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Abstract. The coronavirus pandemic and its unprecedented 
consequences globally has spurred the interest of the artificial 
intelligence research community. A plethora of published 
studies have investigated the role of imaging such as chest 
X‑rays and computer tomography in coronavirus disease 2019 
(COVID‑19) automated diagnosis. Οpen repositories of 
medical imaging data can play a significant role by promoting 
cooperation among institutes in a world‑wide scale. However, 
they may induce limitations related to variable data quality and 
intrinsic differences due to the wide variety of scanner vendors 
and imaging parameters. In this study, a state‑of‑the‑art 
custom U‑Net model is presented with a dice similarity coef‑
ficient performance of 99.6% along with a transfer learning 
VGG‑19 based model for COVID‑19 versus pneumonia differ‑
entiation exhibiting an area under curve of 96.1%. The above 
was significantly improved over the baseline model trained 
with no segmentation in selected tomographic slices of the 

same dataset. The presented study highlights the importance 
of a robust preprocessing protocol for image analysis within a 
heterogeneous imaging dataset and assesses the potential diag‑
nostic value of the presented COVID‑19 model by comparing 
its performance to the state of the art.

Introduction

Coronavirus disease 2019 (COVID‑19) is an infectious 
disease, caused by the new coronavirus which was first 
observed in Wuhan, China in December 2019. On the 11th of 
March 2020, the World Health Organization (WHO) declared 
this outbreak as a pandemic. As of the 8th of July 2020, 
more than 11.5 million people have been confirmed to have 
contracted the virus and more than half a million have died 
due to complications of the disease (1). The clinical symptoms 
of COVID‑19 are non‑specific and in most of the cases include 
fever, cough, fatigue and dyspnea (2). Obesity (3), chronic 
cardiovascular diseases (4) and smoking habits (5) have also 
been reported to contribute to the deterioration of the disease. 
Toxic stressors in urban environments could have played a role 
in deteriorating the immune system of the local population 
forming the basis for the spreading of COVID‑19 disease (6). 
In a similar context, Tsatsakis et al (7) explored the association 
among human‑induced pollutants found in greenhouse gases, 
the effect on the immune system and other environmental 
aspects related to the COVID‑19 pandemic. Early diagnosis 
is important not only for prompt treatment planning but also 
for isolation of patients in order to prevent spreading the virus 
to the community. Currently, reverse transcription‑polymerase 
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chain reaction (RT‑PCR) represents the gold‑standard for 
diagnosing COVID‑19. However, testing with RT‑PCR shows 
limited sensitivity (SN) which, adding to the shortage of 
testing kits and the increased waiting time for results, increase 
the screening burden and delays the isolation procedure (8,9). 
Thus, the scientific community has been searching alternative 
protocols for timely and accurate diagnosis. X‑ray and chest 
computed tomography (CT) imaging could be used as a 
reliable and rapid approach for COVID‑19 screening (9,10). 
Both methods have the potential to depict COVID‑19 related 
chest abnormalities, with ground‑glass lung opacification and 
consolidation showing bilateral and subpleural or diffuse 
distribution representing the cardinal findings (9,11‑16). 
Although, the image acquisition is easy and fast, interpretation 
can be challenging and time‑consuming, especially for 
inexperienced and subspecialized medical professionals. In 
order to eliminate such drawbacks, the scientific community 
has been shifting its focus towards developing automated 
tools for the analysis of imaging data. In this context, several 
artificial intelligence (AI) methods have been developed to 
provide a prediction for the disease and preliminary severity 
assessment. Tsiknakis et al (17) proposed an Interpretable 
Convolutional Neural Network (CNN) based on transfer 
learning for predicting COVID‑19 against viral and bacterial 
pneumonia and normal cases based on more than 400 X‑ray 
images, achieving an area under curve (AUC) of 100%. 
Apostolopoulos and Mpesiana (18) also developed a CNN 
for predicting COVID‑19 from almost 1,500 X‑ray images, 
achieving an accuracy (ACC) of 96.78%, SN of 98.66% and 
specificity (SPC) of 96.46%. However, compared to X‑ray 
images, CT scans provide a more detailed overview of the 
internal structure of lung parenchyma due to the lack of 
overlapping tissues. Thus, recent research has focused on 
the development of effective AI methods based on CT scans. 
Li et al (19) developed a 3D CNN for predicting COVID‑19 
against community acquired pneumonia (CAP) from 3D CT 
scans. Their model was trained on a fairly large dataset of 
4,356 CT scans from 3,322 patients, 1,296 of which referred 
to COVID‑19 positive patients, and achieved SN of 90%, SPC 
of 96% and an AUC equal to 95% regarding the COVID‑19 
class. Their proposed model consists of several identical 
ResNet50 models, one for each CT image. The feature 
maps of all the backbone models were combined through a 
max pooling layer, which was followed by a dense layer for 
the final ternary classification. The main downside of such 
an approach is that only one ground truth label per exam is 
available, and not one for each layer of the CT scan. Optimally, 
for achieving a finer and detailed network performance, each 
CT layer should be graded individually. In this way, the model 
would benefit from the inter‑CT‑layer relations of the 3D 
input, as well as from the extended ground truth information. 
Wang et al (20) proposed a CNN model which was first trained 
on CT scans with cancer from 4,106 patients in order to learn 
lung features. Subsequently, they fine‑tuned the model on a 
COVID‑19 multi‑centric CT dataset (709 patients). Their 
model was validated on 4 independent datasets from different 
clinical centers. Their approach performed well in identifying 
COVID‑19 against bacterial or other viral pneumonia cases, 
achieving an AUC of 87%, SN of 80.39% and SPC of 76.61% 
against bacterial pneumonia and AUC of 86%, SN of 79.35% 

