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Abstract

Human microbiome data from genomic sequencing technologies is fast accumulating, giving us 

insights into bacterial taxa that contribute to health and disease. The predictive modeling of such 

microbiota count data for the classification of human infection from parasitic worms, such as 

helminths, can help in the detection and management across global populations. Real-world 

datasets of microbiome experiments are typically sparse, containing hundreds of measurements for 

bacterial species, of which only a few are detected in the bio-specimens that are analyzed. This 

feature of microbiome data produces the challenge of needing more observations for accurate 

predictive modeling and has been dealt with previously, using different methods of feature 

reduction. To our knowledge, integrative methods, such as transfer learning, have not yet been 

explored in the microbiome domain as a way to deal with data sparsity by incorporating 

knowledge of different but related datasets. One way of incorporating this knowledge is by using a 

meaningful mapping among features of these datasets. In this paper, we claim that this mapping 

would exist among members of each individual cluster, grouped based on phylogenetic 

dependency among taxa and their association to the phenotype. We validate our claim by showing 

that models incorporating associations in such a grouped feature space result in no performance 

deterioration for the given classification task. In this paper, we test our hypothesis by using 

classification models that detect helminth infection in microbiota of human fecal samples obtained 
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from Indonesia and Liberia countries. In our experiments, we first learn binary classifiers for 

helminth infection detection by using Naive Bayes, Support Vector Machines, Multilayer 

Perceptrons, and Random Forest methods. In the next step, we add taxonomic modeling by using 

the SMART-scan module to group the data, and learn classifiers using the same four methods, to 

test the validity of the achieved groupings. We observed a 6% to 23% and 7% to 26% performance 

improvement based on the Area Under the receiver operating characteristic (ROC) Curve (AUC) 

and Balanced Accuracy (Bacc) measures, respectively, over 10 runs of 10-fold cross-validation. 

These results show that using phylogenetic dependency for grouping our microbiota data actually 

results in a noticeable improvement in classification performance for helminth infection detection. 

These promising results from this feasibility study demonstrate that methods such as SMART-scan 

can be utilized in the future for knowledge transfer from different but related microbiome datasets 

by phylogenetically-related functional mapping, to enable novel integrative biomarker discovery.
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1. Introduction

The World Health Organization estimates that approximately two billion people are infected 

with parasitic helminths worldwide [1]. Helminths are parasitic worms that feed on a living 

host to gain nourishment and protection, while causing poor nutrient absorption, weakness 

and disease in the host. Soil-transmitted helminths cause most of the helminth infections and 

if an infected person or animal has defecated on soil, helminth eggs, that are present in their 

feces, contaminate the soil. People in developing countries, especially children who play in 

such contaminated soil, easily acquire helminth infection when worms, in the infective life 

cycle stage, penetrate human skin or are swallowed accidentally. These worms can cause 

several diseases, including severe pathologies of the intestine, liver, lungs, or brain. The use 

of 16S rRNA sequencing technologies to determine microbial community structure (taxa 

detected and their abundance; non-negative integers) of bacterial strains from such fecal 

specimens is becoming a popular method to study the impact of bacteria on human health 

and disease [2,3]. Even though next generation sequencing platforms have advanced 

microbiota profiling, several challenges remain. These include (1) sparseness of samples 

from which the microbiota data are acquired due to resource constraints, i.e., low coverage 

[4]; (2) sparseness of data since many species are not detected, resulting in zero counts, i.e., 

low abundant taxa due to primer bias [5]; and (3) the relatively recent development of 

automated methodologies for integrative analysis of human microbiota data, as it is a rapidly 

evolving and upcoming field of research, i.e., use of suboptimal tools [6].

