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Internet gaming disorder (IGD) has become an important social and psychiatric issue

in recent years. To prevent IGD and provide the appropriate intervention, an accurate

prediction method for identifying IGD is necessary. In this study, we investigated

machine learning methods of multimodal neuroimaging data including Positron Emission

Tomography (PET), Electroencephalography (EEG), and clinical features to enhance

prediction accuracy. Unlike the conventional methods which usually concatenate all

features into one feature vector, we adopted a multiple-kernel support vector machine

(MK-SVM) to classify IGD. We compared the prediction performance of standard

machine learning methods such as SVM, random forest, and boosting with the proposed

method in patients with IGD (N = 28) and healthy controls (N = 24). We showed that the

prediction accuracy of the optimal MK-SVM using three kinds of modalities was much

higher than other conventional machine learning methods, with the highest accuracy

being 86.5%, the sensitivity 89.3%, and the specificity 83.3%. Furthermore, we deduced

that clinical variables had the highest contribution to the optimal IGD prediction model

and that the other two modalities were also indispensable. We found that more efficient

integration of multimodal data through kernel combination could contribute to better

performance of the prediction model. This study is a novel attempt to integrate each

method from different sources and suggests that integrating each method, such as

self-administrated reports, PET, and EEG, improves the prediction of IGD.

Keywords: internet gaming disorder, integrative analysis, multimodal, kernel support vector machine, Positron

Emission Tomography, electroencephalography

INTRODUCTION

In modern society, the Internet has become an essential tool for life, and Internet-based games have
also become popular for their accessibility and entertainment as a result. On the other hand, various
side effects have also increased significantly, and Internet gaming disorder (IGD) has thus become
one of the most discussed psychological issues. IGD is caused by repetitive use of internet-based
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games that leads to significant problems with functioning in
the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) which contains preoccupation or obsession,
withdrawal symptoms, and overuse (American Psychiatric
Association, 2013). According to DSM-5, gaming causes
significant impairment or distress in several aspects of a
person’s life. In addition, the World Health Organization
recently recognizes IGD to be a severe public health issue,
and IGD has been categorized as a gaming disorder in the
International Classification of Diseases 11th Revision (World
Health Organization, 2019). Therefore, it is important to
properly diagnose and intervene the development of IGD, which
requires an accurate prediction method for identifying IGD.

There are several techniques to evaluate and predict IGD. In

clinical practice, the most common method for evaluating IGD

is self-administrated questionnaires. Patients with IGD usually
self-report their Internet gaming usage patterns and the severity
of IGD symptoms. For example, clinical and psychological

features such as depression, hostility, and life satisfaction are
all possible risk factors for IGD (Young and Rogers, 1998;

Bargeron and Hormes, 2017). Ko et al. (2007) reported that
high exploratory excitability, low reward dependence, low self-
esteem, low family function, and online game playing predicted

the emergency of Internet addiction. Furthermore, low hostility
and low interpersonal sensitivity predicted remission of Internet
addiction. Adolescents with IGD showed that attention problems

mechanism and social vulnerability mechanism explained the

increase in IGD symptoms (Peeters et al., 2018). However,
there will be clear limits to understanding or predicting IGD

since it relies on subjective responses. In addition, individuals
with addictions have poor insights into their problems and
underestimate their addictive behaviors.

To overcome the limitations of self-report, neuroimaging

methods have become an increasingly important tool for
studying brain functions and neuropsychiatric disorders
(Volkow et al., 2014). One of the commonly used tools is

electroencephalography (EEG). An EEG technique shows the
electrical activity of the brain and provides a measure of baseline

or underlying neural states before processing information.
It has several advantages in that it provides higher temporal
resolution images in the brain, less invasiveness for subjects, and

higher cost-effectiveness than the other techniques (Waldemar
et al., 2007). A previous study showed that absolute powers

measured by EEG had discriminating values for patients with
IGD and alcohol use disorder (Son et al., 2015). Park et al.

(2017) reported that an increase in the fast phasic synchrony of

gamma coherence might be a core neurophysiological feature

of IGD. The limitation of EEG, however, is that it has a poor
spatial resolution, which means that it cannot precisely locate

fired neurons in the brain, especially in deeper, older structures

(Morin, 2011).
Another neuroimaging method is a Positron Emission

Tomography (PET). The PET is used to monitor cerebral blood
flow and glucose/oxygen metabolism to provide information

on specific molecules such as transporters or receptors and
cellular processes including neurotransmitter synthesis and

