
Formation of stable attachments between kinetochores and 
microtubules depends on the B56-PP2A phosphatase

Emily A. Foley, Maria Maldonado, and Tarun M. Kapoor
Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, NY 10065

Abstract

Error-free chromosome segregation depends on the precise regulation of phosphorylation to 

stabilize kinetochore-microtubule attachments (K-fibers) on sister chromatids that have attached to 

opposite spindle poles (bi-oriented)1. In many instances, phosphorylation correlates with K-fiber 

destabilization2–7. Consistent with this, multiple kinases, including Aurora B and Plk1, are 

enriched at kinetochores of mal-oriented chromosomes compared to bi-oriented chromosomes, 

which have stable attachments2, 8. Paradoxically, however, these kinases also target to 

prometaphase chromosomes that have not yet established spindle attachments and it is therefore 

unclear how kinetochore-microtubule interactions can be stabilized when kinase levels are high. 

Here we show that generation of stable K-fibers depends on the B56-PP2A phosphatase, which is 

enriched at centromeres/kinetochores of unattached chromosomes. When B56-PP2A is depleted, 

K-fibers are destabilized and chromosomes fail to align at the spindle equator. Strikingly, B56-

PP2A depletion increases the phosphorylation of Aurora B and Plk1 kinetochore substrates as well 

as Plk1 recruitment to kinetochores. Consistent with increased substrate phosphorylation, we find 

that chemical inhibition of Aurora or Plk1 restores K-fibers in B56-PP2A depleted cells. Our 

findings reveal that PP2A, an essential tumor suppressor9, tunes the balance of phosphorylation to 

promote chromosome-spindle interactions during cell division.

Serine/threonine phosphorylation marks generated by ~ 400 kinases are reversed by a 

handful of phosphatases that are targeted to substrates via dozens of regulatory subunits10. 

For most signaling networks, including those required for the establishment of chromosome-

microtubule attachments during prometaphase, it remains unclear which, or even if, a 

specific phosphatase regulatory subunit is important. In mammals, PP1 and PP2A, the most 

abundant eukaryotic serine/threonine phosphatases, target to kinetochores (PP1)11 or 

centromeres (PP2A)12–14 during mitosis. PP1, however, localizes to kinetochores only after 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence to: Tarun M. Kapoor.

Emily A. Foley, 1230 York Avenue, New York, NY 10065, efoley@mail.rockefeller.edu, Tel: 212.327.8173, Fax:212.327.7358
Maria Maldonado, 1230 York Avenue, New York, NY 10065, mmaldonado@mail.rockefeller.edu, Tel: 212.327.8173, Fax:
212.327.7358
Tarun M. Kapoor, 1230 York Avenue, New York, NY 10065, kapoor@mail.rockefeller.edu, Tel: 212.327.8176, Fax:212.327.7358

The authors declare no competing financial interests.

Author Contributions
E.A.F. and T.M.K. designed the experiments and wrote the paper. E.A.F. carried out essentially all the experiments. M.M. contributed 
to the live cell imaging.

HHS Public Access
Author manuscript
Nat Cell Biol. Author manuscript; available in PMC 2012 April 01.

Published in final edited form as:
Nat Cell Biol. ; 13(10): 1265–1271. doi:10.1038/ncb2327.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chromosomes have bi-oriented and preventing PP1 targeting to the kinetochore does not 

impair chromosome alignment15, 16, suggesting it is not essential for establishment of 

kinetochore-microtubule interactions in prometaphase. Therefore, we decided to examine if 

PP2A plays a role in this process.

We reasoned that a high-resolution live-cell localization analysis might inform on PP2A 

functions at centromeres. PP2A holoenzymes are composed of a common catalytic and 

scaffold subunit, and a variable regulatory subunit17 (Fig. 1a). To analyze the dynamics of 

PP2A localization during mitosis we fused the core subunits to green fluorescent protein 

(GFP). As expected, this approach was unsuccessful for the catalytic subunit, an abundant 

protein that cannot be over-expressed18. Therefore, we examined the localization dynamics 

of GFP-scaffold stably expressed human RPE1 cells. Near-simultaneous differential 

interference contrast (DIC) and real-time confocal microscopy of mitotic cells revealed that 

the scaffold was enriched at centrosomes (Fig. 1b, arrows) and to discrete regions on 

chromosomes (Fig. 1b, arrowheads), which corresponded to centromere/kinetochore 

targeting (Fig. 1c, d). Unexpectedly, we found that scaffold centromere/kinetochore 

targeting decreased between prometaphase and metaphase in RPE1 (Fig. 1b) and HeLa cells 

(Fig. S1a). GFP-scaffold signal was enriched on centromeres of chromosomes that had not 

congressed to the metaphase plate (Fig. 1c–d, compare centromere 1 and 2), suggesting that 

its targeting may be sensitive to chromosome-microtubule attachment status. To test this, we 

arrested cells at metaphase and tracked distribution of GFP-scaffold before and after 

depolymerization of microtubules by nocodazole. Strikingly, within minutes of nocodazole 

addition, GFP-scaffold became enriched on centromeres (Fig. 1e), confirming attachment-

sensitive localization.