For studying the association between microbiota features and host phenotypes to deal with 

challenges of this domain, many statistical methods have been proposed which use sequence 

counts as microbiota data. These statistical analysis methods can be categorized into several 

approaches: (a) simple univariate methods and tests of diversity; (b) multivariate methods; 

and (c) model-selection methods [7]. Univariate approaches ignore the multivariate and 
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correlated nature of the taxa count and test each feature individually. These methods are 

considered to be effective when few taxa have strong effects on the host phenotype. White et 

al. use a non-parametric t-test based on permutation or a Fisher’s exact test for the sparse 

data to recognize organisms whose differential abundance is correlated with disease [8]. In 

linear discriminant analysis (LDA) effect size (LEfSe), a univariate test (Welch’s tor 

Wilcoxon rank test) is used to assess the significance of each feature [9]. First, LEFSe uses 

the Kruskal–Wallis (KW) ranksum test to estimate whether or not values in different classes 

are differentially distributed. Then, features violating the null hypothesis in the KW test are 

further analyzed using the paired Wilcoxon test between subclasses of data to test whether 

all pairwise comparisons between subclasses of classes are significantly compatible with the 

class level trend. Finally, the Latent Dirichlet Allocation (LDA) is used for ranking the 

relevant features. The resulting features are ranked according to the effect size with which 

they distinguish classes.

Multivariate methods calculate the association of the vector of multiple variables. In [10,11], 

different methods have been proposed to model variable abundances as drawn from a 

Dirichlet-multinomial, or a mixture of Dirichlet multinomials. Various non-parametric 

multivariate tests are based on pairwise distance measures that can be tree-unaware or tree-

aware. Based on pairwise distances, various non-parametric multivariate tests can be 

conducted, such as the Mantel test and multivariate analysis of variance (MANOVA) [12–

14]. One example of a tree-aware method is UniFrac, which calculates distances between 

pairs of microbiota samples in the phylogenetic tree [15].

A final category of methods for analyzing association between taxa abundances and host 

phenotypes consists of regression-based variable-selection methods, such as methods of the 

Partial Least Squares (PLS) family. PLS is a regression model that tries to find the direction 

in the observable variables (taxa) space that leads to the maximum multidimensional 

variance direction in the predicted variables (phenotype) space by projecting both types of 

variables to a new space [16]. Even though PLS is originally designed for regression 

problems, it performs well for classification problems too [17,18]. Sparse PLS (sPLS) was 

proposed in [19,20] to add Lasso penalization combined with Singular Value Decomposition 

(SVD) computation into PLS in order to handle sparse data. By considering predicted 

variables as another dataset of observable variables, this method was initially designed to 

identify the subsets of correlated variables of two different types in a way that each step 

consists of both variable selection and modeling procedures [21]. Sparse PLS Discriminant 

Analysis (sPLS-DA) is another method of the PLS-family which is an extension of sPLS to a 

supervised classification framework [22]. For gaining classification ability, the predicted 

variables can be coded with dummy variables to indicate the class of each observation. The 

class of a test observation can be selected based on the distance measures such as, maximum 

distance, centroid, or Mahalanobis. Another framework that extends sPLS-DA for 

metagenomic discovery is called mixMC, which identifies significant discriminative 

observable variables for preparing interpretable outputs. The mixMC framework uses 

Principal Component Analysis (PCA) to visualize diversity patterns and sPLS-DA to find 

indicator species or determinant microbiota members discriminating habitats or body sites 

[23].
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While diversity tests and multivariate methods are usually used to determine whether there is 

an association between a set of taxa and the phenotype, univariate tests and model-selection 

methods extract these sets of features if the association exists. However, most of these 

methods model taxa as independent variables and ignore the phylogenetic relationship 

among them. Moreover, the regression-based variable-selection models, such as the PLS-

family methods, assume multicollinearity between data. These methods also project the 

variables into a new space in order to satisfy their goals, such as predicting variables, dealing 

with data sparsity, or expanding visualization power. However, projecting features reduces 

the result interpretation, since the new features can only be approximately associated with 

the original feature set. Thus, interpretation and visualization in these methods are just 

limited to depicting samples in a two-dimensional space of projected components which 

allows manual subjective approximation of the association between the observable and 

predicted variables.