release (Tian et al., 2014). One uniquely valuable PET tool is 18F-
fluorodeoxyglucose (18FDG-PET), a radiotracer that measures
brain glucose metabolism (Fowler and Ido, 2002). A study with
PET reveals that functional changes in a certain cortex could
underscore a mechanism that relates to loss of control behavior
for IGD subjects (Tian et al., 2014). In the 18F-FDG-PET
study, patients with IGD showed hypometabolism in the anterior
cingulate cortex (ACC), temporal, frontal, parietal, and striatum,
where negative correlations between ACC and game duration
and between orbitofrontal cortex and impulsivity occurred (Kim
et al., 2019). However, PET is more invasive and time-consuming
due to the need for isotope injection (Duc et al., 2020). When
compared to EEG, it is not an optimal tool for recording temporal
patterns of neuronal activity (Shah et al., 2017). In summary, self-
administrated reports, EEG, and PET each have their sources,
characteristics, and complementary information.

However, there are few studies on the IGD prediction model
based on those findings. Most features associated with IGD found
in previous studies are based on group comparisons asmentioned
earlier, so findings may include false positives as a result of the
multiplicity issue. In addition, the number of features found
in each domain’s study is very small, and individual studies
can be relatively weak signals, making it difficult to construct
prediction models purely dependent on these signals. Therefore,
the limitation is not solved to which extent those methods
provide complementary information that could be introduced
to improve the performance when these methods are combined.
Researchers began combining multiple techniques, referred to
as multimodal neuroimaging to compensate for the limitations
of each modality. Multimodal neuroimaging is an approach
combining data sets obtained using two or more unimodal
modalities, such as MRI and EEG integration, to yield more
informative, consistent, and reliable results (Rosa et al., 2010).

There have been several studies aimed at classifying patients
with psychiatric disorders using a multimodal neuroimaging
approach. Yang et al. (2016) combined connectivity features
from resting-state functional Magnetic Resonance Imaging
(MRI) and anatomical features of structural MRI data selected
by independent component analysis (ICA) in patients with
schizophrenia and healthy controls. They showed that a
combination of modalities (77.91%) yielded higher accuracy than
using a single modality (72.09%). A combination of resting-
state functional MRI and magnetoencephalography (MEG)
differentiated schizophrenia and healthy controls with an
accuracy of 87.91% (Cetin et al., 2016). In the case of depressive
disorder, Schmaal et al. (2015) used a combination of functional
and structural MRI of different types of patients with major
depressive disorder (MDD) and classified chronic and remitted
MDD with 62% accuracy, chronic and gradually improved MDD
with 61% accuracy, and gradually improved and remitted MDD
with 44% accuracy.

Multivariate machine learning approaches can help us
predict and classify psychiatric disorders using multimodal
neuroimaging. Among the machine learning-based classification
methods, the Support Vector Machine (SVM) is commonly used
for dealing with multimodality (Tulay et al., 2019). Multiple-
kernel SVM enables the contribution of each modality to
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FIGURE 1 | Visualization of mean absolute power and relative power of EEG data for IGD and Health control (HC) group.
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FIGURE 2 | Visualization of mean metabolic uptake of 18F-FDG-PET in IGD and HC. Top: areas showing significant glucose metabolism in both IGD and HC, using

one-sample t-test (corrected p < 0.05, cluster size (k) > 100). Bottom: IGD showed lower glucose metabolism in anterior cingulate gyrus, compared with HC (p <

0.005 uncorrected, k > 100).

the classification result to be controlled more closely and
potentially improves the power of the SVM algorithm to use
complementary information provided by the modalities within

its model (Sonnenburg et al., 2006; Dyrba et al., 2012). In the
previous study, Dyrba et al. (2015) reported that the integrating
multimodal MRI data showed improved classification accuracy
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FIGURE 3 | Manhattan plot of t-test result between two groups for EEG and PET features. The y-axis of plots means –log (p value). The x-axis of (A,B) represents the

absolute power and relative power of the EEG, respectively, and the x-axis of (C) represents 90 regions of interest of PET. Dashed red line means Bonferroni level of

significance and solid red line means 0.05 significance level.

TABLE 1 | Demographic and clinical characteristics.

IGD (n = 28) HC (n = 24) t p value

Mean SD Mean SD

Age 24.21 5.01 24.25 2.72 0.033 0.974

Y-IAT 63.21 17.00 31.70 9.38 –8.379* <0.001

BDI 16.69 11.16 3.88 4.03 –5.657* <0.001

BAI 13.40 12.24 5.01 6.02 –3.203* 0.003

BIS 21.47 3.75 16.97 4.42 –3.924* <0.001

BAS 35.16 7.43 31.90 6.74 –1.660 0.103

AQ 73.43 18.22 56.17 13.82 –3.877* <0.001

BIS-11 66.50 11.12 54.88 7.69 –4.432* <0.001

PWI 64.42 26.90 29.95 15.73 –5.568* <0.001

ECQ 10.64 3.87 10.33 2.77 –0.335 0.739

CD-RISC 49.58 17.32 72.26 9.29 5.996* <0.001

WHOQOL-BREF 48.85 9.35 59.87 7.09 4.824* <0.001

IGD, internet gaming disorder; HC, healthy controls; SD, standard deviation; Y-IAT, Young’s internet addiction test; BIS, Behavioral inhibition system; BDI, Beck depression inventory; BAI,