To identify regulatory subunits that also reveal a microtubule attachment-dependent 

localization, we performed a comprehensive localization analysis for all regulatory subunit 

genes, using stable cell lines expressing GFP fusions of individual subunits. In humans, 

there are at least fifteen regulatory subunits, distributed over four evolutionarily conserved 

families17 but the localization dynamics of only two subunits have been reported thus far19. 

By live-imaging, only the five members of the B56 (B’) family of regulatory subunits were 

observed at centromeres (Fig. 2a, and Fig. S1b–e). Similar to the scaffold, B56 targeting was 

highest in prometaphase, and reduced (B56α, ε) or undetectable (B56β, γ, δ) by metaphase 

(Fig. 2a). Furthermore, when we repeated the nocodazole wash-in assay, GFP-B56α, β, δ, 

and ε targeting to centromeres increased within minutes (Fig. 2b), confirming microtubule-

attachment sensitive targeting. We did not consistently detect targeting of B56γ to 

centromeres in this assay (data not shown). Microtubule-sensitive localization of 

endogenous B56α to centromeres/kinetochores was confirmed by immunofluorescence in 

unperturbed cells (Fig. S2), and in a nocodazole wash-in assay (Fig. 2c). Together, these 

data indicate that B56-PP2A targeting to centromeres/kinetochores is sensitive to 

kinetochore-microtubule attachment status.

Microtubule-attachment sensitive kinetochore targeting is a hallmark of proteins that 

regulate microtubule binding (e.g. dynein, Cenp-E20) and/or mitotic checkpoint signaling 

(e.g. Mad221). However, we considered a requirement for B56-PP2A in the spindle 
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checkpoint unlikely because depletion of the scaffold results in a mitotic arrest in human 

cells12, 14.

In mammals, one challenge in assigning PP2A functions during the cell cycle is the potential 

for redundancy in regulatory subunit function. Thus, while PP2A is essential for 

mitosis12, 14, knockdown of individual regulatory subunits in human cells has not been 

observed to perturb chromosome segregation22. Redundancy may be particularly relevant to 

the B56 family, which share a pseudo HEAT repeat structure with ~ 80% sequence 

identity23, 24. Furthermore, depletion of the scaffold or chemical inhibition of the catalytic 

subunit cannot inform on specific regulatory subunits. Therefore, we chose to deplete B56α-

ε proteins using RNAi. We used two non-overlapping pools, composed of one siRNA 

targeting each B56 subunit, and analyzed the extent of depletion by two methods. First, by 

western blot analysis, each pool partially reduced protein levels of endogenous B56α, β, and 

δ (Fig. S3a). We confirmed that GFP-fusions of B56γ and ε were depleted, as we were 

unable to detect the endogenous proteins using available antibodies (Fig. S3b). Second, we 

confirmed that B56-PP2A siRNA cells had reduced levels of GFP-scaffold at centromeres/

kinetochores (Fig. 3a). As expected12, 14, nocodazole-treated B56-PP2A siRNA cells 

accumulated in mitosis (Fig. S4a), indicating an intact spindle checkpoint.

To examine whether B56-PP2A siRNA treatment impairs chromosome-microtubule 

attachment, we made use of the fact that K-fibers are preferentially stable during a brief 

incubation at 4 °C, while other spindle microtubules depolymerize25. First, we scored the 

presence of K-fibers in any mitotic cell that had not yet entered anaphase. B56-PP2A siRNA 

increased the fraction of mitotic cells that contained few or no K-fibers (Fig. 3b), indicating 

that B56-PP2A is required for proper chromosome-spindle interactions. Second, we used 

transient nocodazole arrest to accumulate mitotic cells lacking microtubule attachments and 

then released cells into media containing proteasome inhibitor for 40 minutes, sufficient 

time for control cells to generate K-fibers (Fig. 3c). In contrast, B56-PP2A siRNA cells 

typically had numerous kinetochores lacking K-fibers (Fig. 3c) and most contained few or 

no K-fibers (Fig. 3d). To confirm the specificity of our phenotype, we generated stable cell 

lines over-expressing siRNA-resistant B56α or B56β (Fig. S3c). When these cell lines were 

transfected with B56-PP2A siRNA, K-fibers persisted (Fig. 3d).

