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Abstract: Mesenchymal stem cell (MSC)-derived secretome demonstrated therapeutic effects like
those reported after MSCs transplantation. MSC-derived secretome may avoid various side effects
of MSC-based therapy, comprising undesirable differentiation of engrafted MSCs and potential
activation of the allogeneic immune response. MSC-derived secretome comprises soluble factors and
encapsulated extravesicles (EVs). MSC-derived EVs comprise microvesicles, apoptotic bodies, and
exosomes. In this review, we focus on the recent insights into the effects of MSC-derived secretome
in Parkinson’s disease (PD). In particular, MSC-derived secretome and exosomal components
counteracted neuroinflammation and enhanced antioxidant capacity and neurotrophic factors
expression. In light of the insights reported in this review, MSC-derived secretome or their released
exosomes may be used as a potential therapeutic approach or as adjuvant therapy to counteract the
disease progression and improve PD symptoms. Also, MSC-derived secretome may be used as a
vehicle in cell transplantation approaches to enhance the viability and survival of engrafted cells.
Furthermore, since exosomes can cross the blood–brain barrier, they may be used as biomarkers
of neural dysfunction. Further studies are necessary to fully characterize the bioactive molecules
present in the secretome and to create a new, effective, cell-free therapeutic approach towards a robust
clinical outcome for PD patients.

Keywords: secretome; Parkinson’s disease; stem cells; mesenchymal stem cells; exosomes;
extravesicles; conditioned medium

1. Introduction

Several disorders, including neurodegenerative diseases, are in the focus of stem cell-based research.
Mesenchymal stem cells (MSCs) are the most encouraging source for stem cell-based treatment thanks
to their immuno-modulatory characteristics, pro-angiogenic features, and multi-lineage differentiation
capability [1,2]. MSCs can be easily isolated from various sources, including adipose tissue, umbilical
cord Wharton ’s Jelly, bone marrow, and dental pulp [1], which has encouraged numerous researchers
to investigate their usage in cell transplantation approaches for Parkinson’s disease (PD).

Recently, the positive effects of stem cell transplantation have been ascribed to their secretome,
composed of released bioactive factors, which offer a regenerative microenvironment for damaged
tissues, triggering a self-regulated regenerative response and limiting the area of the lesion [3,4]. In
particular, recent studies have aimed at the therapeutic potential of the secretome of MSCs. MSC-derived
secretome comprises soluble factors and encapsulated extravesicles (EVs) [5,6]. Increasing evidence
indicates that EVs have a strong impact on physiological processes and are particularly critical in
cell-to-cell communication [7]. Various categories of vesicles have been defined, which show different
properties and biogenesis. MSC-EVs contain membranes and cytoplasmic constituents of the original
cells. MSC-EVs’ membranes are rich in sphingomyelin, cholesterol, and ceramide. They are positive
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for surface markers of MSCs (CD90, CD13, CD44, CD29, CD105, and CD73) but negative for the
hematopoietic system-related markers (CD45 and CD34). Additionally, MSC-EVs express CD63 and
CD81, typical markers of EVs [8–10].

MSC-derived EVs are composed of a lipid bilayer supplemented in proteins (integrins,
tetraspanins, ligands for cell surface receptors) supporting trafficking, adhesion, and endocrine
effects of EVs [11]. Numerous MSC-derived bioactive molecules are enveloped by the bilayer
membrane, including enzymes, genetic materials (DNA, RNA, microRNAs), signal transduction
proteins, immunomodulatory signaling, and growth factors [4,12].

MSC-derived EVs comprise microvesicles, apoptotic bodies, and exosomes [13]. Apoptotic
bodies are the largest EVs (diameter >1000 nm), which degenerate from the MSCs during apoptosis.
MSC-derived microvesicles are nano-sized (diameter 100–1000 nm) EVs that expand by budding
from the plasma membrane [14]. Exosomes are the smallest EVs (diameter 30–200 nm) that are
derived from the inner budding of endosome membranes, named multivesicular bodies. The merging
of multivesicular bodies with the plasma membrane leads to exosomes being released into the
extracellular environment, where they perform their biological activities by regulating different cell
signaling pathways in target cells [7].

MSC-derived conditioned medium (MSC-CM) includes the entire set of MSC-derived soluble
molecules and vesicular components [15,16], including exosomes.

