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Abstract: In this article, we report on the formation and mode-of-operation of an affinity 

biosensor, where alternate layers of biotin/streptavidin/biotinylated-CRP-antigen/anti-CRP 

antibody are grown on printed gold electrodes on disposable paper-substrates. We have 

successfully demonstrated and detected the formation of consecutive layers of  

supra-molecular protein assembly using an electrical (impedimetric) technique. The 

formation process is also supplemented and verified using conventional surface plasmon 

resonance (SPR) measurements and surface sensitive characterization techniques, such as  

X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The article 

provides a possible biosensor development scheme, where—(1) fabrication of paper 

OPEN ACCESS



Biosensors 2013, 3 2 

 

 

substrate (2) synthesis of gold nanoparticle inks (3) inkjet printing of gold electrodes on 

paper (4) formation of the biorecognition layers on the gold electrodes and (5) electrical 

(impedimetric) analysis of growth—all are coupled together to form a test-structure for  

a recyclable and inexpensive point-of-care diagnostic platform. 

Keywords: paper electronics; nanoparticles; inkjet printing; immunoassays; impedance 

spectroscopy 

 

1. Introduction 

In the field of clinical diagnostics, much focus is currently put towards the development of high 

performance biosensors that could provide low-cost and easy to use analytical tools for rapid, reliable 

and sensitive diagnosis of the clinically relevant analytes [1]. Generally speaking, biosensors can be 

classified as either enzymatic or affinity biosensors. In the former, enzymes are used as biorecognition 

element, whereas the latter are based on the affinity reaction resulting in the formation of a complex. 

Affinity biosensors include, e.g., immunosensors (antibody-antigen), DNA sensors and whole cell 

biosensors. The label-free affinity-based probing concepts for monitoring of antibody-antigen 

interactions are a subject of much academic and industrial level research, and they offer a potential 

alternative to the well-established and widely used enzyme-linked immunosorbent assay (ELISA).  

C-reactive protein (CRP) is a common marker of inflammation. Measuring and charting CRP 

values can prove useful in determining disease progress or the effectiveness of treatments. In addition, 

the acute phase proteins, such as CRP, display important biological functions with implications for the 

etiopathogenesis of many autoimmune diseases [2]. The level of autoantibodies directed against native 

or structurally altered forms of acute phase proteins have been shown to correlate with disease activity. 

For example, anti-CRP antibodies levels have been shown to be helpful to assess disease activity in 

systemic lupus erythematosus.  

Surface plasmon resonance (SPR) is a standard optical technique that allows for real-time 

monitoring of changes in the refractive index of a thin film close to a surface. This technique is used 

for the measurement of real-time, label free biomolecular (affinity) interactions. While one of the 

reaction partners is immobilized to the sensor surface, the other is passed over the immobilized layer as 

a solution. Bindings are measured as changes in the refractive index of the surface. Such detections are 

also possible by using electrical techniques, namely measurement of variation of the dielectric property 

of the two binding layers. This method is, in general, called impedimetric detection. The operations, 

development and applications of impedimetric immunosensors have been extensively reviewed in the 

literature [3–8]. Immunosensors based on impedimetric detection are considered as potential 

candidates because they possess attractive characteristics, such as cost-effective instrumentation, ease 

of miniaturization and integration into multi-array concepts.  

Paper-electronics or the science of creating electronics on paper by using various printing methods 

has gained in popularity over the last decade [9]. This opens up the possibility of building electronic 

platforms for cheap, disposable, recyclable applications. Biosensing, or medical diagnostics, is one 

such area where paper electronics can be of immense potential. There have been several reports 
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worldwide on this topic. Screen-printing has been the most widely applied technique for  

producing paper-supported devices for, e.g., electrochemical glucose detection or electrochemical  

immunoassay [10–12]. It was recently shown by Määttänen et al. that inkjet printing can be utilized for 

the fabrication of a low-cost three-electrode platform on a recyclable paper substrate. It was also 

demonstrated that by modifying the printed gold working electrode, the platform could be used for 

various electrochemical analyses, e.g., for the detection of glucose [13]. 

