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Abstract

Quantifying the dynamics of intrahost HIV-1 sequence evolution is one means of uncovering information about the
interaction between HIV-1 and the host immune system. In the chronic phase of infection, common dynamics of sequence
divergence and diversity have been reported. We developed an HIV-1 sequence evolution model that simulated the effects
of mutation and fitness of sequence variants. The amount of evolution was described by the distance from the founder
strain, and fitness was described by the number of offspring a parent sequence produces. Analysis of the model suggested
that the previously observed saturation of divergence and decrease of diversity in later stages of infection can be explained
by a decrease in the proportion of offspring that are mutants as the distance from the founder strain increases rather than
due to an increase of viral fitness. The prediction of the model was examined by performing phylogenetic analysis to
estimate the change in the rate of evolution during infection. In agreement with our modeling, in 13 out of 15 patients
(followed for 3–12 years) we found that the rate of intrahost HIV-1 evolution was not constant but rather slowed down at a
rate correlated with the rate of CD4+ T-cell decline. The correlation between the dynamics of the evolutionary rate and the
rate of CD4+ T-cell decline, coupled with our HIV-1 sequence evolution model, explains previously conflicting observations
of the relationships between the rate of HIV-1 quasispecies evolution and disease progression.
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Introduction

Within an HIV-1 infected individual, the HIV-1 population

evolves under host immune response selection pressures [1–3].

Development of genetic diversity within the host results from a

high virus replication error frequency (3.461025 mutations

site21generation21 [4]) coupled with an in vivo virus production

rate exceeding 1010 virions per day [5]. Both diversifying and

purifying selection impact the evolution of HIV-1 sequences. In

the absence of antiretroviral drug treatment, HIV-1 must balance

the preservation of important life cycle functions with the ability to

escape host immune surveillance.

The interaction between the HIV-1 population and the host is

revealed in the following observations: First, an increase of fitness

during the course of chronic infection has been demonstrated by

comparing the replication rate of virus genomes isolated at early

times following infection with that of later viruses [6]. Second,

although CD8+ T-lymphocytes restrain virus replication in HIV-1

infection, escapes from both CD8+ T-cell responses and

neutralizing antibodies are well documented [7–9]. Studies on

CD8+ T-cell response to autologous virus Env, Gag, and Tat

proteins observed variation at epitope-containing sites in the HIV-

1 population [10,11]. Such variation implies escape from CD8+
T-cell responses. Furthermore, changes in N-linked glycosylation

sites in Env have been observed in viruses that escape antibody

neutralization [12].

Two measures have been used to describe HIV-1 evolution

quantitatively, diversity, the genetic variation at a given time, and

divergence, the genetic distance to a reference point, usually the

founder virus. While several studies have investigated these

measures, a detailed study carried out by Shankarappa et al.

followed 9 patients longitudinally over 10–15 years [13]. They

found that in the first phase of the asymptomatic period, both viral

divergence and diversity increased linearly in the C2-V5 region of

env. In a second phase, the viral population continued to diverge

from the founder strain at the same rate, while diversity started to

plateau or constrict. In the final phase, divergence stabilized and

diversity declined. The decline of diversity was associated with the

emergence of viruses using the CXCR4 coreceptors, expressed on

both memory and naive cells, more so on naive T cells [14–17]. The

stabilization of nonsynonymous divergence was reported to be more

pronounced than the synonymous divergence at the late stage of

infection [18,19], suggesting reduced immune selective pressure.

The rate of intrahost HIV-1 sequence evolution has been

correlated with the progression of the disease, which shows a

considerable variability among patients (from a few months to 20 or

more years). Several studies have found an inverse relationship

between the rate of viral diversification and the host disease

progression rate [1,2,18,20–22], while others have not [23,24]. In

addition, it has been suggested that the level of genetic diversity that

can be controlled by the host immune system is limited, and that

exceeding a diversity threshold may be a key factor for disease
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progression [25]. More recently, Lemey et al. found an association

between the synonymous substitution rate of HIV-1 and disease

progression parameters [19]. Subjects with moderate disease

progression from Shankarappa et al. [13] displayed a faster rate of

synonymous substitutions in comparison to subjects with slow

disease progression. It was speculated that a longer viral generation

time may be responsible for a slower rate of synonymous

substitutions and slower disease progression.

To unify all these observations, i.e., the universal intrahost

dynamics of divergence and diversity and the contradicting

observations between the rate of disease progression and the rate

of intrahost evolution, here we propose a simple sequence evolution

model that includes a mutation probability and a fitness value of

sequence variants. The model accurately described HIV-1 sequence

evolution within a patient, reflecting the dynamics of divergence

and diversity over the infection by suggesting a slowdown of the

evolutionary rate as disease progresses. We then measured the

dynamics of intrahost HIV-1 sequence evolution from 15 previously

followed patients and linked the change in the evolutionary rate to

the dynamics of the CD4+ T-cell count. Deciphering the dynamics

of intrahost HIV-1 quasispecies evolution allowed us to explain

previously reported contrasting relationships between the speed of

HIV-1 quasispecies evolution and disease progression.

Results

Sequence Evolution Model
To interpret the common dynamics of the divergence and

diversity within a host in the chronic phase of HIV-1 infection, we

developed a sequence evolution model where each viral sequence

is represented by its distance to the founder strain, d. In this model,

the number of sequences, N(d,t), at a distance d from the founder

strain at time t is dictated by two factors: 1) the fitness, F(d), defined

as the total number of offspring sequences from sequence d

generated per unit time; and 2) the probability, M(d), of sequence d

to evolve to sequence d+1 per unit time. Here we assume that the

unit of time is chosen such that the probability of evolving to

distances greater than d+1 in one time unit is negligible.

As shown in Figure 1A, at time 0, the total number of copies of

virus 0 is N(0,0). At time 1, the total number of offspring sequences

from virus 0 is F(0)N(0,0). Out of this total number of offspring, the

number of mutant sequences is F(0)N(0,0)M(0), and the number of

non-mutant sequences is F(0)N(0,0)(12M(0)). Hence M(d) denotes

the proportion of offspring that are mutants. In general form, this

process is expressed as

N d,tð Þ~F dð ÞN d,t{1ð Þ 1{M dð Þð Þ

zF d{1ð ÞN d{1,t{1ð ÞM d{1ð Þ:
ð1Þ

Author Summary

Saturation of sequence divergence and a decline of
diversity in later stages of infection have been commonly
observed during HIV-1 infection, although the length of
the time to acquired immunodeficiency syndrome (AIDS) is
highly variable among patients. To explain this common
feature, we developed a simple sequence evolution model
with two main components: (i) fitness, the number of
offspring produced, and (ii) the proportion of offspring
that are mutants. Assuming a decrease in the proportion
of offspring that are mutants as virus variants evolve
further from the founder strain, we were able to fit the
universal trends of divergence and diversity. In contrast,
neither the model with gradual increase of fitness nor the
model with rapid emergence of virus variants with greater
fitness explained the dynamics of divergence and diversity.
The prediction of the model was confirmed in the majority
of longitudinally followed patients; the rate of HIV-1
evolution was stationary before disease progresses;
however, the rate slowed down at a rate correlated with
the rate of immune cell decline. Deciphering dynamic
correlation between the rate of HIV-1 evolution and the
kinetics of immune cell level united previous conflicting
observations of the relationships between the rate of HIV-1
evolution and disease progression.