Numerous biological effects were reported in experimental studies upon MSC-CM and MSC-EVs
administration [4,17]. Notably, MSC-derived secretome avoids several side effects of MSC-based
therapy, including undesirable differentiation of engrafted cells and potential activation of the allogeneic
immune response [2,4]. Other issues in the use of stem cell transplant are low survival and engraftment,
tumor formation, and the long wait time for cell preparation and proliferation. In contrast, MSC-derived
secretome can be quickly manufactured from commercial cell lines, preventing invasive cell collection
processes [18–20]. CM-secretome can be produced, freeze-dried, packaged, and transported more
easily [16]. Furthermore, the rejection problems of the recipient, that can occur using stem cells per se,
are avoided thanks to the lack of cells [21]. Moreover, MSC-derived secretome offers a useful source
of bioactive factors since its content may be assessed through the analogous method of conventional
pharmaceutical agents [22].

In light of these biological and manufactural advantages compared to MSC-based treatment, the
administration of MSC-derived secretome has been deemed as a novel, cell-free beneficial approach
for treating numerous disorders, including Parkinson’s disease [4]. MSC-derived secretome has been
partially characterized by protein array; however, it is still unknown which sets of factors or molecules
are related to the positive regenerative effects.

Parkinson’s disease (PD) is one of the most frequent neurodegenerative disorders. The hallmark
of this disease is the loss of dopaminergic neurons in the substantia nigra with consequent motor
and non-motor disorders due to dopamine loss and, thus, nigrostriatal pathway degeneration [23,24].
Further, neuroinflammation and oxidative stress are involved [25,26]. The only available treatments
can relieve symptoms, but, to date, there is no cure. The investigations reported so far on MSC-derived
secretome treatments in PD experimental models indicated MSC-derived secretome is a promising and
encouraging approach for this disorder (summary in Figure 1).
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Figure 1. Summary of the encouraging insights on mesenchymal stem cell (MSC)-derived secretome
treatment in Parkinson’s disease (PD) experimental models. In particular, we focused on the
neuroprotective effects of conditioned media and exosome-derived MSCs.

1.1. Cellular and Molecular Mechanisms of PD

The underlying mechanisms of PD are still unclear, however, both environmental and genetic
factors are involved in the pathogenesis [23,27]. Initially, the PD-linked mutations related toα-synuclein
(A53T) [28]; subsequently, various gene mutations were identified, the most common were PINK1,
DJ-1, LRRK2, and Parkin. The main cause of PD is the dopaminergic neuronal loss in the substantia
nigra, which is the primary cause of motor symptoms. Dopamine metabolism, neuroinflammation,
mitochondrial dysfunction, oxidative stress, and protein degradation damage are implicated in the
death of dopaminergic neurons [23,29,30]. In addition, the immune system is implicated, indeed, in
post-mortem brain and cerebrospinal fluid of PD patients, pro-inflammatory cytokines, including
IFN-γ, TNF-α, IL-6, and IL-1β, are found to be upregulated [31].

For instance, in an α-synuclein PD rat model, an increase in IL-1β, IFN-γ, and TNF-α concomitant
with microglia activation was found [32]. Recently, a study reported that T-cells from PD patients
recognize α-synuclein peptides as antigenic epitopes, suggesting the association of PD with specific
major histocompatibility complex alleles [33].

Mitochondrial dysfunction and oxidative stress are due to the accumulation of oxidized dopamine,
which lead also to α-synuclein deposits and lysosomal impairment in neurons in PD patients [34,35].
Post-mortem analyses in PD patients’ brains revealed enhanced levels of 4-hydroxyl-2-nonenal
(HNE), a by-product of lipid peroxidation, 8-hydroxyguanosine, and 8-hydroxy-deoxyguanosine
oxidation products in the substantia nigra of PD patients [36,37]. The link between oxidative stress
and PD pathogenesis is also confirmed by PD animal models induced by neurotoxins, such as
6-hydroxydopamine or methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which generate reactive
oxygen species (ROS) production and consequent dopaminergic neuronal death [38]. Although ROS
formation represents a relevant factor in PD, the molecular and cellular mechanisms connecting
dopaminergic neuronal death and oxidative stress are still unclear. The primary insults lead
to aberrant ROS production, which attack all macromolecules, promoting oxidative injury and
leading to physiological activities impairments. Consequently, defects in these macromolecules
cause mitochondrial impairment and neuroinflammation, which in turn promote ROS and eventually
neuronal death. These loops lead to oxidative stress-mediated progressive death of dopaminergic
neurons, a leading role in the neurodegenerative progression [23].