A recent innovative method, SMART-scan, for analyzing human microbiota data 

incorporates a taxonomic tree to increase modeling precision [7]. This method deals with the 

shortcomings of previous workflows in the way that it uses the phylogenetic dependency 

among taxa to not only eliminate the uninformative variables, but also to group the 

functionally similar variables into separate sets of grouped data with underlying biological 

connectivity. The main advantage of this method is its highly interpretable results, as no 

projection method is used and the new groups contain the original taxa which can be easily 

visualized in the phylogenetic tree. The SMART-scan algorithm was tested on a simulated 

dataset and the gut microbiota of vervet monkeys under two different diets: normal and fatty 

diets. For the simulated data, the authors compare SMART-scan to other statistical methods: 

Single-Variable analysis (SVA), stepwise regression, LASSO used in [24,25], and 

classification and regression trees (CART) [26]. The authors showed that SMART-scan has 

higher power than other statistical methods when there are group effects and its power drops 

if there is no group effect. For the vervet monkeys, they wanted to investigate the effects of a 

fatty diet on microbiota composition. They showed that the application of SMART-scan can 

reveal important features associated with groups and result in relevant parts of the 

phylogenetic tree associated with microbiota changes in response to diet, which otherwise 

would not have been detected by other non-tree aware approaches.

In this paper, we apply the SMART-scan algorithm to the analysis of two microbiota datasets 

acquired from 16s rRNA sequencing of stool specimens from global human populations 

with and without helminth infection. We believe that our paper is the first application of this 

automated phylogenetic clustering method to human microbiota datasets. Our long-term 

goal is to present an integrative biomarker discovery workflow that extracts robust, 

generalizable, and interpretable propositional rule patterns, showing the association between 

taxa and phenotypes. Previous workflows suffer from subjective interpretation and strong 

assumption of phylogenetic independency among taxa. Our workflow is designed to 

facilitate knowledge transfer from different but related microbiome datasets by 

phylogenetically-related functional mapping. In [27], functional mapping was introduced for 

relating different sparse biomedical datasets obtained for the same classification task, in 

order to effectively transfer information for integrative biomarker discovery. Therein, 

clusters of functionally-similar features are extracted from gene expression knowledge 
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bases, and used to map variables between the related datasets. Herein, our goal is to 

automatically extract such functional mappings for microbiota data. We have this general 

hypothesis that “applying SMART-scan to multiple microbiota datasets that share 

phylogenetically dependent features would not decrease the classification performance for 

helminth infection detection over using just a single dataset, while allowing for grouping of 

taxa and phenotype associations at a more general and robust level”. We test this hypothesis 

using two datasets of helminth microbiota as starting points, and then by learning classifiers 

with and without SMART-scan groupings to observe the changes in predictive performance 

measures. The rest of this paper is organized to present the methods, datasets, experiments, 

and results used to demonstrate the feasibility of this hypothesis. This demonstration of 

feasibility is the first step towards the longer-term goal of enhancing our in-house developed 

machine learning methods to transfer learning of the classification rules to the application of 

microbiota data via the use of these phylogenetic groupings.

2. Materials and Methods

2.1. Microbiota Data

The input data that we use for this feasibility study is the microbiota count data obtained 

from 16s rRNA sequencing of stool samples from helminth-infected and helminth-non-

infected individuals in two countries: Indonesia and Liberia. Single infections can be caused 

by different types of helminth worms (hookworm, ascaris or whipworm) and some samples 

are from multiple infections where a combination of different types of helminth worms are 

involved. Samples of each country are collected as a separate dataset referred to by the 

country name. The V1–V3 hypervariable regions of the 16S rRNA gene were amplified by 

PCR, and the PCR products from the Liberia samples were purified and sequenced on the 

MiSeq Genome Sequencer (average 24,000 reads per sample) and the Indonesia samples on 

the Genome Sequencer Titanium FLX (average 6000 reads per sample). Analytical 

processing of the data, and downstream analysis was performed as previously described 