To examine whether B56-PP2A siRNA impairs alignment of chromosomes at the spindle 

equator, we analyzed chromosome alignment in metaphase-arrested cells. Consistent with 

defects in chromosome-spindle attachments, individual B56-PP2A siRNA cells had 

numerous misaligned chromosomes (Fig. 3e). Overall, B56-PP2A siRNA resulted in an 

eight-fold increase in the fraction of cells with misaligned chromosomes, and over-

expression of an siRNA-resistant B56 regulatory subunit rescued this defect (Fig. 3f). We 

conclude that B56-PP2A is required to establish stable kinetochore-microtubule attachments 

and align chromosomes at the spindle equator.

Recent reports indicate that PP2A plays an important role in regulating sister-chromatid 

cohesion12–14. B56 regulatory subunits have been linked to this function via their 

association with Sgo112–14, a centromeric protein that maintains cohesion and regulates K-

fiber stability26–28. To examine if cohesion is lost in our experiments, we isolated 
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chromosomes from B56-PP2A siRNA cells and found that at least 97% of chromatids had 

paired kinetochores (Fig. 3g), indicating that centromeric cohesion is preserved. 

Additionally, we measured inter-kinetochore distances in metaphase-arrested cells, which 

are expected to increase if cohesion at the centromere is compromised. We found, however, 

that inter-kinetochore distances in B56-PP2A siRNA cells were equal to or less than in 

control cells, consistent with intact cohesion (Fig. S5). Finally, we confirmed that 

centromere targeting of Sgo1 is preserved in B56-PP2A siRNA cells (Fig. 3h and S4b–c). 

Together, these data indicate that perturbations in centromeric cohesion and/or Sgo1 

targeting cannot account for the defects in kinetochore-microtubule attachment observed in 

B56-PP2A siRNA cells.

Defects in K-fiber stability in B56-PP2A siRNA cells could be due to an imbalance in 

substrate phosphorylation and/or failure to recruit proteins that bind kinetochores to 

microtubules. To test the latter possibility, we examined the kinetochore targeting of three 

proteins in the KMN network (Dsn1, Knl1, and Hec1), the core microtubule binding 

complex at the kinetochore29. It has been shown that Dsn1 and Hec1 levels at kinetochores 

are not sensitive to microtubule binding, while Knl1 recruitment increases 27% in 

nocodazole-arrested cells compared to metaphase cells6. Therefore, to exclude effects of 

microtubule sensitivity, we included nocodazole in our analyses. Under these conditions, 

Dsn1 and Hec1 levels were unchanged by B56-PP2A siRNA treatment, while Knl1 levels 

were modestly increased (1.4-fold), indicating that overall KMN network targeting is 

preserved in B56-PP2A siRNA cells (Fig. 4a).

To test whether phosphorylation at kinetochores is increased in B56-PP2A siRNA cells, we 

analyzed substrates of Aurora B, a key regulator of microtubule attachment stability30. We 

chose two KMN network substrates (Ser100 on Dsn1 and Ser24 on Knl1), whose 

phosphorylation decreases microtubule binding affinity6. In prometaphase cells, 

phosphorylation of both substrates was increased in B56-PP2A siRNA cells compared to 

controls (Fig. 4b). However, because modification of these substrates is sensitive to 

microtubule attachment status, as is Knl1 recruitment6 (and because B56-PP2A siRNA 

destabilizes K-fibers), it was necessary to compare phosphorylation levels on kinetochores 

with similar inter-kinetochore spacing, a read-out for microtubule attachments. This analysis 

revealed that on kinetochores under comparable microtubule-dependent pulling forces 

(defined as a 1.2 to 1.5 µm inter-kinetochore stretch), B56-PP2A siRNA increased the mean 

phosphorylation of Dsn1 and Knl1 by 1.8- and 2.3-fold, respectively (Fig. 4b). After 

accounting for changes in Knl1 targeting (Fig. 4a), the net increase in phospho-Knl1 is 1.6-

fold. Together, these analyses suggest that B56-PP2A limits the phosphorylation of these 

Aurora B substrates. In nocodazole, B56-PP2A siRNA did not increase Dsn1 

phosphorylation and the slight increase in Knl1 phosphorylation could be attributed to 

higher levels of Knl1 at the kinetochore (Fig. 4c). It is noteworthy that phosphorylation of 

Dsn1 and Knl1 at these sites increases 7- and 2-fold respectively in nocodazole-treated 

compared to prometaphase cells6. Thus, phosphorylation at these sites may approach 100% 

in nocodazole, in which case loss of B56-PP2A would not further increase phosphorylation.

To test whether suppressing Aurora B can rescue the B56-PP2A siRNA phenotype, cells 

were arrested in mitosis, followed by wash-in of chemical inhibitors of Aurora31, 32 
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(Hesperadin or ZM447439) or control solvent. As expected, control cells had cold-stable K-

fibers, whereas many B56-PP2A siRNA cells did not (Fig. 4d). Strikingly, Aurora inhibition 

was sufficient to restore K-fibers in B56-PP2A siRNA treated cells (Fig. 4d) and both 

inhibitors restored K-fibers to nearly all kinetochores (Fig. 4e). Together, these data suggest 

that the defects in kinetochore-microtubule interactions in B56-PP2A siRNA cells are due, 

at least in part, to increased phosphorylation of Aurora B substrates.