Another key characteristic of PD are Lewy bodies, eosinophilic fibrillary intracellular deposits in
neuronal bodies and appendages. The main component of Lewy bodies are proteins, polysaccharides,
and fats, in particular α-synuclein, ubiquitin, parkin, neurofilaments, and synphilin. The underlying
mechanism of the generation of these aggregates is still unclear [37] as is their role in neuronal death.
Further, an aberrant proliferation of different glial cell types occurs, [38], thus leading to microglia
activation involved in the neuroinflammation. The neuronal loss and Lewy bodies aggregation
occur not only in the substantia nigra and tectum mesencephalic and basal nuclei, but also in the
pedunculopontine nucleus, the locus coeruleus, parasympathetic and sympathetic postganglionic
neurons, the dorsal motor nucleus of the vagal nerve, the cerebral cortices, the raphe nucleus, the
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olfactory bulbs, and the amygdala. Degeneration in these structures involve non-motor clinical
symptoms development.

The ubiquitin-proteasome system, crucial for cell differentiation, DNA replication, and
transcription upon endogenous and exogenous stimuli, is involved in the pathogenesis of sporadic
forms of PD. In PD, three different gene mutations (SNCA, PARK2, and UCHLI) are directly correlated
with impairments in this system, with decreased 26s proteasome complex activity found in the substantia
nigra of PD patients, and consequent oxygenated proteins accumulation [37]. For instance, several
intron SNPs (Single Nucleotide Polymorphism in Intronic Sequences) and dinucleotide polymorphism
in the promoter region of SNCA have been reported, which influence the stability of mRNA and are
associated with PD. [38,39].

Further, neurotrophic factors are implicated in PD pathogenesis. For instance, the brain growth
factor (BDNF) and the glial growth factor (GDNF) are crucial for differentiation and normal functioning
of dopaminergic neurons and influence dopamine metabolism in the substantia nigra. BDNF stimulates
neuroregeneration and neuroprotection. In in vivo PD models, BDNF protected dopaminergic neurons
from death and improved dopaminergic transmission and performance in motor tests [39]. It is relevant
to clarify the underlying molecular and cellular mechanisms of PD to elaborate new approaches to the
early diagnosis and treatment of this disorder.

1.2. Searching for New Biomarkers and Therapeutic Approaches for PD

Human fluids are encouraging sources of molecular biomarkers, which can be categorized into
molecules (e.g., elevated levels of 8-hydroxydeoxyguanosine, a byproduct of DNA oxidation, in PD
patients’ urine), proteins (e.g., protein aggregates), and RNAs (e.g., noncoding microRNAs) [40]. The
potential in using biomarkers isolated from body fluids (i.e., serum, cerebrospinal fluid, urine, blood,
saliva, plasma) is the possibility of screening different molecules at once, while the cons are the low
levels of molecules and the heterogeneity [41,42]. Exosomes have attracted a lot of interest because
they are able to overcome this issue. Exosomes can be obtained from all bodily fluids, and they have a
complex cargo of different RNAs (including microRNAs, ribosomal RNAs, and long noncoding RNAs),
lipids, proteins, and DNA that in part depend on the tissue of origin and health conditions [7,43].
Catalytically active enzymes like PTEN (phosphatase and tensin homolog), and bioactive lipids such
as prostaglandins, can be transferred by exosomes to target cells [25,26]. Exosomes carry different
proteins, called “exosome markers”, the majority of which are associated to their biogenesis [44]. They
also carry transmembrane proteins that can help in the immunoselection of exosomes with a precise
cellular origin, thus increasing the sensitivity of exosomes as biomarkers. It has been reported that
in neurodegenerative disorders exosomes carry misfolded proteins, such as α-synuclein in PD [45].
Among the different biomolecules related to exosomes, miRNAs have attracted the most attention
as biomarkers.