Figure 1. Schematic diagram of the HIV-1 sequence evolution
model. (A) Each sequence is represented with a sequence index, d (the
number within the circle), equal to the distance from the founder strain.
N(d,t) denotes the total number of sequences at distance d at time t.
F(d) is the total number of sequences produced per unit time per
sequence. A sequence d at time t generates either sequence d+1 with
probability M(d) by a mutation, or sequence d with probability 12M(d)
at time t+1. M(d) is the proportion of offspring that are mutants. (B) The
divergence is defined as the mean and the diversity is defined as the
standard deviation of the distribution of P(d,t) in Eq. (2). The position of
the mean (divergence) is shown as the vertical line of each P(d,t) at year
1, 4, and 10, respectively. The standard deviation (diversity) is shown as
the horizontal line of each distribution. (C) The profile of M(d) for the
general (full) sequence evolution model (left panel), submodel 1
(middle panel), and submodel 2 (right panel). Here ds denotes the
distance from which M(d) starts to decline and dmax denotes the
distance point of M(d) = 0.
doi:10.1371/journal.pcbi.1000240.g001

Intrahost HIV-1 Evolution

PLoS Computational Biology | www.ploscompbiol.org 2 December 2008 | Volume 4 | Issue 12 | e1000240



This model simulates the growth of the true genetic distance

over time. Rather than a simple Hamming distance, which for

finite sequence lengths cannot grow at a constant rate, the genetic

distance we emulate is the distance realistic substitution models

attempt to estimate [26–28]. In our later tree analyses of real data,

we have used a general-time-reversible model that includes rate

variation across sites that has been shown to realistically describe

HIV-1 nucleotide evolution [26,29]. We show below that the

evolutionary rate of the 15 patients we analyze is approximately

1023 per site per month. Since we analyze about a 600 nucleotide

region of the HIV-1 env gene, this implies that we expect less than

one substitution per month. Thus, a time unit of approximately

one month is appropriate to analyze this data. Thus, our model is

not following all the point mutations that can occur due to reverse

transcription but rather simulates the growth of the true genetic

distance from the founder in the presence of selection. In reality,

multiple variants can exist at the same distance from the founder

strain. In our model those variants have the same identification

index, d, the distance from the founder strain and this implies that

we need a measure of diversity that does not rely directly on

sequence information but rather on the distribution of genetic

distances d.

Since an approximately constant number of sequences were

sampled at all time points [13], we consider the normalized

distribution of the distances at time t, i.e.,

P d,tð Þ~N d,tð Þ
,X?

d~0

N d,tð Þ: ð2Þ

The divergence Ddivergence(t), i.e., the average number of nucleotide

substitutions that accumulated along the branch from the founder

strain as a function of time [13], is measured by the mean value of

d, i.e.,

Ddivergence tð Þ~
X?
d~0

P d,tð Þd, ð3Þ

(Figure 1B). The diversity Ddiversity(t), measured by Shankarappa et

al. [13] as the average pairwise nucleic acid distance between all

sequences at time t, is here measured with the standard deviation

of P(d,t) as

Ddiversity tð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX?
d~0

P d,tð Þd2{
X?
d~0

P d,tð Þd
 !2

vuut , ð4Þ

(Figure 1B). In our model, because we do not discriminate between

the variants at the same distance, we measure the level of diversity

with the level of spread in the distance from the founder strain.

This measure is an approximation made for consistency with our

modeling approach. To examine this approximation, we calculat-

ed the measure of genetic diversity at the nucleotide level used by

Shankarappa et al. and the measure of the standard deviation of

the distance distribution from the founder strain, Eq. (4), for the

same data in [13]. The two measures were found to be

proportional to each other (Figure 2).

We assumed that the probability of mutation varied as a

function of the distance from the original strain, d, according to

M(d) = m if d#ds, m(dmax2d)/(dmax2ds) if ds,d,dmax, and M(d) = 0

if d$dmax, where m is a constant, ds is the starting point (distance)

for the decline of M(d), and dmax is the distance at which M(d) = 0

(left panel in Figure 1C). The profile of M(d) directly reflects the

retardation in the rate of sequence evolution as the virus evolves

further from the founder strain.

To observe the effect of the profile of M(d) (left panel in

Figure 1C) on the macroscopic evolution patterns, we first fixed

the fitness as a constant, F(d) = f. Figure 3 shows the fit of the model

to the dynamics of divergence and diversity of patients S-P1—S-

P11 [13]. The fit of the model is summarized in Table 1. The

method of calculating divergence and diversity dynamics is

provided in Materials and Methods. Encouragingly, our model

successfully quantified the dynamics of the divergence and the

diversity based on first a constant evolutionary rate, then followed

by a decline of the evolutionary rate (left panel in Figure 1C).

Special Cases of the Sequence Evolution Model
To further investigate the relationship between the profile of

M(d) and the dynamics of divergence and diversity, we studied two

special cases of M(d) in greater detail. Submodel 1 is defined by

M(d) equal to a constant, m (middle panel in Figure 1C). For a

constant fitness, F(d) = f, the normalized distribution of the distance

at time t, P(d,t), satisfies

LP d,tð Þ
Lt

~{mP d,tð ÞzmP d{1,tð Þ, ð5Þ

with P(d,0) = 1 if d = 0 and P(d,0) = 0 otherwise. The generating

function, F z,tð Þ~
P?

d~0

P d,tð Þzd , satisfies the following equation,

LF z,tð Þ
Lt

~{mF z,tð ÞzmzF z,tð Þ, ð6Þ

with F(z,0) = 1. The solution of Eq. (6) is given by F(z,t) = em(z21)t.