[28]. The read counts per taxa obtained with the V1–V3 16S rRNA primers are provided as 

supplementary tables: Indonesia.csv (Table S5) and Liberia.csv (Table S6). A list of specific 

taxa and the complete cohort information will be published as a separate study and the 

sample ID will enable one to cross-link the information among the studies. In that study, 

they have the same primers for both platforms and the only difference is the depth of 

coverage, which means Illumina would detect some taxa with lower abundance vs the 454 

platform. They did also compare the platforms for around 30 samples sequenced on both and 

92% of the data detected with the 454 platform (the lower coverage platform) were also 

detected with Illumina.

Table 1 provides the distribution of the number of samples, the distribution of the infected 

(Helminth-infected; qPCR detection at a Threshold Cycle (CT) value of <28) and non-

infected (Helminth-non-infected; no qPCR detection) classes, and the distribution of single-

infected and multi-infected samples, with 702 bacterial taxa variables for Indonesia and 

Liberia datasets.
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2.2. Methodology

Classification is the problem of assigning new observations to predefined categories [29]. In 

the classification problems, the observations are represented by a set of features. A feature is 

an individual measurable property of an observation. For solving the classification problems, 

machine learning or statistical models, called classifiers, are mainly used. These models 

learn the patterns identifying categories of the problem on the basis of a training set of data 

containing observations whose category membership is known. Models can then be used to 

classify new observations based on the patterns learned during the training phase.

In this study, we are trying to recognize whether or not an individual is infected by a 

parasitic worm. We have this hypothesis that features of microbial communities are 

associated with the host microbiota phenotype in such a way that we can extract some 

patterns from the set of detected taxa representing helminth infection. One way of checking 

this hypothesis is designing the task as a classification problem of categorizing observations 

into two categories of Helminth-infected versus Helminth-non-infected, in which the 

observations are represented by the detected taxa and their abundances, along with the 

phylogenetic tree structure. For directing the classification towards focusing on the 

dominancy of detected taxa, we utilize the relative abundance of taxa as the feature 

representation. While the majority of the Ribosomal Database Project (RDP) classifications 

are at a genus level [30], this is not always the case, therefore we will use the taxa as a 

broader classification term.

Using microbiota data causes two main challenges: sparseness of observation due to 

resource constraints and sparseness of taxa since many taxa are not detected in observations. 

Moreover, an actual dataset from microbiota experiments usually contains hundreds of taxa 

variables. For instance, for the helminth data, we have 702 taxa for just 90 and 74 

observations of Indonesia and Liberia, respectively. The microbiota data presents two main 

problems for classification. First, as the dimension of the data increases, the number of 

observations needed for model training and consequently the study costs increase too. 

Second, if we even ignored the need for more training observations, we would also 

encounter other probable problems, such as the curse of dimensionality [31], or complicated 

models in need of longer training time [32]. Feature reduction is one solution for dealing 

with this problem in a way that tries to exclude redundant or uninformative features [33]. 

One other solution would be using integrative methods, such as transfer learning to feed 

models with different but related knowledge. As a way to incorporate this knowledge, a 

transfer learning approach using the functional mapping method has been proposed in [27]. 

We have this hypothesis that by applying SMART-scan on phylogenetically dependent 

microbiota datasets, we would extract clusters representing functional mapping to detect the 

association between taxa and phenotypes and also deal with data sparsity of microbiota data. 

To prove our hypothesis, we should just show that applying detection models to a microbiota 

dataset consists of new features (clusters) that do not result in performance deterioration.