The most relevant insight in therapeutic approaches for PD concerns the administration of the
dopamine precursor l-DOPA (l-3,4-dihydroxyphenylalanine), which is able to ameliorate PD-related
symptoms, increasing the level of the neurotransmitter but not replacing or counteracting dopaminergic
neuron death [46]. Despite these limitations, the different side effects and the lack of improvement in
nondopaminergic symptoms (such as psychiatric disorders or cognitive impairment), l-DOPA is the
currently available treatment for PD patient. Indeed, to date, there is no cure [47]. Thus, among the
innovative therapeutic approaches, the use of stem cells has received particular interest.

2. The Fate of MSC-Derived Secretome

The biodistribution of secretome and the exosomal component upon administration in vivo
is limited.

Numerous approaches have been utilized for in vivo tracking to establish EVs’ biodistribution
upon systemic administration in various animal models [48,49]. An interesting comparative study
assessed the biodistribution of bone marrow (BM)-derived secretome (labelled with a near-infrared



Int. J. Mol. Sci. 2020, 21, 5241 5 of 14

lipophilic dye) in mice after different routes of administration and at different dosages. This was
the first study focused on EVs’ biodistribution in vivo and the results underlined the importance for
therapeutic research using MSC-derived secretome [48].

Near-infrared (NIR) dyes are best for in vivo applications because of their high signal/noise
ratio [50]. EVs with superparamagnetic iron oxide nanoparticles are exploited for sensitive magnetic
resonance analysis for high detection and resolution of tissues [51]. Notably, in a traumatic brain injury
rat model, intravenous injection DiI-labeled MSC-derived exosomes was able to reach brain, liver, lung,
and spleen [52]. Exosomes were found to home to the lesioned site. Intranasal administration was
identified as one of the best routes of administration of EVs and exosomes because it led to higher
brain accumulation at the lesioned brain area [53]. Biodistribution of systemically administered EVs is
a dynamic process: EVs are rapidly (within 30 min) distributed in the spleen, liver, and lungs and then
EVs are excreted by renal and hepatic processing in 1 to 6 h [54].

Concerning exosomes, upon systemic administration, they generally localize to the intestine,
liver, spleen, and lungs of mice, where the mononuclear phagocyte system is active [48,55]. Indeed,
macrophage-depleted mice showed slower clearance of exosomes from circulation with respect to
control animals, suggesting the leading role of macrophages in exosome biodistribution [56].

2.1. Positive Effects of MSCs in PD

The first study reporting the potential of MSCs in PD demonstrated that the transplant of Wharton
Jelly-derived MSCs was able to improve motor behaviors in a hemiparkinsonian rat model, indicating
that the secretion of trophic factors mediated the rescue of the degenerating dopaminergic neurons [57].
Rat bone marrow-derived MSCs (BM-MSCs) intravenous administration ameliorated functional
impairment and protected tyrosine hydroxylase (TH)-positive fibers in the striatum and substantia
nigra in a PD rat model (6-OHDA lesioned) [58]. The authors detected chemotactic cytokine SDF-1α in
the BM-MSC-derived secretome. They revealed that this cytokine inhibited the apoptosis in PC12 cells
exposed to 6-OHDA, with a resultant increase of dopamine release from these cells [58]. In addition,
Cova and his research group reported that human MSCs transplantation in the striatum of 6-OHDA
lesioned rats protected dopaminergic neurons and induced neurogenesis, suggesting that MSCs in situ
may help lesioned neurons thanks to the local release of soluble factors, such as BDNF [59].

These reports provide the idea that bioactive molecules released by MSCs exert neuroprotective
and antiapoptotic effects. Indeed, other researchers focused on the use of MSC-derived secretome
(in the form of conditioned media or an exosomal component) as a cell-free transplantation method
for PD.

2.2. Positive Effects of MSC-Derived Conditioned Medium in PD

While the cell-free trophic consequences of MSCs transplant have been reported in different
in vivo models, research on the therapeutic impacts of secretome on neurodegenerative disorders is
still scant.

Notably, different studies described MSC-CM positive effects in PD. In vitro studies reported the
neuroprotective activity of the secretome derived from human bone marrow-MSCs and human tooth
germ stem cells, in 6-OHDA-treated SH-SY5Y cells and murine differentiated neural stem cells [60].
Another research group [61] investigated the viability of dopaminergic cells from different sources
upon rat bone marrow-MSC-derived secretome treatment, suggesting that prostaglandin E2 receptors
represent the principal factor of neuroprotective events.