This implies that P(d,t) is a Poisson distribution, P(d,t) = e2mt(mt)d/

d!. The mean of this distribution gives the divergence,

Figure 2. Two measures of diversity dynamics of 9 longitudi-
nally followed patients. Diversity dynamics of each subject from the
definition of average pairwise distance [red line] among all the
sequences sampled at the same time point and the standard deviation
[blue line] of the distribution of the tree distances of all the sequences
at the same time point from the founder strain multiplied by a constant
factor. The constant factors are 20, 20, 25, 25, 27, 40, 40, 30, 70 for S-P1
to S-P11, respectively. The two measures of diversity are proportional to
each other.
doi:10.1371/journal.pcbi.1000240.g002
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Ddivergence(t) = mt, and the standard deviation gives the diversity,

Ddiversity tð Þ~
ffiffiffiffiffiffi
mt
p

. In this special case, both divergence and

diversity increase as a function of time rather than saturate or

decrease at later time points. Thus, assuming a constant fitness and

constant evolutionary rate over the period of chronic infection fails

to describe well the simultaneous intrahost dynamics of divergence

and diversity. The fit of submodel 1 to the divergence and the

diversity dynamics in all 9 patients is summarized in Table 1.

In submodel 2, we set ds = 0, resulting in a linear decrease of the

probability of accumulated mutations per unit time, given by

M(d) = (12d/dmax) for d#dmax and M(d) = 0 for d.dmax (right panel

in Figure 1C). In this case, from Eqs. (1) and (2), the dynamics of

the evolution is summarized as

LP d,tð Þ
Lt

~
d

dmax

{1

� �
P d,tð Þz 1{

d{1ð Þ
dmax

� �
P d{1,tð Þ, ð7Þ

for d#dmax and hP(d,t)/ht = 0 for d.dmax.

Now the generating function F z,tð Þ~
P?

d~0

P d,tð Þzd satisfies

LF z,tð Þ
Lt

~ z{1½ �F z,tð Þz z

dmax

1{z½ � LF

Lz
, ð8Þ

with F(z,0) = 1 from P(d,0) = 1 when d = 0 and P(d,0) = 0 otherwise.

This equation can be solved using the method of characteristics.

Let z and t be the functions of s. Then F(z,t) = F(z(s),t(s)) = F(s) and

dF

ds
~

dt

ds

LF

Lt
z

dz

ds

LF

Lz
: ð9Þ

If we choose the characteristic curve such that

dt

ds
~1, ð10Þ

with t(s = 0) = 0, we have t = s. By comparing Eq. (8) with (9), we

obtain

dz

ds
~

z 1{zð Þ
dmax

: ð11Þ

By integrating Eq. (11), we have

z sð Þ~ z 0ð Þ
z 0ð Þz 1{z 0ð Þ½ �exp s=dmaxð Þ : ð12Þ

Along this characteristic curve, by inserting Eqs. (8), (10) and (11)

into Eq. (9), we obtain

dF

ds
~ z sð Þ{1½ �F sð Þ: ð13Þ

By integrating Eq. (13), we obtain

F sð Þ~ z 0ð Þz 1{z 0ð Þð Þexp s=dmaxð Þ½ �{dmax , ð14Þ

Figure 3. The fit of the full model to dynamics of divergence
and diversity. Dynamics of divergence and diversity fitted with the
full model (right panel in Figure 1C). We calculated divergence by first
measuring the tree distance between a sequence sampled at time t and
a strain found at the initial sample time point. Then we averaged all the
pairwise tree distances between the sequences at t and the sequence
sampled at the earliest time point. Likewise, the diversity was calculated
from the data by averaging pairwise tree distances over all the
sequences obtained at time t. We fixed parameters as m = 0.9 and f = 1
estimated ds and dmax using a non-linear least squares method based
on the Levenberg-Marquardt algorithm [59] and calculated 95% C.I. of
these estimated parameters based on bootstrap sampling of the
residuals [60]. The result of the fit is summarized in Table 1.
doi:10.1371/journal.pcbi.1000240.g003

Table 1. Model fitting to divergence and diversity dynamics.

Subject AICF (SQF) ds dmax AICS1 (SQS1) AICS2 (SQS2)

S-P1 2223.5 (6.78) 29.6 [26.7:31.2] 46.2 [45:47.6] 2215.4 (10.9) 2213.1 (10.8)

S-P2 2211.7 (5.16) 55.8 [53.0:58.2] 61.1 [61.0:61.2] 2206.0 (7.92) 2204.0 (7.75)

S-P3 2158.7 (1.44) 26.2 [24.1:28.1] 64.1 [60.4:67.1] 2154.3 (2.61) 2151.3 (2.62)

S-P5 2248.7 (5.47) 2.7 [2.7:2.7] 58.6 [58.6:58.6] 2249.0 (6.44) 2247.7 (6.19)

S-P6 2172.5 (0.67) 0 [0:0] 24.8 [24.8:24.8] 2165.9 (1.37) 2174.1 (0.74)

S-P7 2130.6 (2.21) 69.3 [69.3:69.3] 95.0 [95.0:95.0] 2134.5 (2.63) 2131.4 (2.63)

S-P8 2226.6 (1.25) 37.4 [37.4:37.4] 62.3 [62.3:62.3] 2224.2 (1.74) 2221.6 (1.74)

S-P9 2186.6 (2.85) 26.0 [24.2:28.5] 66.2 [60.5:72.9] 2188.2 (3.43) 2186.2 (3.33)

S-P11 272.5 (1.43) 45.9 [45.9:45.9] 97.6 [97.6:97.6] 269.9 (5.18) 265.7 (5.18)

AIC is Akaike’s information criterion with a second order correction for small sample sizes [61] and SQ is the sum of squared errors; subindex F indicates the full model;
S1 submodel 1; and S2 submodel 2. The parameters dS and dmax are estimated from the full model (Figure 3C), along with 95% CIs (brackets) obtained by bootstrapping
divergence and diversity dynamics 103 times. The preferred model has the lowest AIC value.
doi:10.1371/journal.pcbi.1000240.t001
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where we have used the initial condition of F(z,0) = 1.

Since s = t and from Eq. (12),

z 0ð Þ~ z sð Þ
z sð Þz 1{z sð Þ½ �exp {s=dmaxð Þ : ð15Þ

If we insert Eq. (15) into Eq. (14), we obtain the solution of Eq. (8),

F z,tð Þ~ e{t=dmaxz 1{e{t=dmax
� �

z
� �dmax

: ð16Þ

Then P(d,t), the coefficient of zd of Eq. (16), is given as a bino-

fmial distribution, P d,tð Þ~dmax!
.

dmax{dð Þ!d!½ � 1{e{t=dmax
� �d

e{t=dmax
� �dmax{d

. Hence, the divergence as a function of time is

measured by the mean of this binomial distribution, Ddivergence~

dmax 1{e{t=dmax
� �

, and the diversity is given by the standard

deviation of P(d,t), Ddiversity~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax 1{e{t=dmaxð Þe{t=dmax

p
. In

submodel 2, the divergence first grows linearly and then saturates,

and the diversity first increases and later decreases, which captures

the saturation of divergence and the decline of the diversity at later

stages of HIV-1 infection. The fit of submodel 2 to the divergence

and the diversity dynamics of all 9 subjects is summarized in

Table 1.