To examine whether B56-PP2A attenuates the signaling of kinetochore kinases other than 

Aurora B, we examined Plk1. Remarkably, wash-in of the Plk1 inhibitor BI253633 also 

restored K-fibers in B56-PP2A siRNA cells (Fig. 5a, b). Consistent with this, 

phosphorylation of a Plk1 kinetochore substrate, Ser 676 on BubR134 was increased in 

prometaphase cells following B56-PP2A siRNA (Fig. 5c). Furthermore, even in the absence 

of attachments, B56-PP2A siRNA treatment resulted in a three-fold increase in phospho-

BubR1 staining, without affecting BubR1 protein levels at kinetochores (Fig. 5d), indicating 

that B56-PP2A modulates the phosphorylation level of a Plk1 substrate in addition to Aurora 

B substrates. BubR1 phosphorylation was undetectable in a cell line stably over-expressing 

siRNA-resistant B56β (Fig. 5d), consistent with this site as a potential B56-PP2A substrate. 

Taken together, these analyses reveal that reduction of PP2A at the centromere increases the 

phosphorylation of multiple kinetochore proteins.

Considering that Plk1 targeting depends on docking to phospho-epitopes35, we reasoned that 

B56-PP2A siRNA treatment might increase Plk1 recruitment to kinetochores. Consistent 

with this, B56-PP2A siRNA increased Plk1 kinetochore targeting in prometaphase cells 

(Fig. 5c). However, because Plk1 recruitment to kinetochores is sensitive to microtubule 

attachment status2, we examined Plk1 targeting in nocodazole-treated cells. Strikingly, B56-

PP2A siRNA resulted in a 2.5-fold increase in Plk1 kinetochore targeting (Fig. 5d). This 

result was confirmed with a second pool of B56-PP2A siRNA (data not shown). Critically, 

over-expression of siRNA-resistant B56β rescued this defect (Fig. 5d). We conclude that, in 

addition to regulating the phosphorylation of kinase substrates, B56-PP2A also controls 

targeting of Plk1.

At the start of mitosis, all chromosomes are unattached to the spindle. Cytological studies 

indicate that initial kinetochore-microtubule interactions during prometaphase consist of one 

or a few microtubules, with microtubule occupancy increasing to ~ 25 microtubules per 

kinetochore on aligned chromosomes by metaphase36, 37. Several kinases, including Aurora 

B and Plk12, 8, are enriched at unattached kinetochores, suggesting high substrate 

phosphorylation. For Aurora B, a vast body of data involving phospho-mimetic substrates, 

kinase mis-targeting, and kinase inhibition suggests that high substrate phosphorylation at 

the kinetochore would lead to unstable attachments, both by disrupting kinetochore-

microtubule contacts and by increasing the turnover of kinetochore-bound microtubules30. 

This creates a paradox for how K-fibers form during prometaphase. Additionally, it has been 

shown that phosphorylation can ‘fine-tune’ the strength of kinetochore-microtubule 

interactions6, but contributions from PP2A, or any other phosphatase, during the capture of 

microtubules by kinetochores remained unclear.
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Our data reveal that B56-PP2A is an essential regulator of chromosome-spindle attachments. 

At the start of mitosis, B56-PP2A is enriched on unattached chromosomes (Fig. 5e, top) 

where it counteracts kinases, reducing phosphorylation to levels that stabilize kinetochore-

microtubule binding (Fig. 5e, middle). Notably, even a modest reduction in B56-PP2A alters 

the phosphorylation landscape at kinetochores, preventing the stabilization of K-fibers. As 

microtubules contact the kinetochore, B56-PP2A is removed, as are a subset of kinases (e.g. 

Plk12). Kinetochore accessibility of the remaining kinase, Aurora B, is reduced when 

chromosomes are bi-oriented and proper inter- and intra-kinetochore tension is established8 

(Fig. 5e, bottom). Interestingly, the re-distribution of B56-PP2A from the centromere 

towards the kinetochore on chromatids that have come under tension (Fig. 5e, middle) may 

ensure timely dephosphorylation of Aurora B and Plk1 substrates on kinetochores that have 

bi-oriented. While this function has been attributed to PP115, 16, recent work in yeast reveals 

the essential function of kinetochore PP1 is to silence the spindle checkpoint 38.

Misregulation of PP2A is considered a pre-requisite for malignancy in human cells, but less 

is understood about which phospho-signaling networks are associated with tumorigenesis9. 

Interestingly, point mutations in the scaffold that disrupt binding to the B56 regulatory 

subunits have been identified in lung and breast carcinomas39. Our data suggest these 

mutations will increase the frequency of whole chromosome gain or loss, the most common 

form of chromosomal instability in human tumors40, through disruption of kinetochore-

microtubule interactions.