Figure 1 depicts the experimental design for testing our specific hypothesis for helminth data 

that: “there exists a phylogenetic dependency among two helminth-associated microbiota 

datasets which can be used by SMART-scan to extract clusters representing functional 

mapping to identify the association between taxa and phenotypes; and that use of this 

Torbati et al. Page 6

Data (Basel). Author manuscript; available in PMC 2017 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



grouped data does not decrease the classification performance for infection detection over 

that of the ungrouped data models”. In this regard, we designed both baseline (from 

ungrouped data) and taxonomic (from grouped data) models, depicted in blue and green 

dashed paths in Figure 1, respectively. Baseline is a classification model that uses classifier 

generation explained in Section 2.2.1 below. The taxonomic model is the baseline model 

with an additional SMART-scan module, as explained in Section 2.2.2. The taxonomic tree 

can be easily extracted from the separate study publishing the helminth datasets. In the 

following subsections, we discuss both the set of classifiers selected for the system, and the 

taxonomic model that uses the SMART-scan algorithm in more detail.

2.2.1. Classifier Generation—We use a diverse set of four popular machine learning 

classifiers to first find an acceptable model for helminth detection and then study how 

SMART-scan can influence different classification models. For this purpose, we selected 

naive Bayes, support vector machines (SVMs), multilayer perceptrons (MLPs), and random 

forest classifiers. For the convenience of discussion, let us define TM as the taxonomic tree 

of the set of M taxa, X as a N by M matrix of N microbiota observations, X = [X1, X2, …, 

XN ], and Y as the phenotype vector of observations with K possible values.

Naive Bayes (NB): The naive Bayes is a probabilistic model for estimating conditional 

distribution over the class variable, given a new observation [34]. Based on this model, we 

can assign the phenotype value k to the new helminth observations, Xi = (x1, x2, x3, …, xM), 

as follows:

(1)

By consecutively applying Bayesian rule, ignoring P(Xi) by considering it as a constant 

value for each observation, and assuming strong independency among features, we can 

rewrite the above equation as follows:

(2)

Naive Bayes would result in high classification performance on independent data. Since 

SMART-scan aims at grouping feature sets into independent clusters, the combination of the 

SMART-scan and the naive Bayes classifier would result in a system with high performance.

Support Vector Machines (SVMs): In the SVMs model, observations are represented as 

points in a multidimensional space of features [35]. SVMs produce a discriminative model 

by learning that the hyper-plane separates observations of different categories in a way that 

makes the inter-category distance as large as possible. A new observation is classified based 

on the learned hyper-plane separator. Large numbers of features may reduce the performance 

of discriminative models. Since SMART-scan aims to eliminate the inefficient and redundant 
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features, the combination of the SMART-scan and any discriminative model (such as SVMs) 

may result in a high-performing system.

Multilayer Perceptrons (MLP): The MLP is a discriminative model, a network of simple 

neurons [36]. The neurons are structured in one input layer at the beginning, at least one 

hidden layer in the middle, and one output layer at the end of the network. The number of 

hidden layers and the number of neurons in each of these layers depend on the network 

design, while the number of neurons in the input and output layers depends on the number of 

features and classes, respectively. The neurons of all layers, except the output layer, are fully 

connected to the neurons of the next layer by weighted edges. These weights are the 

parameters learned during the model training phase. Each neuron has an activation function, 

a mathematical function accepts weights and input data from the previous layer and feeds 

the neurons of the next layer by the function’s output. By giving the new observation to the 

input layer of the trained network, we will have the predicted class as the output of the last 

layer. SMART-scan may improve the performance and computation time of the MLP by 

feature reduction. By selecting neural network models as classifiers, we may suffer from 

considerable computation time and a low interpretation level of the model, even though it 

may result in high performance. We use MLP in our experiments to test whether or not we 

can substitute it with simpler and faster models with comparable classification power.

Random Forests (RF): Random forests is an ensemble learning method, i.e., it is a 

multitude of random decision trees for obtaining better predictive performance and dealing 

with the overfitting problem by selecting the mode of the class labels predicted by the 

decision trees [37]. Decision tree is a discriminative model that results in a trained 

classification tree in which the leaves are the classes, and the interior nodes of each level are 

possible values of the selected feature for that level [38]. In the train phase, for each level, 

the feature with the highest information gain (IG) is selected [39]. In the test phase, the class 

label of the leaf that matches the conjunctions of feature values of the new observation is 

selected. By using RF, we want to benefit from ensemble learning models while also testing 

whether or not selecting features based on another measure, IG, may result in a classification 

performance improvement.