In this article, we report on the formation and mode-of-operation of an affinity biosensor, where 

alternate layers of biotin/streptavidin/biotinylated-CRP-antigen/anti-CRP antibody are grown on 

printed gold electrodes on disposable paper-substrates. The response of the sensors is recorded using 

impedance analysis. The formation process of supramolecular protein assembly measured using 

impedance spectroscopy is furthermore compared and verified using surface plasmon resonance (SPR) 

measurements and surface sensitive characterization techniques, such as X-ray photoelectron 

spectroscopy (XPS) and atomic force microscopy (AFM). The article provides a possible biosensor 

development scheme where—(1) fabrication of paper substrate (2) synthesis of gold nanoparticle inks 

(3) inkjet printing of gold electrodes on paper (4) formation of the biorecognition layers on the gold 

electrodes and (5) electrical (impedimetric) analysis of growth—all are coupled together to build a 

test-structure for a recyclable and inexpensive point-of-care diagnostic platform. 

2. Experimental Section  

2.1. Print Substrate  

A multi-layer coated paper developed for printed electronics was used as print substrate [14,15]. 

The paper contains components normally used in industrial paper-making. The paper was coated with 

materials that are commonly used in paper coatings, i.e., mainly latexes and mineral pigments. In its 

core nature, the substrate used here is a natural fiber-based substrate, e.g., these papers are recyclable 

in a similar way as normal paper prepared for the conventional graphic industry. The most important 

physicochemical characteristics and examples of numerous applications in the field of printed 

electronics are described in previously publications [13–20]. In short, the main components in the 

nanoporous top coating (thickness ~3 µm) are kaolin pigment and styrene-butadiene latex binder. The 

total thickness and grammage of the paper substrate was about 130 µm and 126 g/m2, respectively.  

2.2. Synthesis and Characterization of the Gold Nanoparticles  

All chemicals used for gold nanoparticle (AuNP) synthesis were purchased from Sigma-Aldrich 

and used without further purification. Dodecanethiol-stabilized AuNPs were synthesized following the 

procedure reported by Hostetler et al. [21]. Briefly, 1.4 mmol gold (III) chloride hydrate (HAuCl4·H2O) 

in 20 mL deionized water was added under vigorous stirring to 32 mL toluene containing 3.5 mmol 

tetraoctylammonium bromide (TOAB). The gold salt transferred into the organic phase, turning it 

orange brown. The water phase was discarded, 0.35 mmol dodecanethiol was added to the organic 

phase, and the mixture was stirred for 10 min. Sodium borohydride (NaBH4), 14 mmol in 20 mL 

water, was added to the mixture under vigorous stirring. The dark solution was thereafter stirred for  

3 h, after which the organic phase was collected and evaporated. The remaining dark residue was 
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redispersed in ethanol and filtered. The powder was washed with ethanol and acetone and dried in 

vacuum overnight. 

The size and shape of the synthesized gold nanoparticles were characterized using a FEI Tecnai 12 

transmission electron microscope (TEM). The TEM samples were prepared by dispersing the solid 

powder in xylene and applying a droplet onto a Cu mesh TEM grid. Image analysis of over  

1,000 particles was carried out with the ImageJ software, giving a size distribution of 6.6 ± 2.3 nm.  

2.3. Inkjet Printing of Gold Electrodes 

The AuNP ink for inkjet printing was prepared by the dispersing nanoparticles (15 wt%) in xylene 

(Sigma-Aldrich). Inkjet printing of the AuNP ink was performed with a Dimatix Materials Printer 

(DMP-2800, FUJIFILM Dimatix, Inc., Santa Clara, CA, USA). The printing was done in ambient 

conditions using a single nozzle, 10 pL drop volume, 27 ± 3 V firing voltage and a custom waveform 

to ensure optimal droplet formation. Printing was performed using a drop spacing of 20 µm. Sintering 

of the printed gold electrodes was carried out using a short-wave IR drier (IRT systems, Hedson 