Materials and Methods

Cell Culture, transfection, and inhibitor treatments

Cells were grown at 37 °C in a humidified atmosphere with 5% CO2 in DMEM (HeLa, 293-

ampho) or 1:1 DMEM:F12 media (RPE1) from Invitrogen supplemented with 10% fetal 

bovine serum (Atlanta Biologicals), 1X penicillin-streptomcyin and non-essential amino 

acids (Invitrogen), and 2 mM L-glutamine (Invitrogen). Cells used for live imaging or 

immunofluorescence were grown on no. 1.5 glass coverslips (Fisher Scientific) coated with 

Poly-D-lysine (Sigma). 293-ampho cells were transfected according to a calcium phosphate 

protocol to generate retroviruses. Virus-containing media was supplemented with 4 µg/mL 

polybrene (Sigma) and applied to target cells, followed by selection with puromycin 

(Sigma). Nocodazole (Sigma), MG132 (Boston Biochem), ZM447439 (Tocris Bioscience), 

BI2536 (Selleck Biochemicals) and Hesperadin (synthesized in the Kapoor lab) were 

dissolved in DMSO. For siRNA treatments, 1.7 × 105 RPE1 cells were transfected with 150 

pmol siRNA and 7.5 µL Lipofectamine RNAi Max (Invitrogen) following the 

manufacturer’s reverse transfection protocol and immediately plated onto no 1.5 glass 

coverslips. In all experiments, cells were fixed or lysed 42–46 h post-transfection (Fisher 

Scientific). An siRNA targeting mCherry (5’-GCUCCAAGGCCUACGUGAAUU-3’) was 

used for control transfections.

To generate B56 family siRNA pools, two individual siRNAs from Dharmacon smart pools 

for each B56 gene determined to be effective in reducing protein levels of endogenous 

and/or GFP-tagged B56 genes were chosen. siRNAs were mixed at equimolar ratios, with 

the exception of B56ε siRNA, which was included at 1.5-fold relative to the other siRNAs. 

Foley et al. Page 6

Nat Cell Biol. Author manuscript; available in PMC 2012 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



siRNAs used in the B56 family pools are: B56α: GCUCAAAGAUGCCACUUCA (pool 1), 

and UGAAUGAACUGGUUGAGUA (pool 2); B56β: CGCAUGAUCUCAGUGAAUA 

(pool 1), and GAACAAUGAGUAUAUCCUA (pool 2); B56γ: 

GGAUUUGCCUUACCACUAA (pool 1), and GGAAGAUGAACCAACGUUA (pool 2); 

B56δ: UCCAUGGACUGAUCUAUAA (pool 1), and UGACUGAGCCGGUAAUUGU 

(pool 2); B56ε: UUAAUGAACUGGUGGACUA (pool 1), and 

GCACAGCUGGCAUAUUGUA (pool 2).

Plasmid Construction

Open reading frames for PP2A subunits were purchased from OpenBiosystems and cloned 

into pDONR201 using Gateway technology (Invitrogen) and sequenced prior to 

recombination into GFP-tagged retroviral vectors. N- and C-terminal GFP fusion retroviral 

destination vectors were cloned from a parent vector, pMSCVpuro (Clontech) compatible 

with Gateway cloning (a gift from Wade Harper, Harvard Medical School). A strep-eGFP 

cassette was inserted before or after the Gateway cassette, to yield GFP-tagged destination 

vectors. For RPE1 stable cell lines expressing N-terminally tagged PP2A scaffold, the 

destination vector described above was sub-cloned to include an FKBP tag before the strep 

tag. These vectors were used in recombination reactions with entry clones containing PP2A 

regulatory subunits, and the open reading frames were sequence-verified.

Immunological methods

For immunofluorescence of BubR1, cells on coverslips were fixed in methanol at −20 C for 

10 min. For all other antibodies, cells on coverslips were pre-extracted for 40 seconds at 37 

C in PEM buffer (100 mM PIPES, 10 mM EGTA, 1 mM MgCl2 pH to 6.9 by KOH) with 

0.5% Triton-X and 4 M glycerol and then fixed for 5 min at 37 C in form fix (3.7% 

formaldehyde and 0.2% TritonX-100 in PEM buffer). For analysis of cold-stable 

microtubules, cells were incubated for 10 min at 4 C in L-15 media (Invitrogen) with 10% 

FBS, and then fixed in form fix for 10 min at 22 C. For the preparation of chromosome 

spreads, cells were collected by trypsinization, pelleted in media, resuspended in 0.075M 

KCl for 20 min at 22 C and then spun onto poly-lysine coated glass coverslips at 2,000 

r.p.m. for 2 minutes in a Shandon Cytospin 3. All subsequent immunofluorescence 

incubations were performed at 22 C. Cells were blocked in 2% Donkey serum (Jackson 