Model Comparison
Comparing the full model and the two special cases using

Akaike’s information criterion (AIC) showed that in all the patients

the full model fitted best except for S-P5, S-P7, and S-P9 (Table 1).

Submodels 1 and 2 are interesting to consider because they are

simpler and have analytical solutions. Comparing the two

submodels to each other showed smaller or equal sum of squared

errors for submodel 2 in all subjects except S-P3 (Table 1). One

extra parameter in submodel 2, however, resulted in larger AIC

values than for submodel 1 in all subjects except S-P6. Despite this,

we prefer submodel 2 because it qualitatively captures the decrease

of the diversity at the later stage of HIV-1 infection.

Viral Fitness Effects
We next studied the impact of viral fitness on the dynamics of

the divergence and diversity. Recent ex vivo experimental data have

suggested that the replication rate of viruses sampled at a later

stage of HIV-1 infection is greater than that of viruses at an early

stage of infection [6]. Therefore, we tested how fitness would affect

the viral evolutionary pattern at the sequence level. First, we let

fitness grow linearly as a function of the distance from the founder

strain, i.e., F(d) = f1+f2d, in both submodels 1 and 2. In the range of

f2/f1 from 0 to 10, we do not find any qualitative change in the

patterns of divergence and diversity with time in either submodels

1 or 2 (Figure 4). This showed that an overall increase in fitness

over the disease progression did not have a large effect on the

diversity and divergence dynamics.

Second, we studied the case where the fitness is reduced after a

given distance, F(d) = f for d#dc and F(d) = f9 for d.dc where f9 is

less than f. Here the proportion of offsprings that are mutants is

constant for all viruses, M(d) = 0.5. We found that reduced fitness

for viruses with a distance greater than dc reproduced the

observed patterns for divergence and diversity. Figure 5 displays

the calculated dynamics of divergence and diversity when we

reduce the fitness of viruses having a distance greater than 50

mutations to 50% of the fitness of viruses with a distance less than

50 mutations. Although the profile of reduced fitness for the

viruses after a given distance qualitatively explain the common

dynamics of divergence and diversity, the reduction in the fitness

of a virus population at later stages does not seem realistic

considering the observation of increased fitness over the course of

infection [6].

Figure 4. Dynamics of divergence and diversity with linear increase of fitness profile. Divergence (A) and diversity (B) as a function of time
for f(d) = f1+f2d and M(d) = m [submodel 1] for different values of f2/f1. The value of m is chosen as 0.5 and f1 = 1. The scale factors 300 and 20 for the
divergence and the diversity are introduced to make comparable to the absolute values of measured divergence and diversity. Divergence (C) and
diversity (D) as a function of time for f(d) = f1+f2d and M(d) = 12d/dmax for d#dmax and M(d) = 0 for d.dmax [submodel 2]. The value of dmax is 40 and
f1 = 1. The scale factor for the divergence is 500 and that for the diversity is 50.
doi:10.1371/journal.pcbi.1000240.g004

Intrahost HIV-1 Evolution
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Finally, we investigated the case where only certain types of

viruses may evolve to have a greater level of fitness. This situation

has been described for emerging CXCR4-using viruses later in

disease progression, and was found to correlate with a decline of

diversity [13]. To simulate the outcome of emerging CXCR4-

using viruses, potentially with greater level of fitness since they

have a greater target cell range than CCR5-using viruses by

infecting naı̈ve CD4+ T-cells, we assigned a greater level of fitness

to a fraction, a, of viruses having a distance larger than a critical

value dc. This process is expressed as

N d,tð Þ~Fhigh dð ÞaN d,t{1ð Þ 1{M dð Þ½ �

zF 1{a½ �N d,t{1ð Þ 1{M dð Þ½ �

zFhigh d{1ð ÞaN d{1,t{1ð ÞM d{1ð Þ

zF 1{a½ �N d{1,t{1ð ÞM d{1ð Þ,

ð17Þ

where Fhigh(d) = Fhigh for d$dc and Fhigh(d) = F otherwise. In this

way, a proportion of viruses, 12a, have fitness F and a proportion

a have fitness Fhigh when d.dc. When d#dc, the fitness is given by

a constant F. We here chose dc = 50 mutations for the following

reason. As we will show below, the average overall evolutionary

rate for the 15 studied patients was estimated at approximately

1023 nucleotide substitutions per site per month. This corresponds

to 0.012 substitutions per site per year. With around 600

nucleotides in the dataset [13], 50 mutations corresponds to the

mutations one expects to accumulate during ,7 years. Thus, we

chose the emergence of CXCR4-using viruses at d = 50 from this

calibration since usually X4 viruses appear at later stages of

infection.

Figure 6 plots the dynamics of divergence and diversity by

changing the fraction (a) of X4 viruses that have a 50% increase of

fitness at distance dc = 50 mutations. As we increase the value of a,

we observe an increase in divergence, then a transient rapid

increase followed again by the inital slope of linear increase. The

emergence and persistency of X4 viruses in the population leads to

a rapid increase of diversity followed by a decline of diversity.

Then at the final stage, diversity starts to increase again. This

trend is robust to both the amount of fitness increase and the value

of dc. For example, when we chose dc = 30, the transient rapid

increases in the divergence and diversity still occur, but were

shifted to 4.2 years. An initial rapid increase both in diversity and

divergence due to the emergence of more fit virus is not

compatible with the in vivo measurements from HIV-1 infected

patients (Figure 3).

Overall, these simulations suggest that the probability profile of

the evolutionary rate, M(d), rather than the fitness profile, F(d), is

the main component in our model that determines realistic within-

patient HIV-1 evolution.

The Rate of Intrapatient Evolution Slows Down over the
Infection

To test the prediction made by the model, i.e., a slowdown of

the evolutionary rate as virus population evolves further from the

founder strain, we calculated the rate of HIV-1 sequence evolution

in consecutive windows over a maximum likelihood (ML) tree

from each patient, starting from the root (see Materials and

Methods). We used longitudinal sequence samples for 15 patients

from two independent studies [13,22]. As an example, Figure 7A

shows the tree describing the HIV-1 evolution in patient S-P6.

Figure 7B shows the resulting evolutionary rate as a function of the

distance from the root for all patients. Interestingly, the rate is not

constant but rather displays a dynamic behavior as HIV-1 evolves.