Technologies AB, Sweden) consisting of three 30 cm long 2 kW strip light bulbs with distance  

between the sample and the lamp being about 20 cm. The sintering time was 20 s. The volume 

resistivity of the printed gold structures was 1.6 × 10−7 Ωm. A more detailed description of the 

fabrication, characterization and surface modification of the inkjet-printed paper-supported gold 

electrodes is given in a previous communication [19]. In addition, a hydrophobic and translucent 

polydimethylsiloxane (PDMS)-based ink (Dehesive 920, Wacker chemicals) was applied around the 

perimeter of the electrodes to confine the aqueous sample solutions over the electrode area during the 

protein immobilization and impedance measurements. The PDMS ink can be applied on a paper 

substrate by manual spreading or by using roll-to-roll compatible techniques, such as flexographic or 

inkjet printing [22]. A photograph of a paper-supported printed electrode used in this study is shown in 

the Supplementary Figure S1. Material cost for manufacturing the electrodes are ~4 cents/cm2 due to 

the low material consumption of inkjet printing, making them a really low-cost alternative to 

conventionally prepared electrodes. 

2.4. Monothiols and Proteins 

11-Mercapto-1-undecanol (MuOH, HS(CH2)11OH) was purchased from Sigma-Aldrich. Biotinylated 

hexa(ethylene glycol) undecane thiol (Biotin-PEG-thiol, HS(CH2)11(OCH2CH2)6NHBiotin) was obtained 

from nanoScience Instruments (Phoenix, AZ, USA). The thiols were used as received. Streptavidin 

was purchased from BioSPA (SPA Società Prodotti Antibiotici S.p.A., Italy). Anti-CRP antibody was 

received from Orion Diagnostica Ltd., Finland. CRP antigen stock 2.95 mg/mL in TSA-buffer (pH 8, 

20 mM Tris 150 mM NaCl, 7 mM NaN3 and 0.2 mM CaCl2) was acquired from Orion Diagnostica 

Ltd., Finland. Biotinylated-CRP antigen (bio-CRP antigen) was prepared as follows: CRP antigen was 

concentrated to 10 mg·mL−1 and the buffer was exchanged to 25 mM carbonate buffer (pH 8.2) in 

Nanosep 30K (Pall, USA) centrifugal device. 1 mg of CRP antigen was biotinylated with (+)-Biotin  

N-hydroxysuccinimide ester (Sigma-Aldrich, USA). Biotin-NHS was dissolved in DMSO to give  

a final concentration of 11 mg·mL−1 and 10 μL aliquot was combined with CRP antigen. The reaction 

was mixed and allowed to progress for 5 h at room temperature. The bio-CRP antigen was purified 
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with NAP5-column (GE healthcare, USA), and the buffer was exchanged back to TSA. The purified 

concentration was assayed to be 599 mg·mL−1. 

HEPES-EDTA aqueous solution (10 mM HEPES (Sigma), 150 mM NaCl (Fluka), 1 mM EDTA 

(Sigma), pH 7.4) was used as a buffer solution in all the protein experiments. 

2.5. Formation of Supramolecular Protein Layers on Printed Gold Electrodes 

A schematic representation of the supramolecular protein layers is provided in Figure 1. The first 

layer consisted of an adsorbed biotinylated self-assembled monolayer (SAM) on the gold electrodes, 

formed from a MuOH:Biotin-PEG (85:15 mol%, 5 mM) (MBP) thiol solution in absolute ethanol 

(ETAX Aa, Altia). Before exposure to SAM solution, the gold electrodes were cleaned with plasma 

(air) flow (PDC-326, Harrick) for 2 min, rinsed with acetone and absolute ethanol and dried with 

nitrogen gas. The paper-supported electrodes were sealed between two silicon rings in a liquid cell 

with a cap to prevent evaporation, and the electrode surfaces were exposed to SAM solution (250 µL) 

for 16 h at room temperature in the dark. The MBP was adsorbed on the gold surfaces. After thiolation, 

the substrates were removed from the solution and rinsed immediately with absolute ethanol and dried 

with nitrogen gas. The MBP SAM was used as a starting point for the formation of supramolecular 

recognition assembly to ensure that the anchored streptavidin molecules remained biologically active 

and in their native conformations and formed a homogenous and strongly bound intermediate layer 

with a high binding capacity for subsequent immobilization of bio-CRP. 