Beck anxiety inventory; BAS, Behavioral Activation system; AQ, Aggression Questionnaire; BIS-11, Barratt impulsiveness scale; PWI, Psychosocial well-being index; ECQ, Emotional

Control Questionnaire; CD-RISC, Connor-Davidson resilience scale; WHOQOL-BREF, WHO Quality of Life Scale Abbreviated Version; *p < 0.05.

compared to utilizing the best single measures by multiple-
kernel SVM. In the study with IGD, multiple physiological
markers, such as electrooculogram (EOG), photoplethysmogram
(PPG), and electroencephalogram (EEG), were utilized to classify
individuals who seldom play games, those who enjoy and
play games frequently, and those who have IGD (Ha et al.,

2021). According to a two-layer feedforward neural network
model, the combination of three physiological signals had a
higher classification accuracy (90%) than the combination of
EOG and PPG or EEG only. Nevertheless, research on the
classification of IGD usingmultimodal neuroimaging approaches
is still insufficient.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2022 | Volume 16 | Article 856510

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Jeong et al. Predicting IGD Using Multiple-Kernel SVM

TABLE 2 | Proposed prediction rule based on multiple-kernel SVM.

(A) Optimal case (B) Secondary case

βPET= 0.32, βClinic= 0.62, βEEG= 0.06 βPET= 0.05, βClinic= 0.6, βEEG= 0.35

Confusion matrix Reference label Confusion matrix Reference label

HC IGD HC IGD

Predicted label HC 19 3 Predicted label HC 20 6

IGD 5 25 IGD 4 22

Accuracy: 84.6%

Sensitivity: 89.3%

Specificity: 79.2%

Accuracy: 80.8%

Sensitivity: 78.6%

Specificity: 83.3%

IGD, internet gaming disorder; HC, healthy controls.

To the best of our knowledge, however, there have been no
studies using multimodal neuroimaging approaches with PET
and EEG in addictive disorders. Therefore, in this study, our
goal was to find a prediction rule with high prediction accuracy
by integrating weak modalities to complement each other and
simultaneously take advantage of each unique characteristic to
have enough information for prediction in patients with IGD
and healthy controls. Using multiple-kernel SVM, we integrated
multimodal data consisting of three modalities: PET, EEG, and
clinical feature. We further identified the prediction accuracy
of multiple-kernel SVM by comparing it with other existing
methods including SVM, Xgboost, Random Forest, and deep
learning. We hypothesized that multiple-kernel SVM would
produce more accurate predictions in the test sample and show
less evidence of overfitting compared with other methods.

MATERIALS AND METHODS

Participants
Fifty-two male adults aged 18–34 years were recruited from
the SMG-SNU Boramae Medical Center and the surrounding
community in Seoul, South Korea. They did not have a history
of significant head injury, seizure, or intellectual disability
[intelligence quotient (IQ)> 80] (Yeom et al., 1992), or psychotic
or neurological disorders and were medication-naïve and right-
handed. IGD was diagnosed by trained clinicians based on DSM-
5 criteria; participants who spent more than 4 h per day and
30 h per week playing Internet games were included in the IGD
group. Young’s Internet Addiction Test (Y-IAT) was used to
assess the severity of IGD. All HC were recruited from the local
community and universities, and none had a history of any
psychiatric disorder and all played Internet games for less than
2 h per day. In total, 28 IGD patients and 24 healthy controls
(HCs) were included in the present study. Participants visited the
SMG-SNUBoramaeMedical Center twice in 2 weeks. All subjects
received an explanation about the research and were provided
written informed consent before participation. They completed
EEG, PET, neurocognitive functional test, and a self-administered
questionnaire and got monetary reward for participation. The
study was conducted following the Declaration of Helsinki. This
study was approved by the Institutional Review Board of the

SMG-SNU Boramae Medical Center, Seoul and the Republic
of Korea.

Clinical Features
Young’s Internet Addiction Test
The severity of IGD is assessed by the Young’s Internet Addiction
Test (Y-IAT) developed by Young (1998). It contained questions
including “How often do you find that you stay on-line longer
than you intended?” and “How often do you neglect household
chores to spend more time on-line?” and were rated on a 5-point
scale (from “1= very rarely” to “5= very frequently”).