In agreement with our model predictions, 13 out of the 15 patients

showed a decline of the evolutionary rate as the sequence

population evolved further from its founder strain. The same

dynamic behavior was observed using other window sizes

(D= 0.06 for the Shankarappa data and D= 0.03 for the Wolinsky

Figure 5. Dynamics of divergence and diversity with fitness
reduction. Dynamics of divergence and diversity when fitness is
reduced to 50% of its original value for d.dc = 50 mutations. For d#50,
f = 1 and for d.50, f = 0.5, and M(d) = 0.5 for all d. The saturation of
divergence and the decrease of diversity are observed.
doi:10.1371/journal.pcbi.1000240.g005

Figure 6. Dynamics of divergence and diversity with emer-
gence of X4 viruses. Dynamics of divergence and diversity when
imposing a greater level of fitness for certain types of viruses which
emerge and persist, for example, by acquiring X4 tropism. The X4
viruses appear at d = 50 with greater level of fitness Fhigh = 1.5 in
comparison to R5 viruses with fitness F = 1. The fraction of X4 viruses
out of the total virus population with d$50 is given by a. The rapid
transient increases both in divergence and diversity upon the
emergence of X4 viruses are observed. The scale factor for the
divergence is 500, that for the diversity is 100, and M(d) = 0.5 for all d.
doi:10.1371/journal.pcbi.1000240.g006
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data). Thus, the observed decline of the evolutionary rate was

robust to the size of the window. In Figure 7B, we also plotted the

evolutionary profile obtained by a fit to the divergence and

diversity dynamics with the full model. The dynamics of the

evolutionary rate calculated from the maximum likelihood tree

was reasonably consistent with that obtained by a model fit to the

divergence and diversity dynamics for each patient.

Sometimes we observed negative evolutionary rates in some

patients when the distance from the root was large, mostly in later

stages of infection (Figure 7B) when the sequence population

hardly evolves any more. As a consequence some sequence

variants may have a smaller distance from the founder

stochastically, and if enough of such variants are detected then

a negative evolutionary rate will be apparent. Also, the apparent

negative rate of evolution may be due to the emergence of less

evolved strains from latent reservoirs at later sampling time

points.

The Rate of Evolution Correlates with CD4+ Count
When the rate of change of the evolutionary rate was compared

to the rate of change of CD4+ T-cell counts (Figure 8A), a

significant correlation (r = 0.68, P = 0.0014) was observed

(Figure 8B). In the initial interval where CD4+ T-cell counts

were relatively stable (to the left of the dashed bar in Figure 8A),

the evolutionary rate stayed relatively stable too. As CD4+ T-cell

counts decreased and disease progressed in the patients the

evolutionary rate slowed down. However, if one compares the

overall (average) evolutionary rate from the whole study period (as

defined by Eq. (20) in Materials and Methods), not its slope, with

the disease progression rate, no clear correlation was seen

(Figure 8B inset). The overall evolutionary rate of 15 patients

was 10.463.1461024 substitutions per site per month. Note that

increased or stable viral RNA counts rather than contraction in

viral loads were observed in 7 patients under antiretroviral therapy

in [13]. Thus, the decrease in the rate of evolution seems not to be

associated with the onset of therapy.

We estimated overall synonymous and nonsynonymous evolu-

tionary rates across maximum likelihood trees based on synony-

mous and nonsynonymous changes only using HyPhy [30].

Similar to the overall total substitution rate, we found that neither

synonymous nor nonsynonymous overall evolutionary rates

correlated with the disease progression rate. For progressors with

progression time less than seven years (S-P1, S-P5, S-P6, S-P7, and

S-P8), the average synonymous and nonsynonymous evolutionary

rates were estimated at 6.663.561024 and 126561024 substi-

tutions per site per month, respectively. For slow disease

progressors with progression time greater than seven years (S-P2,

S-P3, S-P7, S-P9 and SP-11), the average synonymous and

nonsynonymous evolutionary rates were estimated at

6.862.361024 and 1364.561024 substitutions per site per

month, respectively. Lemey et al. reported lower overall synony-

mous evolutionary rates for these same slow disease progressors

[19]. These contradictory observations may be explained by the

use of different methods in the estimation of the overall

evolutionary rates. While Lemey et al. used codon substitution

models with a Bayesian relaxed clock model, we estimated the

overall synonymous and nonsynonymous evolutionary rates in

separate maximum likelihood trees based on synonymous and

Figure 7. Evolutionary rate as a function of the distance from the root of the maximum likelihood tree of each patient. (A) Maximum
likelihood tree for the viral sequences sampled from patient S-P6 over 6 years [13]. (B) Evolutionary rate as a function of the distance from the root of
the tree for 9 patients from Ref. [13] and 6 patients from Ref. [22] (black lines). The evolutionary rate between sequence i and j is estimated by the
distance difference, dj2di, divided by the sampling time difference, tj2ti. The evolutionary rate at a certain distance from the root d was averaged
over all possible sequence pairs (i, j) within a sliding window. The distance from the root for a particular window d̄ is the average distance for all the
sequences within that window. The size of the window (D) was 0.09 substitutions per site for S-P1 to S-P11 and 0.02 for W-P1 to W-P6. Error bars
indicate 61 standard deviation. The fitted rate of evolution with the full model to the divergence and diversity dynamics of each patient is depicted
as blue line.
doi:10.1371/journal.pcbi.1000240.g007
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Figure 8. Dynamic correlation between the rate of HIV-1 evolution and the rate of CD4+ T cell count decline. (A) Evolutionary rate and
CD4+ T-cell level as a function of time relative to seroconversion. Based on the estimation of the evolutionary rate as a function of distance to the root
(Figure 1A), the evolutionary rate is plotted as a function of time (average sampled time point of all the sequences within the window). Error bars
indicate 61 standard deviation. The dynamics of the evolutionary rate is linked to that of the CD4+ T-cell count: While the CD4+ T-cell level is stable,
the evolutionary rate is stable or increasing; the evolutionary rate starts to decrease when the CD4+ T-cell population is depleted. In patients S-P1 to
S-P11, the dashed line indicates the stage when stable CD4+ T-cell count starts to decline. CD4+ T-cell counts were provided by J. Mullins and J.
Learn. Red horizontal line denotes the period of antiretroviral therapy for each patient. (B) Correlation between the slope of CD4+ T cell count and the
slope of the evolutionary rate (r = 0.68, P = 0.0014). For patients S-P1 to S-P11, the slopes are calculated separately before and after the dashed line.
For W-P1 to W-P6, the slopes are measured over the whole range of the data. Note that the slope of the evolutionary rate for W-P6 is very large due
to tight sampling, and the slope of the CD4+ T cell count is also high in the corresponding time interval, leading to W-P6 becoming an outlier. The
inset shows the average evolutionary rate for different rates of disease progression. Each subject’s average evolutionary rate is measured as the ratio
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nonsynonymous changes [30] to allow for detecting rate changes

across the trees. A common finding with Lemey et al. is that they

also reported higher nonsynonymous rates (8.263.061024) than

synonymous rates (3.861.961024). Importantly, although the

overall synonymous evolutionary rate did not correlate with the

disease progression rate in our calculations, we found that both

synonymous and nonsynonymous evolutionary rates decline as

disease progresses in 7 and 8 out of 9 patients in Ref. [13],

respectively (Figure 9).