Figure 1. Schematic diagram of the structure (not to scale) of the supramolecular protein 

layers streptavidin, biotinylated c-reactive protein (CRP) antigen and the bound analyte 

(anti-CRP antibody) grown on biotinylated self-assembly monolayer (SAM)-covered 

printed gold electrodes on a paper substrate. 

 

The second layer was formed by applying a 40 µL drop of streptavidin in HEPES-EDTA aqueous 

solution (2 µg/mL) over the electrode area. The immobilization of streptavidin onto the biotinylated 

SAM covered electrodes was conducted at +4 °C for 8 h. After immobilization, the electrode surface 

was rinsed with the HEPES-EDTA buffer solution and pure water (MilliQ) and dried with nitrogen gas. 
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The third layer was formed by applying a 40 µL drop of bio-CRP antigen in HEPES-EDTA 

aqueous solution (20 µg/mL) over the electrode area. The immobilization of bio-CRP antigen onto the 

MBP thiol/streptavidin layer covered electrodes was conducted at +4 °C for 8 h. After immobilization, 

the electrode surface was rinsed with the HEPES-EDTA buffer solution and pure water (MilliQ) and 

dried with nitrogen gas. The supramolecular protein assembly consisting of MBP SAM/streptavidin/ 

bio-CRP antigen formed the recognition layer for the subsequent immobilization of anti-CRP antibody. 

The target analyte, anti-CRP antibody, was immobilized on the recognition layer by applying  

a 40 µL drop of anti-CRP antibody in HEPES-EDTA aqueous solution (20 µg/mL) over the electrode 

area. The immobilization of anti-CRP antibody onto the supramolecular recognition layer was 

conducted at +4 °C for 8 h. After immobilization, the electrode surface was rinsed with buffer solution 

and pure water (MilliQ) and dried with nitrogen gas. 

2.6. Scanning Probe Microscopy 

An NTEGRA Prima (NT-MDT, Russia) atomic force microscope (AFM) was used to analyze the 

topography of the samples in intermittent-contact mode. The images (1,024 × 1,024 pixels) were 

captured in ambient conditions (RH = 20–26%, T = 24–28 °C) using silicon cantilevers with a nominal 

tip radius of 10 nm (Model: NSG10, NT-MDT, Russia). The scanning rate and the damping ratio were 

0.39 Hz and 0.6–0.7, respectively. The reported values for the root-mean-square roughness (σ, the 

standard deviation of height features) and the surface area ratio (Sdr, the increment of the interfacial 

surface area relative to the area of the projected flat plane) were calculated from 1 µm × 1 µm  

AFM images.  

2.7. X-Ray Photoelectron Spectroscopy 

The X-ray photoelectron spectroscopy (XPS) spectra were obtained with a PHI Quantum 2000 

scanning spectrometer, using monochromatic Al Kα (1,486.6 eV) excitation and charge neutralization 

by using an electron filament and an electron gun. The photoelectrons were collected at 45° in relation 

to the sample surface with a hemispherical analyzer. The analyzing depth was approximately 5–10 nm. 

The pass energy was 117.4 eV, and the acquisition time was 10 min. The measurements were carried 

out on three different spots for each sample. 

2.8. Surface Plasmon Resonance  

Surface Plasmon Resonance (SPR) gold slides were coated with SAM by immersing the slide in 

MBP solution (5 mM in ethanol) for 16 h. After thiolation, the substrates were removed from the 

solution and rinsed immediately with absolute ethanol and dried with nitrogen gas. Immobilization of 

streptavidin and bio-CRP-antigen was monitored in situ with a SPR instrument (SPR Navi 200, 

Bionavis Ltd., Tampere, Finland). The SPR Navi 200 instrument has an integrated peristaltic pump 

and a sample loop system connected to a 6-port valve, which allows injection of sample plugs into the 

continuously running buffer. For streptavidin and bio-CRP-antigen interaction measurements, the flow 

channel of the SPR system was first filled with HEPES-EDTA buffer with a constant flow rate of  

20 L/min. After a stable baseline was obtained, solutions with increasing concentrations (ranging 
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from 2.5 to 300 nM for streptavidin, Figure 2, or from 1 to 20 µg/mL for bio-CRP-antigen, Figure 3) 

were injected as a plug into the continuously flowing buffer stream to measure the specific interaction 

between streptavidin and the MuOH:Biotin-PEG-thiol (85:15 mol%) SAM sensor surface, or bio-CRP 

antigen and the MuOH:Biotin-PEG-thiol (85:15 mol%)/streptavidin sensor surface. 