Other interesting research assessed the neuroprotective effect of adipose-derived mesenchymal
stem cells (ASCs)-CM on neurotrophins gene expressions and TH+ cell density in 6-OHDA-lesioned
rats. ASCs secrete numerous neurotrophic factors and cytokines in CM, which protect neurons by
antioxidative and trophic effects. ASC-CM protected dopaminergic neurons by preserving TH+

neurons and by increasing BDNF and neurotrophin-3 expression [62]. The neurotrophic factor BDNF
is crucial for neuronal survival in the substantia nigra [63]. The ability of MSC-derived secretome
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to reduce extracellular α-synuclein both in vitro and in vivo was also reported, mainly mediated by
matrix metalloproteinase-2 [64].

An exciting study in a PD rat model compared human MSC bone marrow-derived (hBMSCs)
transplantation with hBMSC-derived secretome. hBMSC-derived secretome was able to protect
dopaminergic neurons when compared to only hBMSCs, and to ameliorate behavioral performances.
Further, hBMSC-derived secretome had more impact on neuronal differentiation and survival in vitro.
Finally, this research group analyzed the secretome through proteomic analysis and showed that
hBMSCs release exosome-related factors, including those related to the ubiquitin-proteasome and
histone systems. This work offered essential understandings on the potential use of hBMSC-derived
secretome as a therapeutic tool for PD [65].

More recently, another research group compared the therapeutic effect of stem cells with its
conditioned medium in a PD rat model induced by rotenone. In particular, they used bone marrow
mesenchymal stem cells (BMSCs). Biochemical, histological, and immunohistochemical parameters
were significantly ameliorated in both BMSCs and CM-treated groups as confirmed by anti-nestin,
anti-glial fibrillary acidic protein, and anti-α synuclein analyses. Interestingly, the results upon
CM were more evident, almost reestablishing the normal histological architecture of the substantia
nigra [66].

Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHED)-CM showed
promising potential in regenerative medicine. Specifically, Chen and collaborators examined the
therapeutic effect of SHED-derived CM in a rotenone-induced PD rat model. Notably, SHED-derived
CM was able to improve motor performance in PD rats, reducing neuroinflammation (Iba1 and CD4
levels), increasing TH amounts in the striatum, and decreasing α-synuclein levels in both the substantia
nigra and striatum [67].

The effects of menstrual blood-derived mesenchymal stem cells (MenSCs)-CM were evaluated in
an in vitro model of PD: SH-SY5Y neuroblastoma cell line treated with 1-methyl-4-phenylpyridinium
(MPP+). Interestingly, MenSCs-CM was efficient against MPP+ induced oxidative stress and
inflammation [68].

Another relevant therapeutic utilization of MSC-derived secretome for PD is its combination
with cell replacement approaches [69,70]. For instance, it has been shown that the pre-treatment of
embryonic dopaminergic neurons with rat BM-MSC-derived secretome improved survival in a PD
rat model (6-OHDA). Yao and collaborators reported that transplantation of secretome-treated neural
stem cells into PD rats led to improved motor tests and cognitive tests, which was associated with
increased cell survival and differentiation of dopaminergic neurons in ventral tegmentum [71].

2.3. Positive Effects of MSC-Derived Exosomes in PD

As we mentioned above, the secretome released by MSCs contains different bioactive molecules,
including exosomes. MSCs can produce a higher amount of exosomes than can other kinds of cells [72].
Methods to isolate exosomes from the MSC-conditioned medium have been widely developed.

MSC-derived exosomes are hypoimmunogenic (due to the lack of MHC-II and low expression
of MHC-I) nanocarriers that comprise various immunoregulatory components. Exosomes have
several advantages, they are able to cross the blood–brain barrier and blood capillaries, and are small
enough to avoid being cleared by the reticuloendothelial system [73]. The mechanisms of cellular
recognition and internalization are still unclear. Antigen recognition, adhesion, and free-floating are
described as cellular recognition mechanism, while fusion, phagocytosis, micropinocytosis, and raft-
and receptor-mediated endocytosis are indicated as exosomal internalization processes [74].