Aggression Questionnaires
The Aggression Questionnaires (AQ) consists of 29 questions
that assess aggression on a 5-point Likert scale (Buss and Perry,
1992). Participants had to indicate to what extent the statement
applied to them (1 = extremely uncharacteristic of me to 5
= extremely characteristic). The instrument provides measures
of physical aggression, verbal aggression, and hostile aggression
and anger.

Behavioral Inhibition System/Behavioral Activation

System Scales
The BIS and the BAS scales were utilized to assess sensitivity
to punishment Behavioral Inhibition System (BIS) and rewards,
respectively Behavioral Activation System Scales (BAS) (Carver
and White, 1994). They together consist of 20 items rated on a 4-
point scale from “totally agree” to “totally disagree.” The BIS scale
contains seven items concerning anticipated punishment.

Barratt Impulsiveness Scale-11
The BIS assesses a range of impulsive tendencies using a
4-point scale ranging from 1 (rarely/never) to 4 (almost
always/always) (Lee, 1992). Barratt Impulsiveness Scale-11
(BIS-11) has three subscales that assess cognitive impulsivity,
motor impulsivity, and non-planning impulsivity (Patton et al.,
1995). This instrument has yielded positive correlations with
neuropsychological measures of impulsivity and is sensitive to
executive function deficits in the prefrontal and orbitofrontal
systems in multiple clinical samples (Barratt, 1985; Spinella,
2004).
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FIGURE 4 | ROC curves and AUC values of conventional machine learning

methods, deep learning method (multilayer perceptron model), and

multiple-kernel SVM.

Emotional Control Questionnaire
The Emotional Control Questionnaire (ECQ) evaluates
emotional control and aggressive control as a measure of
emotional control (Roger and Nesshoever, 1987). It consists
of 28 items that answer yes or no. The lower score means the
greater the tendency to suppress emotional expression.

Beck Depression Inventory
The Beck Depression Inventory (BDI) consists of four statements
indicating different levels of the severity of a particular symptom
experienced during the past week (Beck et al., 1996). This scale
measures the existence and severity of symptoms of depression.
A total score of 0–13 is considered minimal depression, 14–
19 mild depression, 20–28 moderate depression, and 29–63
severe depression.

Beck Anxiety Inventory
The Beck Anxiety Inventory (BAI) uses a 4-point scale (0 = “not
at all” to 3 = “severely, it bothered me a lot”) to measure an
individual’s anxiety (Beck et al., 1988). Scores for the 21 items
are summed to yield a single anxiety score. It is a 21-question
questionnaire used for measuring how the subject has been
feeling in the last week, focusing primarily on somatic symptoms.

Psychosocial Wellbeing Index
The stress level was measured with a Psychosocial Wellbeing
Index (PWI) which contains 45 items (Kim, 1999). PWI contains
questions about physical and psychological status over the last
few weeks, covering social role performance, self-confidence,
depression, sleep disturbance, anxiety, and the general well-being
of respondents. Scores range from 0 to 135 with higher scores
indicating higher distress symptoms. Higher scores indicate
higher distress, with 63 or more in the high-risk stress group,

23–62 in the potential stress group, and less than 23 in the
healthy group.

Connor–Davidson Resilience Scale
Resilience is assessed using the Connor–Davidson Resilience
Scale (CD-RISC), which is a 25-item self-report instrument that
uses 5-point response scales, as follows: 0 = not true at all, 1 =

rarely true, 2 = sometimes true, 3 = often true, and 4 = true
nearly all of the time (Connor and Davidson, 2003). The CD-
RISC captures how the participant felt over the past month and
total scores range from 0 to 100, with higher scores reflecting
greater resilience.

WHO Quality of Life Scale Abbreviated Version
QOL is measured using the WHO Quality of Life Scale
Abbreviated Version (WHOQOL-BREF) (Group, 1998; Min
et al., 2002), which defines QOL as an “individual’s perception
of their position in life in the context of the culture and
value systems in which they live and in relation to their
goals, expectations, standards, and concerns.” (Skevington
et al., 2004; Suh et al., 2015). The WHOQOL-BREF addresses
four domains (physical health, psychological health, social
relationships, and environmental), as well as general health and
overall QOL.

EEG Recording Features
The participants were seated and engaged in a resting state
in an isolated sound-shielded room connected to a recording
room via a one-way glass window. EEG recordings lasted
for 10min and included the following conditions: 4min with
eyes closed, 2min with eyes open, and 4min with eyes
closed. All EEG activity was recorded using a 64-channel
Quik-cap (Compumedics Neuroscan, El Paso, TX, USA) based
on the modified international 10/20 system, in conjunction
with vertical and horizontal electrooculograms (EOGs) and
one bipolar reference electrode connected to the mastoid. All
EEG acquisitions were done using SynAmps 2 (Compumedics,
Abbotsford, Australia) and the Neuroscan system (Scan 4.5;
Compumedics). EEG signals were amplified at a sampling rate of
1,000Hz using a 0.1 to 100Hz online bandpass filter and a 0.1 to
50Hz offline bandpass filter, while electrode impedance was kept
below 5 k�.