Figure 2. (A) Surface plasmon resonance (SPR) signal response after injecting 1.25–300 nM 

streptavidin in HEPES-EDTA buffer over MuOH:Biotin-PEG-thiol (85:15 mol%) SAM 

sensor surface. Down arrows represents the time of streptavidin injections: 1. = 2.5 nM,  

2. = 5 nM, 3. = 10 nM, 4. = 20 nM, 5. = 40 nM, 6. = 80 nM, 7. = 160 nM and 8. = 300 nM. 

Up arrows represent the injection of buffer without streptavidin. (B) Mass areal density 

curve for streptavidin showing the Langmuir fit over the data points. 

 

Figure 3. (A) SPR signal response after injecting 1–20 μg/mL bio-CRP antigen in  

HEPES-EDTA buffer over MuOH:Biotin-PEG-thiol (85:15 mol%)/streptavidin sensor 

surface. Down arrows represents the time of bio-CRP antigen injections: 1. = 1 g/mL,  

2. = 2 g/mL, 3. = 5 g/mL, 4. = 10 g/mL and 5. = 20 g/mL. Up arrows represents the 

injection of buffer without bio-CRP antigen. (B) Mass areal density of bio-CRP antigen 

showing the Langmuir fit over the data points.  
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2.9. Impedance Measurements  

Impedance measurements were done on the paper-supported gold electrodes functionalized with  

a MBP SAM and protein layers in contact with the electrolyte HEPES-EDTA buffer solution. Buffer 

solution (20 µL) was deposited on the electrode area exactly at the same spot, which had been 

functionalized with a SAM and the protein layers (Supplementary Figure S1). The real capacitance 

was measured within a frequency range of 1 Hz to 1 MHz. A Gamry 600 Impedance Spectrometer was 

used for performing the experiments. An a.c. voltage with an rms amplitude of 20 mV was applied to 

probe the capacitance and a d.c. bias of 100 mV was applied on top of a.c. voltage. 

3. Results and Discussion 

3.1. Binding Capacity of Biofunctional Layers Determined by SPR 

The binding capacities of the biofunctional layers included in the supramolecular recognition 

assembly were determined separately by SPR. This was done to confirm the successful adsorption of 

proteins and sufficient binding capacity of the individual layers in the recognition system. Figure 2(A) 

shows an SPR response curve after injecting 1.25–300 nM streptavidin over the MBP thiol SAM 

surface. Figure 2(B) shows the mass areal density of streptavidin calculated based on SPR response 

(including the Langmuir adsorption isotherm fit to the data points). The maximum adsorbed amount 

obtained from the Langmuir fit yielded the value 366 ± 2 ng/cm2. This is in the upper range reported 

by others for streptavidin adsorbed on biotinylated SAMs and solid-supported lipid bilayers, i.e.,  

~210–370 ng/cm2 [23–25]. This confirms the favorable orientation and high binding capacity of a 

MBP thiol SAM towards streptavidin.  

The maximal binding capacity of the immobilized streptavidin layer towards bio-CRP antigen was 

similarly tested by SPR (Figure 3). The maximum amount of adsorbed bio-CRP antigen obtained from 

the Langmuir adsorption isotherm fit gave a value of 105 ng/cm2. The SPR results show that the  

bio-CRP antigen adsorbed on the streptavidin surface. The CRP antigen is a 125 kDa doughnut-shape 

homopentamer composed of five non-covalently associated protomeric subunits arranged around a 

central pore [26]. The overall crystallographic dimension of the CRP pentamer is about 10.2 nm 

outside diameter with a protomer diameter of 3.6 nm and a central pore diameter of 3.0 nm [27,28]. 