2.2.2. Taxonomic Modeling—The many possible ways of grouping detected bacterial 

taxa variables leads to a big hypothesis space to be searched exhaustively. One way to deal 

with this issue is the heuristic technique proposed in the artificial intelligence (AI) domain. 

When finding an optimal solution for a class of problems is impossible, impractical, or time-

consuming, heuristic methods can be used for finding a satisfactory solution in a shorter 

time. Heuristics are usually mental shortcuts that help to ignore unlikely solutions. One 

example of using heuristics is in the A* method as one solution of “minimizing the total 

path cost” problem [40]. The goal of the SMART-scan is to efficiently put correlated taxa in 

distinct groups. The SMART-scan follows the heuristic that: those taxa that share an 
evolutionary ancestry path in the phylogenetic tree are biologically related and are more 
likely to be in the same group. The taxonomic modeling is a classification modeling with an 

additional SMART-scan module [7].

Torbati et al. Page 8

Data (Basel). Author manuscript; available in PMC 2017 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SMART-scan is an iterative algorithm of three main steps: model creation, model evaluation, 

and model selection. In each iteration, the splitting of a phylogenetic sub-tree into two sub-

trees is evaluated. In the model creation step, all possible group models resulted from 

applying cut-points that split the sub-tree into two sub-trees are produced. Let us call the 

model before applying the splits, Model0. In the model evaluation step, all the produced 

models of previous step are evaluated based on Akaike information criterion (AIC) measure. 

By AIC, the information lost when a model is used to represent the process that generates 

data is estimated. Among the models of this step, the model with the smallest AIC is 

selected as the Best-Model. The model selection step checks whether or not the applied 

grouping results in model improvement. Thus, Best-Model is compared to Model0 based on 

their AIC measures and the model with the lower AIC is selected for the iteration. If the 

Best-Model is the selected model of the iteration, the sub-trees resulted from the split are 

tested for grouping in the future iterations. By the end of the algorithm, we can consider 

each of the resulted groups as a new feature valued by the aggregation of the group 

members’ values.

Figure 2 depicts the pseudocode and visualization of the first three iterations of the SMART-

scan algorithm. In the pseudocode shown in Figure 2a, two main data structures are used: 

TreeCandidatesForSplitting and TaxonomicGroup. TreeCandidatesForSplitting is a queue 

that contains the tree candidates for splitting (grouping), initially filled with TM; and 

TaxonomicGroup is the list of groupings, initially filled with the groups each containing one 

individual taxa. The three steps of the algorithm are covered in the While loop in a way that 

the model creation and evaluation steps have been implemented by FindBestSplit() function 

and the model selection step and the data structure updates have been implemented by the If 
statement and its inner instructions. In the visualization shown in Figure 1b, the first column 

shows the Enqueue and Dequeue functions applied to the TreeCandidatesForSplitting queue. 

The second column shows the sub-tree candidate for grouping and all its possible cut points. 

The third column shows all the tree cut points and the groups of taxa selected by the 

algorithm so far. The order of the actions in each iteration has been shown by numbered 

arrows. As it is shown in Figure 2b, the algorithm accepts groupings of the first two 

iterations, while it rejects the suggested grouping of the third iteration.

3. Results and Discussion

3.1. Experimental Evaluation

The evaluation of both models over Indonesia, Liberia, and Combined helminth datasets, 

using 10 runs of 10-fold cross-validation based on the percentage of the area under the ROC 

curve (AUC), are reported in Tables 2–4, respectively. We also have the same evaluation 

based on the Sensitivity (Sen), Specificity (Spec), and Balanced Accuracy (Bacc) measures 

in Tables 5–7. The Bacc measure reports the average of sensitivity and specificity for the 

detection of infection, thereby capturing directly the trade-offs between the two measures. 

