five quadrats
(50 cm × 50 cm) were selected randomly. AGB was harvested in each

quadrat, oven-dried at 65 °C to a constant weight, ground to pass through
a 1-mm screen and stored at room temperature for chemical composition
analysis. Dry matter (DM) was determined by oven-drying at 105 °C for
24 h, EE by extraction with petroleum ether and N content by the Kjeldahl
method44. NDF and ADF were measured according to Van Soest et al.45,
with heat stable alpha amylase and sodium sulfite used in the NDF
procedure.

Diet DNA metabarcoding
The P6 loop of the chloroplast trnL (UAA) region was used for DNA
metabarcoding with primers trnL (UAA) g and trnL (UAA) h16,25,26,46

(Supplementary Table 1). For the PCR assays, 10 μL reactions of each of
0.3 μL primers, 0.2 μL KOD FX Neo, 2 μL dNTP, 5 μL KOD FX Neo buffer, and
50 ng of DNA template were mixed. Thermocycling followed a program of
initial denaturing at 95 °C for 4 min, followed by 35 cycles of 94 °C for 30 s,
50 °C for 30 s, and 72 °C for 1 min, with a 5-min final extension at 72 °C. All
PCRs were conducted with a no-template negative control and a positive
control (consisting of DNA extracted from plant species from our local DNA
reference library). The 5′ end of each primer was tagged by a 16-nt
multiplex identification tag that differed by 8-nt from the other tag,
allowing uniquely tagged PCR products. The sequence was carried out on
Illumina HiSeq 2500 platform.

16S rRNA gene Illumina sequencing
The V3–V4 region of the 16S rRNA gene was sequenced on Illumina MiSeq
2500 platform with primers (341F/806R)47 (Supplementary Table 1). For the
PCR assays, 50 μL of each of the 30 ng DNA template, fusion primer, and
PCR master mix were mixed. The PCR cycles started with a 3min
denaturation at 94 °C, followed by 30 cycles each consisting of 94 °C for
30 s, 56 °C for 45 s, 72 °C for 45 s, and followed by a final step of 72 °C for
10min. PCR products were purified with AmpureXP beads and eluted in
elution buffer. Libraries were qualified by the Agilent 2100 bioanalyzer
(Agilent, USA). The amplicons were sequenced on Illumina MiSeq 2500 and
generated 2 × 300 bp paired-end reads.

Reference plant DNA libraries
To identify diet plant sequences from fecal samples, we established an
extensive DNA reference database from plant species throughout the
alpine grassland area of the study, Yongfengtan and Wushaoling. The
collection included 212 species that were most abundant in the study area.
All plants were identified to species-level by expert botanists.
Reference plant DNA was extracted with DNeasy Plant Mini Kit (50,

QIAgen GmbH) using 0.2 g of leaves, and sequenced chloroplast trnL-P6
(UAA) using established primers and protocols (Supplementary Table
1)26,48. DNA was quantified using the NanoDrop-2000 UV–Vis Spectro-
photometer (Thermo Scientific, Wilmingtoo, DE, USA). trnL (UAA) was
sequenced in 25 μL PCR reaction that included 2.5 μL MgCl2, 4 μL dNTP,
0.5 μL of each primer (trnL(UAA)c/trnL(UAA)d), 12.5 μL 2 × GC Buffer I,
0.25 μL TaKaRa LA Taq®, and 0.5 μL DNA template. Thermocycling for trnL
(UAA) proceeded at 94 °C for 1 min, 35 cycles of 94 °C for 30 s, 56 °C for
30 s, and 72 °C for 1 min, with a 5min extension at 72 °C. Programs
Geneious and MEGA7.0.14 were used for sequence alignment and analysis.