The area per molecule expected for a full monolayer of CRP antigen is estimated to be around  

125 nm2/molecule with preferred planar orientation [29,30]. Using the adsorbed quantity of bio-CRP 

antigen obtained from the SPR measurements, a value of 186 nm2/molecule for the bio-CRP antigen 

adsorbed on the streptavidin coated MBP thiol SAM was calculated, corresponding to a surface 

coverage of approximately 67%.  

3.2. Topographical and Chemical Characterization of the Immobilized Layers on Paper-Supported 

Printed Gold Electrodes 

Immobilization of the subsequent protein layers on the paper-supported printed gold electrodes was 

followed by XPS and AFM. Table 1 lists the XPS elemental composition and Figure 4 shows high 

resolution spectra for the N1s peak after each immobilization step.  
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Table 1. Atomic percentages of selected elements after each immobilization step. 

XPS 
element 

MuOH:Biotin-PEG-thiol 
(85:15 mol%) SAM 

Streptavidin bio-CRP 
antigen 

anti-CRP 
antibody 

C1s 67.8 ± 4.0% 69.3 ± 3.4% 62.9 ± 3.0% 67.7 ± 4.2% 

Au4f 15.6 ± 0.6% 10.2 ± 1.0% 9.0± 0.8% 7.0 ± 1.0% 

N1s 0.7 ± 0.4% 2.0 ± 0.3% 4.0 ± 0.8% 7.8 ± 0.5% 

S2p 0.3 ± 0.2% 0.2 ± 0.2% 0.1 ± 0.1% - 

O1s 15.8 ± 4.1% 20.3 ± 2.0% 21.2 ± 1.7% 17.5 ± 1.3%

Figure 4. X-ray photoelectron spectroscopy (XPS) N1s peaks for (A) gold electrode  

(B) MuOH:Biotin-PEG-thiol (85:15 mol%) SAM, (C) streptavidin, (D) bio-CRP antigen 

and (E) anti-CRP antibody layers. 

 

The N1s peak with binding energy of 400 eV can be assigned to the peptide bond (–NH–C(=O)–) of 

proteins [31,32]. The intensity of the N1s peak increased after each immobilization step, indicating an 

increase in the amount of proteins on the surface [33]. The magnitude of increase of the N1s peak 

intensity was approximately the same for streptavidin (85 counts) and bio-CRP antigen layers  

(90 counts), but over three-fold (300 counts) for anti-CRP antibody (Figure 4). This might reflect the 

difference in thickness and surface coverage of the adsorbed protein layers, as well as the size 

difference between different proteins (streptavidin 66 kDa, bio-CRP antigen 125 kDa, anti-CRP 

antibody 160 kDa). The decrease in the relative amount of the Au4f peak further confirms the  

supramolecular protein assembly on the gold electrode (Table 1). The presence of the Au4f peak also 

indicates that the protein layers contained defects induced by the incomplete coverage of the anti-CRP 

on the streptavidin surface. This leads to occasional protein-free regions on the surface. Such  

protein-free areas remained even after the immobilization of anti-CRP antibody. The presence of the 

Au4f peak in the XPS spectrum can also be from the penetration depth of 5–10 nm of the scanning 

beam, which is comparable to the thickness of the formed layers. 
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Figure 5 shows typical AFM topographs of the electrode surface after each subsequent immobilization 

step. The roughness values, σ and Sdr, obtained from the corresponding AFM images are listed in 

Table 2. A visual observation of the topographs shows that the nano-particulated surface structure of 

the gold electrode (Figure 5(A)) had been somewhat smoothed after the application of the MBP SAM 

(Figure 5(B)). However, this did not induce any significant changes in the roughness of the electrode 

surface (Table 2).  

Figure 5. Atomic force microscopy (AFM) topographic images of (A) pristine gold 

electrode, (B) MuOH:Biotin-PEG-thiol (85:15 mol%) SAM, (C) streptavidin layer,  

(D) bio-CRP antigen layer and (E) anti-CRP antibody layer.  

 

Table 2. Values of selected roughness parameters, including standard deviations, obtained 

from 1 µm × 1 µm AFM topographs after each immobilization step. 