Recombination Had a Minor Effect on the Evolutionary
Rate

It is well known that HIV-1 recombines during its evolution.

Therefore, we investigated whether recombination could have

obscured our estimates of the evolutionary rates. All patient

populations showed some signal for recombination (Table 2). This

signal was, however, strongly correlated to the degree of

homoplasy (r = 0.91). The homoplasy also grew with number of

sequences per patient (R = 0.92), and all patients showed

departures from neutral evolution, suggesting stochastic effects as

well as selective environments rather than recombination. Most

importantly, all our ML trees showed a clear time order of how

sequences had been sampled through time (Figure 6), and

additional trees calculated using SplitsTree showed that if

recombination had occurred, then mostly samples taken close in

time had been involved (data not shown). Thus, although difficult

to exactly quantify, recombination had no large effect on our

estimates of the evolutionary rate.

Discussion

The objective of this study was to develop a sequence evolution

model and use it to investigate the relationship between nucleotide

substitutions and disease progression within HIV-1 infected

patients. In particular, we focused on explaining the pattern in

which divergence from the founder increases linearly with time

since infection and then saturates, whereas sequence diversity

increases and ultimately declines. With these aims we developed a

sequence evolution model, fitted the model to the divergence and

diversity dynamics, and investigated two previously described

datasets with rich HIV-1 nucleotide sequence data and CD4+ T-

cell counts over time. Two important conclusions could be drawn

from this study. First, we found that a model in which the survival

of HIV-1 mutants was dictated by the distance from the founder

strain accurately simulated HIV-1 within-patient evolution. This

model could realistically simulate previously observed patterns of

HIV-1 nucleotide sequence diversity and divergence over time by

introducing an initially constant evolutionary rate later followed by

a decline of the rate. Second, the evolutionary rate of HIV-1

within a patient follows the decline of the CD4+ T-cell count over

time. Thus, the evolutionary rate of HIV-1 is not constant over

time, but rather evolves in a dynamic way. This dynamic feature

provides an explanation for previously conflicting observations of

the relationship between the rate of HIV-1 quasispecies evolution

and disease progression.

Three factors may contribute to the decrease of HIV-1’s

evolutionary rate as a function of disease progression. First, a

between the root distance difference and the sampling time difference, averaged over all the sequence pairs in each tree. The error bars indicate 61
standard deviation. Because we rooted our trees using a sequence from the initial time point, and not the clade B consensus as done by Wolinsky et
al. [22], our calculated evolutionary rate differs from theirs. Subjects S-P2, S-P3, S-P7, S-P9, S-P11, W-P5, and W-P6 were classified as slow disease
progressors; S-P1, S-P5, S-P6, S-P7, S-P8, W-P3, and W-P4 as intermediate progessors; and W-P1 and W-P2 as rapid progressors.
doi:10.1371/journal.pcbi.1000240.g008

Figure 9. Dynamics of synonymous and nonsynonymous evolutionary rates. Synonymous (blue lines) and nonsynonymous (black lines)
evolutionary rates as a function of the distance from the root of the tree for 9 patients from Ref. [13]. Synonymous and nonsynonymous rates were
calculated using maximum likelihood trees based on only synonymous and non-synonymous substitutions, respectively, which were inferred using
HyPhy with optimized MG94xREV models [30].
doi:10.1371/journal.pcbi.1000240.g009
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decrease in the number of target cells of HIV-1 may increase the

effective viral generation time. At the late stage of infection, the

overall CD4+ T-cell count drops rapidly while viral load increases

[13]. Lymph node immunohistologic alterations in HIV-1 patients

as well as progression to a burned-out lymph node accompanying

end-point lymphocyte depletion in SIV have been reported

[31,32]. Rapid loss of CD4+ T-cells in parallel with viral load

increase might suggest that the proportion of infected cells out of

total CD4+ T cell population is escalated as disease progresses.

Our observation of a positive correlation between the slope of the

evolutionary rate decrease and the slope of the CD4+ T cell count

decline supports this view (Figure 8). Furthermore, the dynamics of

the synonymous substitution rate shows qualitatively a similar

pattern as the dynamics of the total evolutionary rate. Thus it

follows that a decrease of the synonymous rate in most patients

suggests an elongation of the effective viral generation time. In

agreement, it was recently suggested that a slower rate of

synonymous substitutions in patients with slower progression to

AIDS was indicative of longer viral generation times [19]. Second,

a weakening of immune selection pressure, as measured by the

CD4+ T-cell count, may lower the observed evolutionary rate

(Figure 8). Calculating the evolutionary rate in windows across a

tree allowed us to detect a clear correlation between the slope of

the evolutionary rate and the slope of the CD4+ T-cell count.

Hence, deceleration of HIV-1 sequence evolution occurs in

response to decreased immune selection. Not surprisingly, HIV-

1 intrahost sequence evolution follows a principle of quantitative

genetics where the response to selection is directly proportional to

the intensity of selection [33]. If this scenario is operating, then the

nonsynonymous evolutionary rate should decrease with disease

progression. Here, we found that both the nonsynonymous and

synonymous evolutionary rates decreased as disease progressed,

supporting this scenario in addition to the first explanation. Thus,

the decrease in the evolutionary rate at later stage of infection

relates both to amino acid changing and non-changing nucleotide

substitutions. Third, an increase of the viral fitness at later stages of

infection may reduce further accumulation of mutations, finding a

local fitness maximum in the rugged fitness landscape.

A correlation between the decline of diversity and the

emergence of viruses using the CXCR4 coreceptor was reported

in Ref. [13]. The surface expression of the HIV-1 coreceptors

CCR5 and CXCR4 on CD4+ T-cells is differentially expressed on

memory versus naı̈ve T cells. A chemokine receptor CXCR4 is

expressed on both memory and naive cells, although at greater

levels on naive T-cells [14–17]. It has been reported that naı̈ve T-

cells are indeed infected and may act as an important viral

reservoir in patients with CXCR4-using viruses [34]. Interestingly,

our modeling revealed that the emergence of a fitter virus

population, using CXCR4, resulted in a rapid increase both in

divergence and diversity followed by the initial slope of linear

increase of divergence and decline of diversity if the probability of

mutations is a constant for all viruses.