DNA metabarcoding sequence analysis
Sequence demultiplexing, quality, and preliminary identifications were
conducted by QIIME 1.9.1. Demultiplexing used split_libraries_fastq.py49.
Sequences shorter than 10 bp and mean Illumina fastq quality scores <20
were not considered. Paired reads were merged using USEARCH1150 and
then all merged sequences of each sample were pooled. Quality filtering
was performed on the pooled sequence with more than 0.5 expected error
using fastq_filter command in USEARCH11 and only sequence lengths ≥ 10
were retained. Fastx_uniques command in USEARCH11 was used to find a
set of unique sequences from filtered sequences, and singletons (sequence
abundance= 1 across all samples) were removed. The remaining
sequences were denoised (cluster at 100% similarity) using UNOISE
algorithm51, during which OTU representative sequences were generated
and potential chimeras were excluded. All the initially pooled sequences
were mapped into the denoised sequence (zOTU) to generate an OTU
table using otutab command implemented in USEARCH11. Strictly
identical sequences were merged and assigned plant species based on
their unique sequences to DNA metabarcode sequences with exact
matches (100% identity) to reference sequences. Only unique sequences
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with an identity of 100% to reference sequences were kept for further
analysis. When 100% identities were acquired from the local reference and
NCBI libraries; preference was given to the local reference library. When a
diet sequence matched multiple reference sequences exactly, assignments
were revised to the finest taxonomic level by blasting with NCBI. We used
the summarize_taxa command to group identical sequences, tally them
within samples and then quantify the relative read abundance of each
sequence, which is widely used to quantify the proportional foods
consumed by animals46,52–54, and has been confirmed in several
studies26,55,56. The resulting OUT counts per sample were rarefied to
40,000.

Microbiota community analysis
Quality control, merging of pair ends, OTU clustering, and taxonomic
assignation were performed using the QIIME 1.9.1. Illumina fastq quality
scores < 20, ambiguous nucleotides and chimeras were discarded. The
reads were assigned to OTUs using UNOISE351 with a threshold of 100%
identity and seeded with SILVA rRNA gene databases57. Sequences
identified as archaea, mitochondria, and chloroplast were removed. After
filtering and identification, the bacterial 16S rRNA gene data included
sequences across 300 samples. The resulting OTU counts per sample were
rarefied to 10,000.

Application of enterotype clustering methodology
We applied methods described in humans18,29,30,58 to test for the presence
of enterotypes in high-altitude yak. The genus-level relative abundance
profiles of samples were clustered using Jensen–Shannon divergence (JSD)
and BC dissimilarity and partitioning around medoid (PAM) clustering in R.
The robustness of clusters was assessed by the Calinski–Harabasz (CH)
index and silhouette score59. We applied the PAM, CH index, and silhouette
score to clustering using BC and JSD methods, for which results did not
differ (Supplementary Fig. 9). Furthermore, previous studies suggested that
BC is related strongly to JSD29,58 and based on abundance method and
suitable for revealing variations in abundance taxa, especially those with
enterotypes. Thus, BC was implemented in genus-level abundance. To
identify genus taxa contributing to enterotype groups based on BC, we
applied the SIMPER method29,60, which identifies genus taxa contributing
to similarity within- and dissimilarity between enterotypes and ranks their
contribution.

Statistical analysis
Standard R commands were performed to generate variations in relative
abundance across seasons, and the Wilcoxon test (two-sample compar-
isons) or the Kruskal–Wallis test (multiple groups) was used to measure
significance in non-parametric relative abundance profiles. The t-test was
used to measure significance in AGB and chemical composition of the diet
profiles compared with the average AGB or chemical composition across
seasons. R was performed to visualize the seasonal dynamics in AGB and
chemical composition of the diet as line chart and relative abundance of
diet and microbiota taxa across seasons as streamplots or boxplots. We
used BC dissimilarity and nonmetric multidimensional scaling (NMDS) in
vegan61. Pairwise differences within and across seasonal diets and
microbiota variation were permutested with 9999 permutations and false
discovery rate (FDR) correction. To assess which plant and microbiota taxa
were most responsible for seasonal differences in diet and microbiota
variations, we performed indicator species analysis62 with indicspecies in R.
We used the multipatt function with 9999 permutations to the list of
species that were related with a group of samples and r.g. function
determined the correlation between two binary vectors. Within seasons,
the relationship between diet and microbiota richness in each sample was
assessed by linear regression using the data across seasons in TH and OCG
regimes. The correlations between diet and microbiota composition were
computed based on Procrustes analysis, a program that compares the
relative positions of points in two multivariate datasets63, and conducted
in R using the vegan package. Monte Carlo p-values for rotational
agreement significance testing were determined from 9999 permutations.
For enterotype comparisons, samples were pooled into bins (spring,
summer, autumn, and winter), and the significance among seasons were
identified using Fisher’s exact test with FDR correction of p-values. FDR was
applied at a level of 0.05 per tested correlation and significance for
multiple comparison.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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