The Combined dataset, is the combination of both Indonesia and Liberia datasets. We have 

this additional dataset as a way to directly increase the small numbers of observations, by a 

simple unioning of the samples for the set of common features among the two datasets. (It is 

to be noted herein that this simple unioning does not allow for many common features that 

Torbati et al. Page 9

Data (Basel). Author manuscript; available in PMC 2017 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



may be related biologically through functional or phylogenetic dependencies to be utilized—

which is our main motivation for transferring knowledge through functional mapping in the 

future.) For testing whether the achieved improvement by the taxonomic modeling is 

statistically significant, we have done both a non-parametric Wilcoxon paired-sample 

signed-rank test and paired-sample two-tailed t-test, with a significance level α = 0.05 over 

the 10 runs for each classifier. For our experiments, we used the Weka implemented version 

of the classifier generation with their default parameter set in this software [41]. The 

SMART-scan algorithm developers made the code publicly available [42], which allowed us 

to apply it and also evaluate it on our microbiota data.

3.2. Discussion

By using SMART-scan, we reduced the number of features (bacterial taxa) from 702 to 56, 

53, and 62 for Indonesia, Liberia, and Combined datasets, respectively. Results in Tables 2 

and 3 show statistically significant helminth detection AUC improvement achieved by using 

the taxonomic model over both Indonesia and Liberia datasets, except for the multilayer 

perceptron and random forest classifiers, highlighted in Table 3. The same improvement can 

also be observed from Table 4 and it shows that preparing the Combined dataset for dealing 

with the shortage of observations is an effective solution. The same improvement can also be 

seen in Tables 5–7 for Specificity, Sensitivity, and Balanced accuracy measures. The results 

of these tables not only validate our hypothesis that “applying SMART-scan to helminth data 

would result in groups of potentially functionally similar microbiota for detecting helminth 

infection”, but also show that this feature reduction achieved by SMART-scan is effective 

and results in statistically significant improvements for classification of helminth infection 

from such sparse microbiota datasets.

The observed patterns of performance improvement through the application of SMART-scan 

seem justifiable based on the theoretical foundations and assumptions of the four diverse 

classifiers chosen for testing our hypothesis in this feasibility study. Naive Bayes models, for 

example, are based on a strong feature independency assumption, and thereby we see that 

aggregated counts of detected bacterial taxa act as independent groups, and give rise to the 

statistically significant improvements shown above. For support vector machines and 

multilayer perceptrons, SMART-scan decreases the model complexity by shrinking the size 

of the feature set. In this way, it reduces the dimension of the feature space for support 

vector machines and decreases the number of neurons in the input layer for the multilayer 

perceptrons. Even in ensemble modeling algorithms such as Random Forests, which is a 

collection of decision trees with the goal of selecting the most informative set of features for 

the predefined classification task, SMART-scan improves overall performance on all the 

datasets as shown above. This consistent pattern of results seems to indicate that SMART-

scan may be able to increase both speed and accuracy in classification of such data, via the 

use of a smaller set of aggregated features, each representative of phylogenetical 

correlations.
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4. Conclusions

In this paper, we showed that taxonomic modeling, using a recently published method called 

SMART-scan, improves classification performance of real-world human microbiota datasets. 

Particularly, we tested the improvements in the AUC, Specificity, Sensitivity, and Balanced 

Accuracy performance over 10 runs of 10-fold cross-validation of application of SMART-

scan to aggregate bacterial groups detected in two global populations with and without 

helminth infection. By showing the achieved improvement, we proved our hypothesis that 

“applying SMART-scan on phylogenetically dependent microbiota datasets would result in 

clusters representing functional mapping for to identify the association between taxa and 

phenotypes for our helminth datasets.” We also showed that by adding the SMART-scan 

algorithm to our models, we increased model performance by dealing with the problem of 

data sparsity.