Immunoresearch). The following antibodies were used for immunofluorescence: anti-B56α 

(BD-Transduction Laboratories, #610615, used at 1:250), anti-Plk1 (Santa Cruz # sc-17783 

used at 1:200), anti-GFP (raised against full-length GFP and affinity purified and used at 1 

µg/mL), anti-phospho Ser 100 Dsn1 and phospho Ser 24 Knl1 (gifts from Iain Cheeseman1 

used at 1:1,000), anti- phospho Ser 676 BubR1 (a gift from Sabine Elowe2 used at 1:1,000), 

anti-BubR1 (Millipore #MAB3612, used at 1:500), anti-Dsn1 and anti-Knl1 (gifts from 

Arshad Desai 3 used at 1:1,000), anti-Sgo1 antibodies (a gift from Hongtao Yu4 used at 

1:1,000 and Abcam, ab58023, used at 1:200). FITC-conjugated mouse anti-tubulin 

monoclonal (Sigma # F2168) was used at 1:3,000, and human CREST anti-serum was used 

at 1:80,000 (a gift from W. Brinkley, Baylor College of Medicine). Secondary antibodies 

raised in donkey (Jackson Immunoresearch) were used at 2 µg/mL and DNA was stained 

with Hoechst 33342 (Sigma). Coverslips were mounted in 0.5 % p-phenylenediamine 

(Sigma) in 20 mM Tris, pH 8.8, 90% glycerol and sealed with nail polish. For western blot 
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analysis, the following antibodies were used: anti-B56α (Bethyl Laboratories, #A300-967A 

used at 1:3,000), anti-B56β (raised against a peptide corresponding to amino acids 477–497 

of human B56β and affinity purified and used at 0.2 µg/mL), anti-B56δ (Santa Cruz, 

#sc-81605, used at 1:500) or GFP (used at 0.1 µg/mL. HRP-conjugated secondary antibodies 

raised in donkey were purchased from Jackson Immunoresearch and used at 0.02 µg/mL.

Imaging, data acquisition, and processing

For live imaging, cells grown on 22 × 22 mm poly-lysine coverslips were mounted in a 

custom Rose chamber in 10% fetal bovine serum in L-15 media (Invitrogen) without 

phenol-red and maintained at 35–37 C. Confocal GFP fluorescence images were acquired 

using a Nikon TE2000 microscope (Morrell Instruments), with a 100X objective (PlanApo, 

1.4 NA), equipped with a z-motor. 0.4 µm z-stacks were taken through the entire cell with a 

PerkinElmer Wallac UltraView confocal head, 488 nm excitation filters, and an argon ion 

laser (Solamere Inc.). A single DIC image was taken prior to each z-stack. Images were 

acquired with an EMCCD Photometric Cascade 512B camera (Roper Scientific) with 2×2 

pixel binning using Metamorph software (MDS Analytical Technologies). Image J software 

(NIH) was used to crop images, adjust contrast, and create maximum intensity projections.

Quantifications of mitotic index, chromosome mis-alignment, and the presence of cold-

stable microtubules were scored visually on a Zeiss Axioplan2 microscope (Carl Zeiss 

MicroImaging, Inc.), with a 40X objective (Plan Neo, NA 0.75).

Images of fixed cells were acquired as z-stacks with 0.2–0.3 µm spacing using a 100x, 1.35 

NA objective on a DeltaVision Image Restoration Microscope (Applied Precision 

Instruments and Olympus). Immunofluorescence images in Figs. 1, and 3 were processed by 

iterative constrained deconvolution (SoftWoRx, Applied Precision Instruments) and 

corrected for chromatic aberration. Maximal intensity projections of the entire cell or of 

select optical sections (insets) spanning individual centromeres/kinetochores were converted 

to tiff files and linescans were generated using Image J. For immunofluorescence images in 

Figs. 2, 4, and 5, where intensities are compared, the acquired images, without 

deconvolution, were used to generate a maximum projection of the cell. Images for a given 

antibody staining were scaled identically, and this scale was then applied when converting to 

a tiff file. Images were cropped and adjusted for contrast equivalently in Image J. For 

quantifications of kinetochore pairing, randomly selected chromosome spreads were imaged 

and individual kinetochores were scored.

For quantification of antibody staining intensities at individual kinetochores, five to eight 

cells or chromosome spreads were randomly selected and acquired on a Deltavision 

Restoration microscope as described above. Images were scaled identically when converted 

to tiff files. Quantification of intensities at individual kinetochores was performed 

essentially as described in5. Briefly, using Metamorph software, integrated staining intensity 

was quantified from a region of interest drawn manually around a kinetochore. To subtract 

local background fluorescence, this region of interest was dilated by 6 pixels in Metamorph 

to generate an ‘outer’ region. The signal intensity of the ‘outer’ region was subtracted from 

the ‘inner’ kinetochore region, after scaling values for differences in area, as described5. 
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Finally, the background-subtracted, kinetochore-staining intensity was divided by the area of 

the region of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Microtubule-sensitive targeting PP2A to centromeres/kinetochores during cell division. (a) 

Schematic showing PP2A’s scaffold, catalytic, and regulatory subunits. (b) Maximum 

intensity confocal projections show distributions of GFP-scaffold expressed in an RPE1 cell 

at mitosis (top). Centrosome (arrow) and centromere (arrowhead) localizations are indicated. 