Layer Sdr ± SD [%] σ ± SD [nm] 

gold electrode 1.6 ± 0.2 2.1 ± 0.3 

MuOH:Biotin-PEG-thiol (85:15 mol%) SAM 1.4 ± 0.3 2.2 ± 0.5 

Streptavidin 3.1 ± 0.5 2.5 ± 0.4 

bio-CRP antigen 2.4 ± 0.5 3.3 ± 0.5 

Anti-CRP antibody 4.7 ± 0.8 5.4 ± 1.0 

Figure 5(C) shows that after the immobilization of streptavidin, the surface consisted of a quite 

densely packed layer of globular objects with an average height of 4–6 nm (a typical line profile is 

depicted in Supplementary Figure S2(A)). The average height value corresponds quite nicely to the 

crystallographic dimensions of a streptavidin molecule (4.2 nm × 4.2 nm × 5.0 nm) [34]. In addition, 

the roughness values slightly increased as a result of the adsorption of streptavidin.  

After introduction of the bio-CRP antigen, the surface texture changed and consisted of particles 

with somewhat larger lateral size variations compared to the streptavidin surface (Figure 5(D)). The 

change in the surface texture is reflected by an increase in surface roughness (σ) and by a decrease in 
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the effective surface area (Sdr) (Table 2). The average height of a typical particle on the surface was 

around 3–4 nm (a typical line profile is depicted in Supplementary Figure S2(B)). The height 

corresponds well to the height of a CRP antigen previously obtained by AFM and confirms the planar 

orientation of the adsorbed proteins [29,30]. In addition, larger globular objects (10–13 nm in height) 

were also observed in AFM topographs. These are either perpendicularly oriented proteins or protein 

aggregates, indicating a less dense packing. Rather similar height values of the streptavidin and  

bio-CRP antigen layers are consistent with the increase observed in the corresponding N1s peak 

intensities (Figure 4). 

The immobilization of anti-CRP antibodies increased the presence of larger particles with lower 

packing density (Figure 5(E)). This is reflected as a clearly increased roughness of the surface  

(Table 2). A typical y-shaped antibody can be considered to be slightly larger in size  

(14 nm × 8.4 nm × 4 nm) and mass (160 kDa) compared to CRP antigen [35]. In addition, a single  

bio-CRP antigen has five similar epitopes that can be recognized by multiple anti-CRP antibodies, 

leading to an increased average cluster size. The average height of the particles was around 10–14 nm 

(a typical line profile is depicted in Supplementary Figure S2(C)), indicating a more perpendicular 

orientation of the anti-CRP antibody molecules that may be caused by a steric hindrance due to 

adjacent anti-CRP antibody.  

In summary, both XPS and AFM results confirm that a supramolecular assembly was successfully 

formed on the paper-supported printed gold electrode surfaces, and the bio-CRP antigen layers 

successfully bound the analyte, i.e., the anti-CRP antibody. 

3.3. Impedimetric Analysis of the Immobilized Layers 

The layer coverage of the gold surfaces was electrically probed using impedance spectroscopy 

measurements. Impedance spectroscopy is a versatile tool for measuring the change in capacitance of 

multilayered film structures [36]. In the present case, the capacitance was measured in a buffer solution 

between two gold electrodes on the same substrate (device structure in supplementary information, 

Figure S1). Real capacitance was measured for a frequency range of 1 Hz to 1 MHz. The change in the 

capacitance value of the buffer solution was recorded for different gold electrodes. The measurement 

set-up is the same as used in the previous work [20] where the two metal electrodes were connected 

through the buffer. Even though capacitive transducing is not as commonly used as amperometric or 

potentiometric transducing, it has been previously shown to be a very sensitive and effective method 

for biosensing in various systems [37]. The operating principle of transduction using capacitive 

measurement is the double-layer formation between the metal and the subsequent layers and the 

change in capacitance due to that. The variation in the quality of the double layer influences the 

capacitive values more significantly than the current or voltage variation. We have taken the advantage 

of the capacitive method previously to clarify the quality of the thiol layers on top of the various  

Smetal electrodes [20]. 

The proximity of the aqueous solution to the metal electrode usually indicates a higher capacitance 

value due to the high polarity of the buffer solution. However, there is a large variation between the 

capacitive responses of the different batches of paper-supported printed gold electrodes (Figure 6). 