Exosomes have proven effective in direct MSCs transplantation, and their positive therapeutic
effects have been shown in different disease models, in particular, they were beneficial for central
nervous system pathologies. In a stroke animal model, MSC-derived exosomes, intravenously
administered, stimulated angiogenesis and neurogenesis, neurite remodeling, and improved animal
motor performances [75]. The same neuroprotective effect was shown in a traumatic brain injury
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model after MSC-derived exosomes administration; indeed, a reduction of neuroinflammation and
better outcomes were reported [76]. Spinal cord injury rats, upon MSC-derived exosomes injection,
showed reduced inflammation and increased neuronal regeneration [77,78]. In addition, in Alzheimer’s
disease, the positive effects of MSC-derived exosomes with a particular impact on neuroplasticity were
reported [79].

Concerning PD, SHED-derived exosomes were found to rescue dopaminergic neurons from
6-OHDA–induced apoptosis in vitro, providing a potential regenerative treatment for this disorder [80].

A research group demonstrated that human umbilical cord mesenchymal stem cell
(hucMSC)-derived exosomes reduced apoptosis in SH-SY5Y cell culture. Further, in a PD rat model
(6-OHDA lesioned), exosomes crossing the blood-brain barrier, reached the substantia nigra, decreased
dopaminergic neurons loss and apoptosis, improved apomorphine-induced asymmetric rotation, and
increased dopamine levels in the striatum [81].

Overall, the use of exosomes to treat PD is encouraging (Figure 2); however, the exact underlying
mechanism is still unknown.
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Figure 2. Therapeutic potential of MSC-derived exosomes in PD patients based on the results reported
so far in experimental models. Through intravenous or intranasal administration, exosomes are able
to cross the blood–brain barrier (BBB), thus exerting neuroprotective activities in neurodegenerative
diseases, including PD.

3. MSC-Secretome: miRNA Relevance and Theranostic Applications in PD

Secretome derived from MSCs, and in particular its miRNAs component, has also been indicated as
a valuable tool for targeted therapies and diagnostics. miRNAs are a highly studied class of non-coding
RNAs responsible for the regulation of different genes through RNA messenger degradation or
inhibition of their translation [82]. Numerous miRNAs have been indicated as α-synuclein modulators.
For example, altered binding between and fibroblast growth factor 20 (FGF20) mRNA and miR-433
induced increased FGF20 levels, which consequently led to elevated α-synuclein protein levels in the
cell [83]. Further, high miR-16-1 levels block the translation of the HSP70 (heat shock protein 70) mRNA,
involved in α-synuclein inhibition, thus leading to an accumulation of α-synuclein [84]. Moreover,
targeting miR-7, miR-153, and miR-34b/c from binding on their α-synuclein induces elevated levels of
α-synuclein [85,86].

In PD, a relation between miR-34b/c reduction and the resultant DJ-1 and PARKIN decline in
several brain areas was found [87]. Notably, increased miR-494 and miR-4639-5p levels trigger a direct
decrease of DJ-1 protein expression, making dopaminergic neurons more susceptible and predisposed
to the PD phenotype [88,89]. Interestingly, it has been recently proposed that MSC-derived secretome
can ameliorate different biomarkers of PD pathophysiology, thus suggesting MSC-derived secretome
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as a promising approach to identify and generate valuable PD biomarkers [90]. As mentioned above,
MSCs secrete different biomolecules and factors, including exosomes carrying miRNA, which may
represent potential biomarkers but also modulators of different pathways underlying various disorders,
including PD. Theranostic applications in PD exploiting the potential of MSC-derived secretome,
mainly concern the targeting of the injured brain areas and delivering miRNAs through the blood-brain
barrier. Thanks to the nature of exosomes, their application in the theranostic field and in clinic have
received a lot of interest. Still, different points need to be addressed, such as the “best” MSCs line and
the development of valid isolation techniques and loading methods without altering the exosomal
component and integrity. However, MSC-derived exosomes may represent a valuable solution. In fact,
numerous experiments revealed that MSC-derived exosomes are able to transfer miRNAs to neuronal
cells, for instance, exosomes enriched in miR-133b can stimulate neurite outgrowth [90,91], one of
the miRNAs generally decreased in PD. Further, miR-21 and miR-143, leading players in immune
response, and neuroinflammation were also observed in MSC-derived exosomes [92]. Interestingly, in
MSC-derived exosomes, a miRNA cluster composed of miR-18a, miR-17, miR-20a, miR-19a/b, and
miR-90a, involved in axonal growth, neurogenesis, neurite remodeling and in CNS (central nervous
system) recovery, was detected [93,94].