We also tried four different classifiers in our experiments: naive Bayes, support vector 

machines, multilayer perceptrons, and random forests, with all leading to statistically 

significantly improved AUCs, specificity, sensitivity, and Balanced accuracy with the 

SMART-scan module. Moreover, we observe a much greater performance gain for those 

classifiers that have feature independency assumptions [naive Bayes] and those which map 

the classification problem to a feature space [support vector machines]. As our future work, 

we are aiming to study classification models adaptable to the SMART-scan groupings. 

Advancing the models would result in precisely defining the microbial ecology underlying 

helminth infections and determining whether microbiota assemblages, after deworming, 

resemble the healthy microbiota state.
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Figure 1. 
Flowchart of baseline and taxonomic models. The phylogenetic tree is one of the outputs of 

Ribosomal Database Project (RDP) [30].
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Figure 2. 
The pseudocode and first three iterations of the SMART-scan algorithm derived from the 

explanations provided in the main paper [7], and the R code provided by the authors of this 
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paper. The derived psuedocode in (a) is meant to provide a computational interpretation and 

rapid lookup to enhance the extensions to the application of the SMART-scan method for 

automatic clustering of microbiota. The first three iterations of the SMART-scan algorithm 

in (b) are prepared based on the pseudocode in (a). In the first column, the sub-tree 

candidate for grouping is extracted from TreeCandidatesForSplitting. In the second column, 

the sub-tree is enclosed by a triangle in the phylogenetic tree; all the possible cut points of 

the sub-tree are marked by lines cutting edges, and the taxa are named as xi s. In the third 

column, the selected cut points are depicted by double lines, the selected grouping of taxa 

are named as Zi s, and the new splitted sub-trees, named as T1 and T2, are pushed into 

TreeCandidatesForSplitting.
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Table 2

Baseline and taxonomic model performance on detecting helminth infection over the Indonesia dataset, using 

10 runs of 10-fold cross-validation. In this table and the two other following tables, columns are as follows 

(from left to right): the classifier generation method, the Area Under the ROC Curve (AUC) measures for the 

baseline and taxonomic models, the improvement achieved by the taxonomic model, and the p-value for t-test 

and Wilcoxon tests. Best results of columns’ Taxonomic Model AUC and Improvement are shown in bold font 

in the tables.

Classifier Baseline AUC Taxonomic Model AUC Improvement p-Value for [t-Test, Wilcoxon Test]

NB 0.69 0.87 0.18 [0.029, 0.039]

SVMs 0.61 0.87 0.26 [0.002, 0.000]

MLP 0.61 0.85 0.24 [0.004, 0.001]

RF 0.67 0.81 0.14 [0.039, 0.048]

Data (Basel). Author manuscript; available in PMC 2017 February 24.
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Table 3

Baseline and taxonomic model (AUC) performance on detecting helminth infection over the Liberia dataset.

Classifier Baseline AUC Taxonomic Model AUC Improvement p-Value for [t-Test, Wilcoxon Test]

NB 0.71 0.94 0.23 [0.006, 0.002]

SVMs 0.52 0.82 0.30 [0.002, 0.000]

MLP 0.78 0.84 0.06 [0.180, 0.087]

RF 0.85 0.92 0.07 [0.062, 0.073]

Data (Basel). Author manuscript; available in PMC 2017 February 24.
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Table 4

Baseline and taxonomic model (AUC) performance on detecting helminth infection over the Combined 
dataset.

Classifier Baseline AUC Taxonomic Model AUC Improvement p-Value for [t-Test, Wilcoxon Test]

NB 0.66 0.89 0.23 [0.002, 0.000]

SVMs 0.59 0.81 0.22 [0.002, 0.000]

MLP 0.75 0.87 0.12 [0.014, 0.008]

RF 0.72 0.85 0.13 [0.027, 0.024]

Data (Basel). Author manuscript; available in PMC 2017 February 24.
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