Viral escape from neutralizing antibodies [8,12,35] and CD8+
T-cell responses [7,10,36,37] suggest that, within a host, the HIV-

1 sequence population is evolving in a dynamic environment of

immune pressures. One of the selection forces controlling the

evolution of env is escape from antibody neutralization. For

instance, changes in N-linked glycosylation sites in env have been

observed in viruses that escape antibody neutralization [12]. Also,

as shown by an antibody neutralization assay, the virus population

at a specific time point is neutralized more strongly with antibodies

sampled at a later time point [8]. Interestingly, in Table 1 of

reference [8], we observed that antibodies generated at later time

points had a lower neutralizing capacity than those generated

earlier during infection. For example, the maximum strength of

neutralization against virus sampled at month 0 occurred with

antibodies (plasma) sampled at month 12. Virus sampled 6 months

later had a lower neutralizing titer with antibodies sampled at

month 18, and the neutralization strength decreased as disease

progressed. This observation suggests a weakening of the immune

selection pressure during chronic infection. Furthermore, apparent

decrease of CD8+ T-cell levels in HIV-1 chronic infection, as well

Table 2. Polymorphism and population recombination parameters of the studied sequence data.

Sequence Set Number of Sequences SITES gamma SITES c/u SITES Hud4Nc PAUP HI SNAP ds/dn Tajima’s D

S-P1 137 41.494 0.8835 40.016 0.596 1.52 21.0657

S-P2 132 60.153 1.2432 55.695 0.641 0.8 21.1133

S-P3 106 52.052 1.4195 35.629 0.552 0.93 21.0346

S-P5 160 60.342 1.3264 58.403 0.618 1.34 21.4946

S-P6 98 42.382 1.2009 64.24 0.521 1.49 21.5263

S-P7 107 54.818 1.2341 62.637 0.605 0.83 21.0209

S-P8 119 41.083 0.8691 66.185 0.555 1.28 21.4212

S-P9 121 41.108 0.8424 42.343 0.624 0.89 20.9025

S-P11 52 44.522 1.1115 10.185 0.443 1.88 21.6284

W-P1 42 32.392 1.124 365.181 0.287 1.98 22.1969

W-P2 44 23.687 0.7155 71.602 0.222 1.21 22.3736

W-P3 35 19.477 0.7567 28 0.183 0.76 20.1127

W-P4 58 28.297 0.6549 18.005 0.347 1.2 21.9039

W-P5 70 31.498 0.6599 30.479 0.416 0.97 22.0245

W-P6 39 11.117 0.7461 49.973 0.177 2.04 21.0941

SITES gamma is a recombination rate estimate based on [46], and SITES Hud4Nc is based on [62]. SITES c/u is a ratio of the number of recombination events per
mutation, i.e., gamma divided by Theta (4Nu). PAUP HI is the homoplasy index calculated using PAUP* [58]. SNAP ds/dn is the average synonymous/non-synonymous
ratio per patient population calculated using SNAP [41]. Tajima’s D is a measure of departure from a neutral Fisher-Wright model [48].
doi:10.1371/journal.pcbi.1000240.t002
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as the exhaustion of CD8+ T-cells as mediated by the PD-1

molecule [38], both imply diminishing CD8+ T-cell responses

over disease progression. Recent observations of selective deple-

tion of high-avidity HIV-1 specific CD8+ T-cells after early HIV-1

infection also implies a lessening of CD8+ T-cell responses [39].

Thus, when the diversifying selection pressure on Env from the

immune system weakens new escape mutations are not beneficial,

and thus the probability to establish new mutations decreases. The

immune pressure selects and removes all virus variants it can

detect, while those escaping are an increasingly diverse set during

chronic infection. When the immune system pressure fails in late

stage disease this pressure to diversify is released and as a result, a

relatively homogeneous sequence population is observed.

Previous studies have suggested an inverse relationship between

disease progression and evolutionary rate based on the observation

of enhanced viral escape under strong immune selection in slow

progressors [2,22]. Also, slower genetic diversification has been

associated with rapid CD4+ T-cell decline [1,20,21,40]. However,

others have reported a positive relationship, suggesting that the

evolutionary rate may be low in nonprogressors due to that

immune selection may suppress emerging virus with potentially

high fitness [23,24]. To resolve these conflicting observations, we

have shown that the rate of HIV-1 env evolution does not remain

constant within a single infected individual, and thus simply

correlating the average rate of evolution with disease progression

may be misleading. Indeed, this may explain the contradictory

results previously published. Thus, rather than using average rates,

we show that the dynamics of the evolutionary rate reflects the rate

of disease progression. In addition to the 13 out of 15 patients in

Figure 7, 3 out of 6 rapid progressors in Ref. [23] show a decrease

in the evolutionary rate when their CD4 cells rapidly deplete,

while 3 non-progressors display a stable evolutionary rate.

Our estimates of the evolutionary rate were based on maximum

likelihood trees calculated using realistic evolutionary substitution

models [2,30,41]. However, these trees implicitly assume that no

recombination has occurred, an assumption that may be violated

by HIV-1 [42–45]. Detecting recombination among closely

related HIV-1 sequences within a patient is difficult due to other

evolutionary mechanisms causing a high degree of homoplasy

(parallel and convergent mutations in different lineages), poten-

tially misleading the analysis. Indeed, most of the patient sequence

sets in this study suggest some degree of intra-population

recombination strongly correlated to the degree of homoplasy in

the dataset (r = 0.91). The recombination rates are estimated

under the assumption that just a single mutation has caused each

polymorphism within a group, and that there is no selection [46].

Because these assumptions are violated by HIV-1 env V3 we

evaluated the potential recombination signal. It is well known that

the env V3 region is under positive selection [47], which may lead

to convergent evolution on some residues, explaining some of the

homoplasy. In our data both synonymous/nonsynonymous

mutation ratios and Tajima’s D statistic [48] indicated departures

from neutrality (Table 2). Importantly, previous studies have

shown that recombination and selection rates may confound each

other [49,50]. Also, it is clear that the homoplasy increases as more

sequences are investigated (Table 2). Thus, although difficult to

exactly quantify, part of the detected recombination signal in our

data could be explained by stochastic effects and convergent

evolution. This potential recombination was also analyzed using

SplitsTree [51]. Importantly, that analysis showed that if

recombination had occurred, it mostly involved sequences

collected closely in time. Therefore, the recombination in our

data could only have affected our rate estimates mildly. Most

important, and in agreement with previous publications using

these data (e.g., [13,19]), all our trees displayed a clear time-order

of the samples (Figure 7), which would have been impossible if

recombination had had a strong effect. Similarly, if ancestral

(archival/latent) virus reemerged at later time points, we would

have lost the time-order in the trees. In conclusion, neither

recombination nor reemerging viruses could have had a strong

effect on our rate estimates.