Another theranostic application in PD exploits the human Periapical Cyst-MSCs (hPCyMSCs)
differentiated in dopaminergic neurons; thus hPCyMSC-derived exosomes may be useful therapeutic
carriers for PD. hPCy-MSCs exposed to a neural-inductive medium led to functional dopaminergic
neurons; the exosomes isolation from the CM of these MSCs is presently standardized [95]. The analysis
of circulating exosome-derived miRNA through microarrays and gene sequencing could be related to
nanotechnologies: This is a significant point to improving the capability of new smart nanomaterials to
capture the small-sized biomolecules, representing a theranostic approach with elevated sensitivity
and extreme specificity [96].

On this basis, it is relevant to isolate and characterize the entire set of biomolecules released
by MSCs and in particular hPCy-MSCs, and to dissect the cellular and molecular mechanisms
regulated by miRNAs. These new understandings may allow for the development of new therapeutic
approaches and offer novel evidence on functional biomarkers for early diagnosis and monitoring of
neurodegenerative diseases, with particular attention to PD.

4. Conclusions and Future Perspectives

PD is a debilitating neurodegenerative disorder that affects millions of people worldwide;
however, the molecular and cellular underlying mechanisms are still unclear. Although there are
advances in the PD research field, the current therapeutic approaches improve PD patients’ quality
of life, but they are not able to counteract PD progression and to stimulate dopaminergic neurons
survival/differentiation. Thus, recently, MSC-derived secretome and its exosomal components have
been suggested as promising therapeutic tools for numerous neurodegenerative disorders, including
PD, due to their ability to promote dopaminergic neurons survival, stimulate neurogenesis, decrease
neuroinflammation, promote functional recovery in in vivo models.

To date, there is no cure for PD, and thus, recently, attention has been focused on cell-free
approaches. MSCs have become widely used for cell-based therapy due to less scientific and ethical
issues compared to the use of other kinds of cells. The ability of MSCs to release exosomes and various
trophic factors makes the use of MSCs attractive for PD treatment. Thanks to their small size and/or
soluble nature, these secreted molecules can cross the blood–brain barrier; moreover, exosomes are
intrinsically less risky compared to live stem cell transplants. Exosomes cannot transform into harmful
or malignant cells; they cannot replicate; they are less prone to activate an immunogenic response; and
a virus cannot infect them. In light of the insights reported in this review, the use of MSC-derived
secretome is encouraging in PD.

Further studies are needed to identify a personalized approach for the different neurodegenerative
diseases and to create a new, useful, cell-free therapeutic approach towards a robust clinical outcome
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for PD patients. Another point that needs to be clarified is if the encouraging results are due to one
or two factors or a combination of different molecules present in the secretome. To date, it is pretty
clear that MSC-derived secretome exerts positive effects on neuronal cell survival, differentiation, and
proliferation; however, future studies need to characterize all the bioactive molecules fully. Thus,
MSC-derived secretome or their released exosomes may be used as a potential therapeutic approach
or as adjuvant therapy for PD symptoms and to counteract the disease progression. Furthermore,
their secretome may be used as a vehicle in cell transplantation approaches to improve the viability
and survival of engrafted cells and also as a diagnostic approach. These different aspects of the
knowledge about the secretome may permit the advancement of targeted secretome to fight different
pathophysiological impairments in a multidisciplinary manner. In addition, since MSC-derived
secretome is able to stimulate neurotrophic (i.e., BDNF, a biomarker of the majority of neurodegenerative
disorders) and neuronal survival pathways and to counteract neuronal death, it could also be beneficial
against other neurodegenerative conditions, including polyglutamine disorder, Alzheimer’s disease,
and stroke.
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Abbreviations

EVs Extravesicles
MenSCs Menstrual blood-derived mesenchymal stem cells
MPP+. 1-methyl-4-phenylpyridinium
BMMSCs Bone marrow mesenchymal stem cells
MSCs Mesenchymal stem cells
hucMSCs Human umbilical cord mesenchymal stem cells
PD Parkinson’s disease
6-OHDA 6-hydroxydopamine
ASC Adipose stem cells
CM Conditioned media
SHED Human exfoliated deciduous teeth
TH Tyrosine hydroxylase
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