and SPC of 71.43% against viral pneumonia. In addition, they 
stratified the patients into high and low risk groups, in order to 
propose a hospital‑stay time schedule. Zhang et al (21) utilized 
another network to segment the lung regions, before applying 
the classification network in order to discard the background and 
irrelevant regions within the CT scan. Their proposed pipeline 
achieved an ACC of 91.2%, SN of 94.03%, SPC of 88.46% and 
an AUC of 96.1% for predicting COVID‑19 on a prospective 
Chinese dataset, while similar results were achieved on two 
other prospective Chinese datasets. Subsequently, the model 
was applied on a dataset from Ecuador, ACC of 84.11%, SN 
of 86.67%, SPC of 82.26% and AUC of 90.5%. In addition, they 
evaluated the effect of drug treatment on lesion size and volume 
changes using their AI model. Finally, they compared their 
model to 8 junior and 4 mid‑senior radiologists, for predicting 
COVID‑19 on an independent dataset which was annotated by 
4 independent senior radiologists. The model outperformed 
the junior radiologists, while its performance was comparable 
to that of the mid‑senior ones. Ardakani et al (22) utilized 
10 pre‑trained convolutional networks as the backbone of 
their classifier, achieving the best AUC score of 99.4%, SN 
of 100%, SPC of 99% and ACC of 99.5%, for distinguishing 
COVID‑19 pneumonia from other types of pneumonia 
(viral and bacterial). At the same time, the performance of a 
radiologist was moderate, achieving much lower results, i.e., 
AUC of 87.3%, SN of 89%, SPC of 83% and ACC of 86%. 
However, their dataset included a limited amount of data, 
namely 1,020 CT slices for 108 COVID‑19 positive patients 
and 86 pneumonia positive patients. Additionally, plenty of 
unpublished scientific preprints have been available on open 
databases, claiming high accuracy, SN and SPC scores (23‑29), 
for predicting COVID‑19 against other pneumonia types or 
healthy patients based on deep learning models.

In this study, we propose an extensive pipeline for automatic 
COVID‑19 screening against other types of pneumonia (i.e., 
viral and bacterial) from CT scans, utilizing lung segmentation 
for increasing the accuracy. Some key innovations of this study 
can be summarized in the integration of multi‑institutional 
and open‑access data from a variety of scanners and imaging 
protocols retrieved from online repositories in formats such 
as DICOM or Portable network Graphics (png), the develop‑
ment of a deep learning lung segmentation model for multiple 
CT window settings and finally a deep learning model for 
differentiating COVID‑19 from CAP. This study introduces a 
state‑of‑the‑art deep learning model for lung segmentation on 
slices with a variety of CT window settings (DSC 99.6%) and 
an image analysis deep model trained with multi‑institutional 
data for differentiating COVID‑19 from CAP (AUC 96.1%).

Materials and methods

Dataset. The proposed analysis was performed using open data 
of confirmed COVID‑19 and widely available online cases. In 
particular, the patient cohort consisted of 3 datasets (30‑32) 
with 1,266 COVID‑19 and 586 pneumonia cases stratified 
on a patient‑basis resulting in 5,109 CT slices. Furthermore, 
slices characterized other than COVID‑19 or pneumonia 
such as normal were discarded. The curated individual 
slices were collected from patients in hospitals from São 
Paulo in Brazil (30) and open repositories such as medRxiv 
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(https://www.medrxiv.org/) and bioRxiv (https://www.biorxiv.
org/) (31). Additionally, these datasets were made available 
as stand alone 8‑bit image files with unknown compression 
methodology, no metadata information available and various 
CT window settings rendering segmentation and classification 
tasks with traditional methods challenging. In contrast, the 
dataset (32) consisted of 20 cases with COVID‑19 pixel‑based 
annotated regions of interest in meta‑image form (NifTi 
files) from the open repositories of Radiopedia (http://radio‑
pedia.org) and Coronacases (http://coronacases.org). This 
multi‑institutional collection of CT examinations lead to high 
variability in spacing, pixel array size and windowing type 
across the examined cases.