DIC images (below) show chromosomes in same cell. (c) Immunofluorescence images of a 

maximum intensity projection of an RPE1 cell expressing GFP-scaffold fixed and stained 

for kinetochores (CREST, red), GFP (green) and DNA (blue, only shown in overlay). (d) 

Maximum intensity projection of the optical sections spanning the boxed regions in (c) 

enlarged 2x with DNA omitted. Plotted is the intensity profile of the CREST (red) and GFP 

(green) signal measured along a line (white) drawn across the centromere. (e) Maximum 

intensity confocal projections of GFP-scaffold distribution and chromosomes (DIC) in a cell 

arrested in metaphase (10 µM MG132), and imaged live at the indicated times relative to 

addition of nocodazole (3.2 µM, time zero). Scale bars, 5 µm.
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Figure 2. 
Microtubule-sensitive targeting of B56 regulatory subunits to centromeres/kinetochores. (a) 

Maximum intensity confocal projections show distributions of GFP in different cell lines 

stably expressing GFP-B56α-ε proteins. (b) RPE1 cells stably expressing a GFP-fusion of 

the indicated B56 regulatory subunit were arrested in metaphase (10 µM MG132) and 

imaged live before and after addition of nocodazole (3.2 µM, time zero). Maximum intensity 

confocal projections show GFP distribution, and DIC images show chromosomes before 

nocodazole addition. Spindle pole targeting was observed in MG132-arrested cells 

(asterisk). (c) Cells in MG132 (10 µM) were treated with nocodazole (3.2 µM, bottom) or 

control solvent (DMSO, top) for 5 min and processed for immunofluorescence. Equivalently 

scaled maximum intensity projections of tubulin, DNA, kinetochores (CREST), and B56α 

staining are shown. Scale bars, 5 µm.
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Figure 3. 
B56-PP2A is required for stable kinetochore-microtubule attachments and chromosome 

alignment. (a) Analysis of GFP-scaffold levels at centromeres/kinetochores after B56-PP2A 

siRNA. An RPE1 cell line expressing GFP-scaffold was transfected with control or either of 

two B56-PP2A siRNA pools (1, 2) and treated with nocodazole (3.2 µM, 60 min) before 

processing for immunofluorescence. The GFP signal at centromeres/kinetochores was 

measured, processed, and normalized to the average value in cells treated with control 

siRNA. An intensity distribution histogram is plotted from one experiment. B56-PP2A 

siRNA reduced scaffold targeting to 0.52 ± 0.05 (pool 1) or 0.55 ± 0.05 (pool 2) relative to 

control cells (mean ± s.e.m, 4 experiments, >50 centromeres/kinetochores from 5 cells per 

condition, per time). (b–d) K-fiber defects in B56-PP2A siRNA cells. (b) The frequency of 

pre-anaphase mitotic cells with few or no K-fibers is shown. (c–d) Rescue of siRNA 

phenotype by stable over-expression of siRNA-resistant B56α or B56β. Cells were arrested 

in mitosis with nocodazole (0.32 µM, 2.5 h) and released into MG132 (10 µM, 40 min) 

before cold-treatment and fixation. (c) Cold-stable microtubules in a control and B56-PP2A 

(pool 2) siRNA treated cell. Insets show 2x enlargement of the boxed regions. (d) The 

frequency of K-fiber defects is shown. (e–f) Chromosome alignment defects in B56-PP2A 

siRNA cells. Control or B56-PP2A siRNA-treated cells were arrested with MG132 (10 µM, 

60 min). (e) Example of chromosome alignment defects in B56-PP2A (pool 2) treated cells 

versus control cells. (f) The frequency of mitotic cells with misaligned chromosomes is 

shown. (g) Cohesion is preserved in B56-PP2A siRNA cells. Chromosome spreads were 
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prepared from nocodazole-arrested cells (3.2 µM, 4 h) treated with either of two B56-PP2A 

siRNA pools. The fraction of paired chromatids from two experiments is shown. (h) 

Chromosome spreads were prepared from control and B56-PP2A (pool 2) siRNA treated 

RPE1 cells arrested as in (g). Equivalently scaled Sgo1 images and an overlay with DNA 

and kinetochores are shown. Images show maximum intensity projections with tubulin or 

Sgo1 (green), DNA (blue) and kinetochores (CREST, red). Scale bars, 5 µm. Bars show 

mean ± s.e.m. (n=3 experiments, >80 cells per condition per time).
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Figure 4. 
B56-PP2A depletion increases the phosphorylation of Aurora B substrates and Aurora 

inhibition suppresses the B56-PP2A siRNA phenotype. (a–c) RPE1 cells were transfected 

with control or B56-PP2A siRNA (pool 2) and (a, c) incubated with nocodazole (3.2 µM, 60 

min) before fixation, or (b) fixed, and stained using indicated antibodies. Images are 

maximum intensity projections with equivalent scaling. The signal at kinetochores was 

measured, processed, and normalized to the average value in control siRNA cells. 