These electrodes were fabricated using dodecanethiol-capped AuNP ink, and it has been previously 
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shown that after IR sintering, there is a residual thiol layer still present on the surface of the  

electrodes [19]. The amount varies between the different batches of electrodes. This residual thiol layer 

is the source for a lower capacitance observed for pristine gold electrodes, as discussed earlier in this 

work, as well as in previously published work [20]. From Figure 6, we see that there is a dispersion in 

the capacitance value (increasing capacitance with decreasing frequencies) in the low-frequency 

region. This can be attributed to the roughness of the electrodes. An interesting observation was made 

as a consequence of the thiolation of the gold electrodes with MBP thiols. Following thiolation, the 

gold electrodes were covered by a “dielectric” layer and the capacitance of the structure changed. The 

quality of the thiol layers governs the change in the capacitance of the device structure. It was 

observed that all the electrodes, previously exhibiting variations due to a varying amount of residual 

thiols on the surface, now exhibit perfect dielectric properties with no or very little variation after 

formation of the thiol-coverage. Moreover, the saturated capacitance values of the thiol-covered 

electrodes in most cases showed steady capacitance values (~200–230 nF) at lower frequencies, 

indicating a very good quality of the MBP thiol SAM.  

Figure 6. Capacitance as a function of frequency after application of SAM.  

 

Figure 7. Capacitance as a function of frequency after each immobilized layer.  
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Following the MBP thiol coverage, the subsequent streptavidin, bio-CRP antigen and anti-CRP 

antibody layers were consecutively grown on the gold electrodes, as described before. The impedance 

spectroscopy measurement was done following the formation of each of these layers. Figure 7 shows 

the systematic variation of the real capacitance for the growth of each successive layer. There is a clear 

capacitance variation observed in the frequency range of 1 Hz–1kHz. The increase in capacitance 

cannot be explained using any simple model of equivalent circuit due to the complex nature of the 

various layers and their interfaces. If we consider capacitance from the double-layers from each 

interface to add up to a simple capacitive series, then a simple calculation shows that the capacitance 

for each consecutive layer should decrease the capacitance, not increase it, as seen in Figure 7. The 

complex nature of the structure would require detailed analysis of the equivalent circuit, which is 

beyond the scope of the article. The important conclusion is that the impedance measurements show a 

systematic variation of real capacitance for each consecutive layer growth. This enables the use of the 

electrical (impedimetric) method for detecting analytes with hand-held, point-of-care diagnostic devices.  

4. Conclusions  

We have successfully demonstrated the formation of supramolecular protein layers on inkjet printed 

gold electrodes on paper substrates. We have additionally detected the formation of consecutive layers 

using an electrical (impedimetric) technique. The formation of the consecutive layers has also been 

verified and supplemented by SPR measurements and surface sensitive chemical and topographical 

measurements. Even though, the exact composition and scheme of the layers might not remain the 

same, but the possibility of building up and detecting supramolecular protein layers on paper and using 

impedimetry is demonstrated through this article. This provides a possible route for fabricating 

inexpensive, recyclable, point-of-care diagnostic devices. 
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Appendix 

Figure S1. A photograph showing a printed gold electrode on a paper substrate. Also 

shown is a drop (40 µL) of buffer deposited over the electrode demonstrating how the 

immobilization of proteins and impedance measurement were conducted. The drop is 

confined over the target spot by a translucent hydrophobic PDMS layer around the 

perimeter of the electrode. 

 

Figure S2. (A) A line profile over a single globular object in the AFM topograph after the 

immobilization of streptavidin. The inset shows the AFM image (200 nm × 200 nm, height 

scale 6 nm) with a line indicating the location of line profile. (B) A line profile over a 

single globular object in the AFM topograph after the immobilization of bio-CRP antigen. 

The inset shows the AFM image (200 nm × 200 nm, height scale 8 nm) with a line indicating 

the location of line profile. (C) A line profile over a single globular object in the AFM 

topograph after the immobilization of CRP antibody. The inset shows the AFM image  

(200 nm × 200 nm, height scale 19 nm) with a line indicating the location of line profile. 
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Figure S2. Cont. 
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