Lung segmentation. U‑Net (33) is a fully‑convolutional archi‑
tecture comprising multiple consecutive convolutional, pooling 
layers in the encoder part and convolutional, upsampling 
layers in the decoder part. The deep network can accurately 
match incoming CT examination slices to their corresponding 
segmentation mask. This process is learned from data with 
known segmentation masks through the back‑propagation 
of the similarity error during the training phase. The Lung 
Image Database Consortium‑Image Database Resource 
Initiative (LIDC‑IDRI) (34) dataset was used for training 
and evaluating the deep learning segmentation model. The 
ground truth masks for lung segmentation were extracted by a 
fully‑automated Hounsfield Units (HU) based algorithm (35). 
A subset of the 1,018 scans with 98,433 CT slices was used 
for model convergence. A detailed view of the architecture is 
depicted in (Fig. 1).

Pre‑processing. The image resolution of the examined patient 
cohort varied from 148x61 to 1,637x1,225 pixels introducing 
a significant limitation for the deep learning analysis. Each 
slice was resized with a linear interpolation technique 
targeting 512x512 pixels to match the required dimension of 

input layer of the U‑Net segmentation network. The slices of 
the examined cohort were segmented with the custom U‑Net 
and normalized to achieve pixel values with unit variance and 
zero mean prior to the deep learning analysis. In Fig. 2 the 
testing set ground truth masks versus predicted masks are 
presented revealing a highly performing segmentation model 
and in Fig. 3 a randomly selected set of predicted segmentation 
masks from the COVID‑19 dataset are demonstrated. Despite 
the aforementioned variability in pixel array dimensions and 
CT window settings the proposed methodology establishes 
minimal segmentation error.

Deep architecture analysis. A transfer learning approach was 
used for improving the convergence and fine‑tuning process 
based on CT slices of the examined cohort by adapting the 
inner representation of the pre‑trained model to the targeted 
COVID‑19 versus CAP analysis. Two additional convolu‑
tional layers with 256 filters each and a neural network with 
1,000 neurons were appended in the original pre‑trained 
model as depicted in Fig. 4. The source code and the detailed 
hyperparameter configuration files are provided online 
(https://github.com/trivizakis/ct‑covid‑analysis).

Performance evaluation. The evaluation was assessed by 
following metrics of ACC, SN, SPC and precision (PR):

Figure 1. An overview of the used custom U‑Net segmentation architecture.
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Results

A 4‑fold cross‑validation process was performed for splitting 
the dataset in the convergence and the testing set. The conver‑
gence set was further randomly split into the training (80%) 

and validation set (20%) for applying the fine‑tuning and 
hyperparameter optimization process respectively. The testing 
folds remained unseen throughout the analysis to assess the 
performance of the proposed deep learning model. A custom 
U‑Net for lung parenchyma segmentation was trained and 

Figure 2. Testing samples of the LIDC‑IDRI: original CT slices (left), ground truth (center) and U‑Net predicted segmentation mask (right). LIDC‑IDRI, Lung 
Image Database Consortium‑Image Database Resource Initiative; CT, computed tomography.

Figure 3. Sample slices of the examined analysis cohort with lung segmentation masks predicted by U‑Net.
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evaluated on a total set of 109,370 LIDC‑IDRI CT slices with 
ground truth segmentation masks calculated on a HU basis by 
an automated algorithm. The U‑Net converged after 5 epochs 
of training and achieved a performance of Dice Similarity 
Coefficient of 99.55% in the testing set providing a reliable 
and accurate segmentation model as evident by the randomly 
selected examples presented in Fig. 3. Although, perfect 

segmentation masks cannot be obtained for the analysis 
dataset due to the variability in image quality; the majority 
of pathological pixels are present in the final segmented 
image despite some false negative pixels. Several pre‑trained 
models were examined including VGG (36), Inception (37), 
NASNet (38), DenseNet (39) and MobileNet (40) with addi‑
tional convolutional and neural network layers as depicted in 

Figure 4. The proposed transfer learning analysis pipeline for COVID‑19 versus pneumonia differentiation including the preprocessing phase with lung 
segmentation and z‑normalization.