All acquired EEG data were processed with NeuroGuide
software (ver. 2.6.1; Applied Neuroscience, St. Petersburg, FL,
USA). For the analyses, 19 of the 64 channels were selected
according to the montage set with linked ear references from the
NeuroGuide, as follows: FP1, F3, F7, Fz, FP2, F4, F8, T3, C3, Cz,
T4, C4, T5, P3, O1, Pz, T6, P4, and O2. All EEG recordings under
eyes-closed conditions were selected and artifacts were removed
using the artifact rejection toolbox in NeuroGuide based
on visual inspection. Artifact removal was performed offline
using the artifact rejection toolbox of NeuroGuide software.
EEG recordings were also visually inspected to eliminate eye
muscle movements and other artifacts, and artifact-free epochs
under eyes-closed conditions were selected for spectral analysis.
Accepted epochs of EEG data for both absolute (uV2) and relative
(%) power were smoothed using fast Fourier transforms and
averaged in seven frequency bands by NeuroGuide’s spectral
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FIGURE 5 | ROC curves and AUC values of single modal models and multiple-kernel SVM with each conventional machine learning methods. (A) SVM, (B) random

forest, (C) Xgboost, and (D) deep learning (multilayer perceptron model).

analysis system: delta (1–4Hz), theta (4–8Hz), alpha (8–12Hz),
beta (12–30Hz), high beta (25–30Hz), gamma (30–40Hz), and
high gamma (40–50 Hz).

PET Recording Features
The 18F-FDG-PET scans were acquired using a Gemini TF64
PET/CT scanner (Philips Healthcare, Andover, MA, USA). The
subjects received an intravenous injection of 4.8 MBq/kg of
18F-FDG in a room with dimmed lights and were instructed
to remain to lie comfortably during the FDG equilibration

period. The brain emission images were acquired 40min after
the bolus injection of 18F-FDG and continued for 10min
with a 2-mm thickness, 90 slices, and a 256×256 matrix size.
Uniform reconstruction protocols were applied to factor out
possible sources using the 3D Row-Action Maximum-Likelihood
Algorithm in 90 slices with 2mm thickness in a 128 × 128
matrix. All reconstructed images were corrected for attenuation
and scatter.

First, the 18F-FDG-PET images of each participant were
spatially transformed into the Montreal Neurological Institute
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FIGURE 6 | The kernel matrices for EEG, PET, and clinical features and its combined kernel.

(MNI) standard PET template that employs a 12-parameter
affine transformation followed by nonlinear deformation. Brain
glucose metabolism at each voxel was proportionally scaled to
the global mean value to reduce individual variation; hence, the
relative regional glucose metabolic rate was calculated. Second,
the preprocessed and normalized PET images were parcellated
based on the Automated Anatomical Labeling (AAL) template,
which divides the brain into 90 anatomical ROIs, except the
cerebellum (Tzourio-Mazoyer et al., 2002). Finally, we extracted
the mean glucose uptake values from each ROI of the AAL
template for all subjects. Preprocessing was performed using
Statistical Parametric Mapping (SPM12, Wellcome Department
of Imaging Neuroscience, London, UK, http://www.fil.ion.ucl.ac.
uk/spm) implemented in MATLAB 9.1 (The MathWorks, Inc.,
Natick, MA, USA).

Leave-One-Out Cross-Validation
For the model assessment and prediction evaluation, the best
approach is to divide the data set into three parts: training,
validation, and test data. However, when the sample size is
relatively small, the Leave-one-out cross-validation (LOOCV)
approach is often used (Chen et al., 2012; Sun et al., 2014; Zeng
et al., 2016). In this study, we also adopt the LOOCV approach to

evaluate and report the performance of various methods. Because
LOOCV is a special case of K-fold cross-validation, it does not
tend to overestimate the test error rate (James et al., 2013).