Histograms show intensity distributions from one experiment. (a) KMN network targeting is 

preserved in B56-PP2A siRNA cells. In B56-PP2A siRNA cells, the mean kinetochore 

staining intensities were calculated for Dsn1 (0.85 ± 0.11), Knl1 (1.41 ± 0.23), and Hec1 

(1.05 ± 0.08) relative to control cells (n=2–3 experiments, >75 kinetochores from 5 cells per 

condition, per time). (b–c) Analysis of Aurora B substrate phosphorylation. (b) In 

prometaphase cells, kinetochores with an inter-kinetochore stretch of 1.2 to 1.5 µM were 

analyzed. In B56-PP2A siRNA cells, the mean phosho-Dsn1 and phospho-Knl1 intensity 
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was 1.79 ± 0.32 and 2.26 ± 0.07, respectively (n=2 experiments, >50 kinetochores from 5 

cells per condition, per time). (c) In nocodazole-treated B56-PP2A siRNA cells, the mean 

intensity of phospho-Dsn1 and phospho-Knl1 was 1.03 ± 0.13 and 1.21 ± 0.15, respectively, 

relative to control cells (3 experiments, >60 kinetochores from 5 cells per condition per 

experiment). (d–e) RPE1 cells treated with control or either of two pools of B56-PP2A 

siRNA (1, 2) were incubated in MG132 (10 µm, 15 min), followed by addition of 

Hesperadin (50 nM) or ZM447439 (1 µM) or control solvent (DMSO) for 45 min. (d) The 

frequency of mitotic cells with few or no cold-stable K-fibers is plotted (n=3 experiments, 

>80 cells per condition per time). (e) Maximum intensity projection of tubulin (green) and 

an overlay with kinetochores (CREST, red) in B56-PP2A siRNA (pool 2) cells treated with 

indicated inhibitor. Insets are 2x enlargement of the optical sections spanning the boxed 

regions. Scale bars, 5 µm. Mean ± s.e.m provided.
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Figure 5. 
B56-PP2A regulates Plk1 substrate phosphorylation and Plk1 targeting to the kinetochore, 

and Plk1 inhibition suppresses the B56-PP2A siRNA phenotype. (a–b) RPE1 cells 

transfected with control or either of two B56-PP2A siRNA pools (1, 2) were incubated in 

MG132 (10 µM, 15 min), followed by addition of BI2536 (40 nM) or DMSO for 45 min. (a) 

The frequency of mitotic cells with few or absent cold-stable K-fibers is plotted (n=3 

experiments, >80 cells per condition per time). (b) Maximum intensity projection of tubulin 

(green) and an overlay with kinetochores (CREST, red) in B56-PP2A siRNA (pool 2) cells 
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treated with DMSO or BI2536 (40 nM). Insets are 3x enlargement of the optical sections 

spanning the boxed centromeres. (c) RPE1 cells transfected with control or B56-PP2A 

siRNA (pool2) were fixed and stained. Maximum intensity projections with equivalent 

scaling are shown. (d) RPE1 cells or a cell line expressing siRNA-resistant B56β were 

transfected with control or B56-PP2A (pool2) siRNA and incubated with nocodazole (3.2 

µM, 60 min) before processing for immunofluorescence. The signal at kinetochores was 

measured, processed, and normalized to the average value in control siRNA cells. 

Histograms show intensity distributions from one experiment. In B56-PP2A siRNA cells, 

mean kinetochore intensity for BubR1 (0.84 ± 0.24), phospho-BubR1 (3.54 ± 1.41), and 

Plk1 (2.57 ± 0.32) were calculated relative to control cells (n=3–6 experiments, >60 

kinetochores from five cells per condition, per time). In the cell line over-expressing siRNA 

resistant B56β, Plk1 targeting was similar after B56-PP2A siRNA (1.08 ± 0.12) or control 

siRNA (0.97 ± 0.11), relative to RPE1 cells treated with control siRNA (n=3 experiments, 

>60 kinetochores from five cells per condition, per time). Scale bars, 5 µm. Mean ± s.e.m 

provided. (e) Schematic shows a model for how B56-PP2A localization to centromeres 

(white circle) and kinetochores (grey) may promote microtubule binding.
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