Figure 5. Performance assessment with ROC (left), Precision‑Recall (right) curves for the proposed analysis (top) and the baseline model (bottom). ROC, 
receiver operating characteristic.
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Fig. 4. The analysis architecture was trained on average for 
16 epochs before early‑stopping. Most of pre‑trained models 
preformed comparably with an AUC up to 93% and the highest 
performance (AUC 96.1%) was achieved with VGG‑19 as the 
backend pre‑trained network. The receiver operating char‑
acteristic (ROC) and PR‑recall curves of the best model are 
presented in Fig. 5 (top) outlining the robustness and constancy 
of the examined analysis. The proposed deep learning archi‑
tecture with a robust pre‑processing protocol including lung 
segmentation and image standardization outperforms the 
baseline model (up‑to AUC 91.3%) with similar architecture 
but with unsegmented CT slices and the current literature 
(Table I) with similar experimental protocols.

Discussion

The proposed analysis integrates deep learning lung segmen‑
tation for removing irrelevant organs/landmarks and transfer 
learning for discriminating between COVID‑19 and other types 
of pneumonia from CT imaging data with multiple window 
settings. The segmentation model was trained on openly 
available CT data (LIDC‑IDRI) providing state‑of‑the‑art 
performance even in datasets such as the examined COVID‑19 
(Fig. 3) from various institutes with different CT scanners, no 
DICOM metadata available and variability in image quality. 
Thus, the transfer learning‑based analysis was focused only on 
the lung region resulting in higher performance (AUC 96.1%) 
significantly advancing the baseline of 91.3% without 
segmented CT slices of the examined dataset. The fact that 
during inference, suspicious or disputable CT slices selected 
for analysis by the deep model should have been identified 
by an expert radiologist from the raw CT volume, might be 

considered as a limitation since a fully automated diagnosis is 
not possible. That said, as presented in Table I, the proposed 
methodology outperforms the current literature (19‑21) in 
terms of AUC performance. In particular, the deep model 
proposed by Zhang et al (21) demonstrates similar perfor‑
mance with the present analysis but the examined CT slices 
were manually segmented on lesion basis before classifica‑
tion (COVID‑19 versus common pneumonia versus normal 
patients). Ardakani et al (22) claims a model with an AUC 
performance of 99.4%, however, it utilizes a different experi‑
mental protocol than the examined herein, in which patches 
(60 by 60 pixels) were extracted by an experienced radiologist 
for the analysis requiring additional and time‑consuming labor 
from a clinical practice perspective.

In conclusion, the present study is addressing limitations 
of other efforts (22,27,41) where the analysis was applied 
on raw CT data with more demanding preprocessing phase 
and uniform data quality. This is further highlighted by the 
increased performance stability demonstrated by the low 
prediction variability among deep models of each fold in both 
ROC (standard deviation 0.55%) and PR (standard deviation 
0.34%) curves as depicted in Fig. 5 (top).
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Table I. Performance of the proposed analysis in comparison to the current peer‑reviewed research with similar end‑points.

     Patients, no.  CT Slices, no. 
Type % ACC SN SPC AUC (training/testing) (training/testing)

Proposed with segmentation 91.1   92.0 87.5 96.1 COVID‑19: 894/372 COVID‑19: 2,047/853
     CAP: 414/172 CAP: 976/406
Proposed no lung segmentation 85.1   88.8 76.8 91.3  
Li et al (19) ‑   90.0 96.0 95.0 COVID‑19: 400/68 COVID‑19: 1,165/127
     CAP: 1396/155 CAP: 1,560/175
     Non‑pneumonia: 1,173/130 Non‑pneumonia: 1,193/132
Wang et al (20) ‑   80.4 76.6 87.0 All: 709/557  ‑
Zhang et al (21) 91.2   94.0 88.5 96.0 COVID‑19: 752 All: 444.034
     CAP: 797 
     Non‑pneumonia: 697  
Ardakani et al (22) 99.5 100.0 99.0 99.4 COVID‑19: 108 COVID‑19: 510
     Non‑COVID‑19: 86 Non‑COVID‑19: 510
      Training/testing (All): 816/102
Harmon et al (42) 90.8   84.0 93.0 94.8 COVID‑19: 451/276 3D classification model
     Non‑COVID‑19: 533/1,011 

ACC, achieving an accuracy; SN, sensitivity; SPC, specificity; AUC, area under curve; CT, computed tomography; CAP, community acquired 
pneumonia; COVID‑19, coronavirus disease 2019.
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