Multimodality
Clinical variables, EEG, and PET are obtained from different
sources, and their characteristics are also different. It means
that the data have three different modalities, which is called
multimodal data. Figure 1 shows the absolute and relative power
of EEG for IGD and HC samples and Figure 2 shows the mean
metabolic uptake of 18F-FDG-PET in two groups. However,
when we conduct a two-sample t-test to compare the mean
value of EEG and PET features, there are few significant features
statistically (Figure 3). It suggests that EEG and PET modal data
may be weak on their own but may play a role in complementing
clinical variables. Therefore, it is necessary to properly integrate
weak modalities such as EEG and PET with the clinical modal
to enhance the performance of the IGD prediction model. The
simple way to integrate different modalities is to line up all
features into a longer feature vector. However, this does not
fully account for the multimodal characteristics of the data
and therefore cannot be an efficient integration. More efficient
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integration of multimodal data can contribute to improving the
performance of the prediction model.

Multiple-Kernel SVM
To reflect the multimodality of the data, we adopted themultiple-
kernel SVM (Zhang et al., 2011). It enables efficient integration
of multimodal data through the kernel combination, and it is
easy to implement because it can be conveniently solved through
standard SVM solvers.

At first, the main idea of the standard SVM is to find a linear
separating hyperplane that maximizes the margin, that is, the
largest distance gap between the two group’s data points. For
nonlinear separable cases, input data are mapped from their
original space to a higher dimensional space through a kernel-
induced mapping function by finding a linear hyperplane. The
detailed algorithm of standard SVM is as follows.

Standard Support Vector Machine (SVM)
Input

Training set S = {
(

x1, y1
)

, . . . ,
(

xn, yn
)

}, regularization
parameter C, specified kernel, and kernel parameters
Initialization

Compute the kernel of distances between the datapoints
k
(

x, x′
)

=
〈

h (x) , h
(

x′
)〉

Training: Maximizing the margin is equivalent to
maxα

∑n
i=1 αi −

1
2

∑

i,j αiαjyiyjk(xi, xj)

subject to
∑n

i=1 αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , n
Output

solution α∗,
decision function for new test data z, represented by
hyperplane is

f (z) = sign
(
∑n

i=1 yiα
∗
i k (xi, z) + b

)

Based on this standard SVM, multiple-kernel SVM performed
the integration of multimodal data by modifying only the kernel
function parts while keeping other processes as it is. There,
let xi

(m) be a feature vector of the mth modality of the ith

sample. First, calculate each kernel function on themth modality,
k(m)

(

xi
(m), xj

(m)
)

. Then, combine multiple-kernel matrices into
a single kernel matrix which results in mixed kernel k

(

xi, xj
)

=
∑

m βmk
(m)

(

xi
(m), xj

(m)
)

. In this process, constraint
∑

m βm = 1
is used to make the easy interpretation of modality contributions
and grid searches to find βms for the optimal prediction model.
Finally, using this combined kernel matrix, train a single SVM
model and find an optimization solution α∗, and decision
function for classification.

Optimal Weights for Kernel
To propose a binary classification rule that predicts whether the
subject belongs to the IGD group, an optimal prediction model,
that is, the highest prediction performance model should be
determined. Finding the optimal prediction model in a multiple-
kernel SVM using a combined kernel is the same problem
as determining βms. To get the optimal βms while avoiding
overfitting, we adopted the nested cross-validation approach

FIGURE 7 | Kernel PCA using combined kernel. HC, healthy control; IGD,

internet gaming disorder.

which is frequently used for the small sample case (Dora et al.,
2018; Wainer and Cawley, 2021). In the nested cross-validation,
we used LOOCV in Section 2.5 as the outer loop and 5-fold cross-
validation as the inner loop. In the inner loop, we performed a
grid search to find the optimal βms in terms of the five-fold cross-
validated AUC. After determining the optimal hyperparameter
βms, we computed the LOOCVAUC of the multiple-kernel SVM
for comparing the performance with other methods.

Interpretation of Kernel
To find out how the information of each modality is combined to
contribute to the predictive performance, it is necessary to focus
on the kernel of multiple-kernel SVM. To interpret the combined
kernel, first, we visualized three separate kernels from each
modality and the combined kernel. In addition, we performed
the Principal Component Analysis (PCA) on the kernel matrix
to check whether the combined kernel properly contains the
information necessary to classify the two groups. Further, we
illustrated how the first and second principal components (PCs)
obtained from PCA in the kernel matrix classify IGD and
HC groups.

Model Comparison
We conducted various experiments to examine (1) the usefulness
of multimodality features compared to considering single
modality only and (2) how well the process of multiple-kernel
SVM properly integrated different information from multi-
modalities. For this purpose, we compared multiple-kernel SVM
with conventional machine learning methods such as SVM,
Xgboost, and Random Forest with features for each modality
or with just stacked features. Recently, many researchers
have exploited deep learning in neuroimaging studies since it
automatically handles many features in the model. As (Cho et al.,
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2015) pointed out, small sample size is vulnerable to the high
performance of deep learning models, especially in convolutional
neural network (CNN), which uses the image as an input. This
is because complex deep learning models have a huge number
of parameters that must be trained (Brigato and Iocchi, 2021).
In general, using a deep learning model is recommended when
the sample size is extremely large than other statistical methods
(James et al., 2013). Therefore, we focused on machine learning
methods, but for comparison, we also considered the multilayer
perceptron (MLP) model, a representative model with relatively
less complexity.