Williamson et al. [18] obtained maximum likelihood estimates

for the mean divergence rate and the divergence stop time in each

Shankarappa patient for the nonsynonymous and synonymous

changes. They observed a strong relationship between the time of

disease progression and the time of divergence stabilization only

for nonsynonymous sites. The evolution profile in [18] corre-

sponds to a constant evolutionary rate before time t followed by

zero evolutionary rate after t. This kind of evolutionary profile can

be imposed in our model by introducing the evolutionary profile

depending on the time rather than the distance from the founder

strain, M(t). Then Eq. (1) is modified as

N d,tð Þ~F dð ÞN d,t{1ð Þ 1{M tð Þð Þ

zF d{1ð ÞN d{1,t{1ð ÞM tð Þ:
ð18Þ

The probability of mutation is a non-zero constant before t and

zero after t, M(t) = m for t#t and M(t) = 0 for t.t. We fix the

fitness as a constant, F(d) = f. Figure 10 shows that not only

divergence but also diversity saturates after t. Since the evolution

of the total population stops at t, divergence and diversity stay

constant afterwards. Hence, we can conclude that this alternative

model, where the evolutionary profile depends on time, does not

capture the decline of diversity at later stages of infection.

Similar to HIV-1, one study on intrahost sequence evolution in

hepatitis C virus (HCV) reported that the diversity increased over

time in non-progressors [52]. In contrast, progressors to end-stage

liver disease showed that diversity in the hypervariable region I of

E1/E2 env narrowed over time. We expect that the slowing down

of the rate of HCV evolution also occurs as disease progresses,

resulting in less diversity.

Figure 10. Dynamics of divergence and diversity from the
model when the proportion of mutant offspring is set to zero
after 7 years. Divergence and diversity dynamics calculated under an
alternative model with a constant probability of mutation, 0.5, before
time t followed by zero after t. Here t is chosen as 7 years. Since
evolution of total population stops at t, divergence and diversity stay
constants afterwards.
doi:10.1371/journal.pcbi.1000240.g010
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In conclusion, we observed that the evolutionary rate of the

HIV-1 slows down in 13 of 15 patients from two independent

previous studies [13,22]. The rate of change in the evolutionary

rate is correlated with the slope of CD4+ T-cell decline, dissolving

previously reported conflicting observations of the relationships

between the rate of HIV-1 evolution and disease progression. Our

HIV-1 evolutionary model successfully captured the saturation of

divergence and the decrease of diversity observed in the later

stages of infection. In our model these effects are mostly attributed

to a decrease in the proportion of offspring that are mutants in the

population as the distance from the founder strain increases.

Materials and Methods

Samples and Sequence Data
We analyzed sequence data from two independent studies, the

env C2-V5 region from nine patients [13] and the V3–V5 region

from another six patients [22]. Briefly, sequences from the first

nine patients were collected over their entire disease progression.

The follow-up time varied between 6 to 12 years, at which time

seven had developed AIDS and seven of the patients received

antiretroviral treatment [13]. The other six patients were followed

for 3 to 10 years [22]. Three of these patients received

antiretroviral therapy 2–5 years after infection. All HIV-1

sequences were downloaded from the HIV database (GenBank

Accession numbers AF137629-AF138163, AF138166-AF138263,

AF138305-AF138703 and U35894-U36185).

Reconstruction of Phylogenetic Trees
Sequences were aligned using Se-Al [53]. Trees were created

using enhanced and parallelized versions of fastDNAml and Rates

[54,55], that fit a general-time-reversible substitution model

(RevML) and site rate specific rates (RevRates) in an iterative

way [41,56]. Briefly, a candidate tree topology was created

assuming uniform site rates and an initial random estimate of

nucleotide frequencies and transition rates. RevML proceeds in a

heuristic and piecewise way, starting from a small set of sequences

and building up the tree topology and branch lengths while

making placement decisions that maximize the tree likelihood

score, similar to a stepwise addition algorithm. The resulting tree

then constrains per-site rate optimization of tree likelihood as a

function of global estimates of baseline nucleotide frequency and

transition rates. These estimates are fit using the conjugate

gradient algorithm in the RevRates program. A second RevML

run was then performed using these estimates and in turn another

rate estimation procedure refined from the second tree. A final tree

was estimated using the twice-refined global and local site rates.

Each of the trees in the refinement procedure was independently

estimated from the global and site local rate parameters.

Synonymous and Nonsynonymous Evolutionary Rates
Trees based on synonymous and non-synonymous substitutions,

respectively, were inferred using HyPhy with optimized

MG94xREV models [30]. This model uses a codon-based

substitution model (MG94) that considers substitutions involving

non-stop codons, augmented with a general-time-reversible

nucleotide substitution model (REV) to include the heterogeneity

in nucleotide frequencies and substitution rates [57]. The total

number of changes per codon is decomposed into synonymous

and nonsynonymous changes according to the universal coding

table. Separate synonymous and nonsynonymous rates are then

fitted to each branch of the tree. Prior to model fitting and tree

reconstruction, alignments were codon corrected using the HyPhy

SeqAlignment procedure (with the HIV-1 25% scoring matrix).

Calculation of Divergence and Diversity Dynamics. We

calculated divergence by measuring the maximum likelihood tree

distance from a sequence sampled at time t from a strain found at

the earliest sample time point. Then we averaged all the pairwise

tree distances between the sequences sampled at t and the sequence

sampled at the earliest time point. The diversity was calculated from

the data by averaging pairwise tree distances over all the sequences

obtained at time t. Since the maximum likelihood tree was based on

the nucleotide level, divergence and diversity were also calculated at

a nucleotide level including coding and non-coding changes. The

theoretical curves describing the evolution of divergence and

diversity were computed assuming one time unit in the model

corresponds to one month of evolutionary time.

Estimating Population Polymorphism and
Recombination

We used SITES [46] and SplitsTree [51] to investigate potential

recombination signals in each patient set of sequences, PAUP*

[58] to estimate the amount of homoplasy, SNAP [41] to estimate

average synonymous/non-synonymous rates, and Tajima’s D to

estimate neutral evolution[48].

Calculation of Evolutionary Rate
The rate of evolution was calculated in consecutive windows

over a maximum likelihood (ML) tree from each patient, starting

from the root. The distance to the root for all taxa in each window

[d, d+D] was calculated from the tree (Figure 7A), and the resulting

evolutionary rate was estimated as

ER d
� �

~

Pdvdi ,djvdzD

i,j ti=tjð Þ
dj{di

� ��
tj{ti

� �
Pdvdi ,djvdzD

i,j ti=tjð Þ
1

, ð19Þ

where di(dj) is the distance from the root of sequence i(j) at sampling

time point ti(tj). Here d̄ is the average distance from the root over

all the sequences within the window, [d, d+D]. The window size

was D= 0.09 for the Shankarappa data set and D= 0.02 for the

Wolinsky data set. The average evolutionary rate over the entire

sampling period from a patient was calculated as

ER~

PNF

i~1

PNs

j~iz1 tj=tið Þ
dj{di

� ��
tj{ti

� �
PNF

i~1

PNs

j~iz1 ti=tjð Þ
1

ð20Þ

by averaging the rate of evolution over the sequences in reference

to the founder strains which are sampled at the earliest time point

in each subject. Here, NF is the total number of founder strains and

Ns is the total number of sequences in a patient.
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