RESULTS

Demographic Statistics
To compare the demographic and clinical characteristics of the
IGD and HC groups, an independent two-sample t-test was
performed, and the results are shown inTable 1. Themean values
of all clinical features except age, BAS, and ECQwere significantly
different in the two groups.

Optimal Multiple-Kernel SVM Model
We need to decide the optimal prediction model to propose a
prediction rule in the classification of IGD and HC. The optimal
weights for the kernel contribution of PET, clinical variables,
and EEG are 0.32 (±0.21), 0.62 (±0.19), and 0.06 (±0.09)
respectively. When the optimal kernel weights for multiple-
kernel SVM are fixed as average values: 0.32, 0.62, and 0.06,
Table 2A shows the classification result based on LOOCV. In this
case with the high accuracy of 84.6%, the sensitivity was 89.3%,
which was higher than the specificity of 79.2%. To illustrate the
effect of the contribution of EEG increases from the optimal
case, we choose (0.05, 0.6, and 0.35) where the contribution of
EEG is the highest in the nest cross-validation. Table 2B is the
classification results with these weights. If the contribution of
EEG increases from optimal case 0.06 to 0.35, only two more
people are misclassified.

Comparison of the Prediction Performance
To investigate how efficient multimodal data integration using
multiple-kernel SVM is, we compared it with other existing
machine learning methods such as simple SVM, Xgboost
and Random Forest, and deep learning (multilayer perceptron
model). These conventional learning methods simply use
feature vectors by stacking all modalities. Figure 4 shows the
ROC curves of the proposed method and the conventional
methods. In terms of the ROC curve and the area under
the curve (AUC), the multiple-kernel SVM is the best
(AUC=0.884).

Also, to highlight the superiority of the use of multimodal
data, we examined the performance of the single-modality
model. Figure 5 represents the ROC curves of each modality
which uses only a single type of feature as an input in SVM
(a), Random Forest (b), Xgboost (c), and deep learning (d),
respectively. In addition, we compared the performance of
the model which uses all features as input in a single line,
and the proposed multiple-kernel SVMs. When either EEG or

PET are used, the AUCs of all single-modality models are low
(around 0.5). Although the single-modality model with clinical
features only shows relatively higher accuracy, the multiple-
kernel SVM outperforms all single-modality methods considered
in this study.

Interpretation of Combined Kernel Matrix
Up to now, we focus on the prediction performance of multiple-
kernel SVM. In the fitting process, the kernels for each
modality are combined and it plays a key role in multimodal
data integration. Figure 6 shows the kernel matrices for three
modalities, EEG, PET, and Clinical features, and the combined
kernel matrix of the optimal multiple-kernel SVM. Kernel
matrix represents the distance, that is, the similarity between
two samples. That is, in Figure 6, the lower-left part of the
matrix represents the similarity between IGD groups, and the
upper-right part of the matrix represents that of HC groups.
In contrast, the upper-left and lower-right parts of the matrix
represent the similarity between different groups, IGD-HC.
Therefore, if the kernel matrix properly works for two separate
groups, the entire kernel matrix should show four distinct
parts. Each kernel made from only EEG or PET does not
have clear separation, respectively. Also, the kernel made from
clinical variables does not have proper separation. However, in
the combined kernel matrix with optimal weights, IGD and
HC groups are properly well-separated. In Figure 6, when the
similarity is low, the color of the corresponding element is closer
to red. When we compare the lower-left part (IGD-IGD) and the
lower-right part (IGD-HC), the lower-right part, which shows
the similarity between the different groups, is more reddish.
Therefore, the kernel matrix correctly expresses the distance
between heterogeneous groups.

Figure 7 is a diagram showing how data belonging to
each group is represented when the two principal components
obtained from the kernel PCA result are taken as axes.
After the kernel-mapped high-dimensional features are reduced
to two PC components, the pairs of the first and second
PCs are well-separated into IGD and HC groups. The
blue line drawn in Figure 7 shows the separation plane
obtained after fitting the logistic model that classifies the
two groups using only the two principal components as
explanatory variables.

DISCUSSION

The present study proposed an IGD prediction model by
integrating each distinct modality including clinical feature,
EEG, and PET to enhance prediction accuracy. We adopted a
multiple-kernel SVM that reflected multimodality by combining
the calculated kernels from each modality to create one
mixed kernel. Compared to the conventional methods, our
proposed prediction rule achieved more than 80% accuracy,
sensitivity, and specificity, which can be applied to the real
world. This suggests that proper integration of multimodal
data contributed to the construction of the prediction model
for IGD.
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We noted that the conventional Xgboost, Random Forest,
SVM, and MLP used a single input vector by stacking all
features. The prediction performance from popular machine
learning and deep learning techniques is significantly lower
than that of multiple-kernel SVM, which means that the
method of combining the features into a long feature vector is
not a way of fully integrating data information. Furthermore,
the fact that the performance of a model generated using
only clinical features is higher than that of a model using
all features in batches means that processing multimodal
data using such a long vector impairs the performance of
the model. Contrary to this, if an appropriate integration
process is used, weak modalities such as EEG and PET,
which cannot individually create meaningful predictive models,
can contribute to the improvement of model performance.
When predicting IGD, it is important to take advantage of
the characteristics of each clinical feature, EEG, and PET
modality and incorporate them into sufficient information
to complement each other. Although we know clearly that
the features come from different sources, in the process of
creating one long feature vector, the information about the
modal to which each feature belongs is diluted. On the other
hand, the multiple-kernel SVM creates a kernel that uniquely
reflects the characteristics of each modal to compensate for the
distance and characteristics shared by the features of specific
sources. In addition, these kernels complement each other in
the process of combining them at the optimal ratio for given
multimodal data.

It is also shown in the kernel matrix that each weak modality
can complement each other and data integration is important
for identifying IGD. Multiple-kernel SVM changes only the
kernel function of the existing SVM process, so the core part
that reflects the multimodality is the combined kernel. The
kernel matrix contains information about the distance between
the data points. Therefore, when visualizing the kernel matrix,
it is recommended that the entire data points are divided
into two groups for proper IGD identification. As Figure 6

shows, the kernels made from each modality are not properly
divided into two groups. This means that each kernel does not
contribute well to the IGD identification. However, in the case of
combined kernels, the near and far distances between subjects are
distinguished, which means that the combined kernel relatively
well contains the information which is necessary to classify the
two groups.

Another advantage of integrating multimodal data by
combining the kernels is that it is interpretable. Once
we find the optimal model, we can find kernel weights,
which in turn indicate how much each modality contributes.
In the optimal prediction model, the contribution to the
combined kernel is highest at the clinic feature modality
(0.65). Relatively, the contribution of EEG and PET kernel
was lower than that of clinic features. This is similar to the
t-test results where many clinical features have a relatively
strong signal, and the EEG and PET feature appears to have
weak information in IGD and HC group identification. EEG
provides us with important clinical implications, including
objective responses and higher temporal resolution images

in the brain compared with self-report, as well as being
less intrusive for subjects and more cost-effective than PET.
Although the EEG features are high-dimensional, the optimal
weight for the EEG kernel is relatively lower than the others.
After multiple corrections, there are no significant features
among EEG. Furthermore, the AUC of the prediction model
using only EEG was between 0.3 and 0.6. Thus, it seems
that the low kernel weight of EEG stems from the ratio
of significant information among the total EEG features is
not large. Nevertheless, the contribution of the EEG and
PET kernel is not zero, respectively, suggesting that these
are indispensable. In the clinical session, the clinical features
based on the self-administrated report are frequently used to
diagnose IGD. However, we found that the integration with
objective methodologies including EEG and PET is necessary for
predicting IGD with higher accuracy.

This study is limited by the relatively small number of
subjects used for modeling. For integrative analysis, only
people with all three clinical, EEG, and PET data collected
can be used for the analysis. Fifty-two people collected all
three data sets, and taking this into account, the model
was evaluated based on LOOCV. But if more samples are
available, classification rules can be proposed by making more
robust and reliable prediction models. Another limitation is
that it is difficult to find a specific feature that has a high
contribution to the prediction. Since the existing SVMs focus
on increasing classification performance itself, there are few
tools to extract features that contribute most to prediction.
Therefore, although the contribution of the kernel is known,
it is difficult to know the extent to which one specific
feature contributes to the prediction model. However, we
know that the present study is the first study attempting to
predict IGD using multiple-Kernel SVM for integrating several
methods and comparing it with other conventional machine
learning methods.

In summary, the present study suggests that integrating
each method including self-administrated reports, EEG,
and PET is useful in predicting IGD. This study is a
novel attempt to integrate each method from different
sources and suggest a new optimal prediction model for
IGD, which helps clinicians to give a precious diagnosis
to patients with IGD. Future studies are necessary to
assess the value of different data combinations, including
neurocognition, connectivity features measured by MRI,
PET, or EEG, and multi-omics information in the field of
addictive disorders.
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