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To date, there has been little work describing the neurochemical profile of young, heavy marijuana users. In this
study, we examined 27 young-adult marijuana users and 26 healthy controls using single-voxel magnetic reso-
nance spectroscopy on a 3 T scanner. The voxel was placed in the dorsal striatum, and estimated concentrations
of glutamate + glutamine, myo-inositol, taurine + glucose, total choline and total N-acetylaspartate were ex-
amined between groups. There were no overall group effects, but two metabolites showed group by sex interac-
tions. Lower levels of glutamate + glutamine (scaled to total creatine) were observed in female, but not male,
marijuana users compared to controls. Higher levels of myo-inositol were observed in female users compared
to female non-users and to males in both groups. Findings are discussed in relation to patterns of corticostriatal
connectivity and function, in the context of marijuana abuse.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

Illicit marijuana use in the United States has been a longstanding pub-
lic health concern for both adolescents and adults. As many as 44% of
college-aged individuals endorse having used marijuana at some point
in their life, and 21% of college-aged individuals report marijuana use
in the past 30 days (Johnston et al., 2011). Marijuana intoxication is asso-
ciated with motor coordination deficits, euphoria, impaired temporal es-
timation, and a variety of other psychological phenomena (Hall and
Solowij, 1998). Marijuana use has also been associated with more specif-
ic cognitive deficits, even after acute intoxication has subsided (Pope and
Yurgelun-Todd, 1996), and with the development of severe psychopa-
thology (McGrath et al., 2010). Furthermore, chronic marijuana use has
been related to adverse physiological consequences in the cardiovascular
and respiratory systems (Mittleman et al., 2001; Sherrill et al., 1991). Ad-
olescence and young adulthood represent periods of the lifespan when
increased risk-taking occurs, including the use of illicit substances, such
as marijuana. The combination of an innate propensity for risk-taking
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(e.g., driving motor vehicles recklessly, unprotected sex, etc.) and use
of a judgment-altering substance is a striking example of the immediate
public health concern over marijuana use in young-adults. This concern
is particularly pertinent in light of recent efforts in support of marijuana's
legalization in the United States. A challenge for the field is to identify
which chemical systems and associated information processing net-
works are most affected by chronic marijuana use.

The main psychoactive component of marijuana, A°-tetrahydrocan-
nabinol (THC), acts as an agonist in central nervous system (CNS) can-
nabinoid (CB;) receptors and in other peripheral cell types, primarily
immune cells (CB, receptors) (Pertwee, 2008). In the CNS, CB; receptor
density is high in the basal ganglia, particularly in the dorsal striatum
(Herkenham et al., 1990). Cannabinoid receptor signaling acts on mul-
tiple neurotransmitters through a variety of biochemical cascades, in-
cluding inhibition of voltage-dependent calcium channels (thereby
inhibiting calcium-dependent vesicle release) and by directly inhibiting
vesicle release (via a calcium independent process) (Szabo and
Schlicker, 2005). Both excitatory and inhibitory neurotransmitters, in-
cluding glutamate (Glu), y-aminobutyric acid (GABA) and dopamine,
are either directly or indirectly affected by CB; receptor activation
(Schlicker and Kathmann, 2001). For marijuana and other drugs of
abuse and dependence, the dorsal striatum has been hypothesized to
play a key role in the transition from intermittent drug use to compul-
sive habit-based drug-taking via mechanisms that underlie long-term
synaptic plasticity (Kalivas et al., 2009). Exogenous activation of CB, re-
ceptors, as occurs with marijuana intoxication, inhibits the release of
glutamate as well as GABA in both the dorsal and ventral striatum
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(Gerdeman and Lovinger, 2001; Gerdeman et al., 2003; Hoffman and
Lupica, 2001; Szabo et al., 1998). This inhibition facilitates the develop-
ment of long-term depression (LTD) in the striatum, which is a critical
component in the altered synaptic plasticity that accompanies drug
addiction (Gerdeman et al., 2003). Thus, the manner in which
corticostriatal functional connectivity is altered in the context of mari-
juana use is of interest, as is metabolic activity within the chemical sys-
tems that contribute to those alterations.

Magnetic resonance spectroscopy (MRS) is a widely used tool,
allowing for in vivo characterizations of various brain metabolites.
MRS data is acquired either from single voxel (SVS) or multiple voxels
(spectroscopic imaging, MRSI: (de Graaf, 2007)). The SVS method
typically benefits from high spectral resolution and signal-to-noise
ratio (SNR). MRSI has better spatial resolution compared to SVS, but
typically has a much more limited spectral resolution (i.e., fewer me-
tabolites are quantifiable resulting from lower SNR and broader
line-widths). The application of MRS to the study of chronic marijua-
na users is limited in the current literature. To the best of our knowl-
edge, only four other studies utilizing some form of MRS to examine
marijuana users have been published, and the methods of these stud-
ies are relatively heterogeneous (Chang et al., 2006; Hermann et al.,
2007; Prescot et al., 2011; Silveri et al., 2011). The existing studies
are summarized in Table 1. Individuals ages 16-to-42 years were
studied with either SVS or MRSI. In two of the studies, only males
were examined (Hermann et al., 2007; Silveri et al., 2011). In most
cases, marijuana use was reported at 20 or more days per month.
Lower levels of Glu, N-acetylaspartate (NAA), and myo-inositol
(mlIns) were observed in marijuana users compared to controls in re-
gions known to be associated with substance use, including the basal
ganglia (lower Glu, NAA and choline: Chang et al., 2006), thalamus
(higher total creatine: Chang et al., 2006), cingulate cortex (lower
Glu, NAA, tCr, and mlins: Prescot et al., 2011), dorsolateral prefrontal
cortex (lower NAA: Hermann et al,, 2007), and the striatum as well
as posterior cortical regions (lower mins: Silveri et al., 2011). The
methods, ages of subjects, and extent of current marijuana use in
the samples tested vary considerably across studies as summarized
in Table 1.

As disruptions in glutamate activity have been implicated in the
development of addiction (Koob and Volkow, 2010), we hypothe-
sized disruptions in glutamate concentrations in marijuana users
compared to controls. Several lines of evidence suggest inhibition of
glutamate excitotoxicity by marijuana (Hampson et al, 1998;
Marsicano et al., 2003). In addition, based on the MRS literature de-
scribed above related to the basal ganglia of adult marijuana users
(Chang et al., 2006) and literature describing the inhibitory effects
of CB; receptors on glutamate release, we specifically hypothesized
that young-adult MJU subjects would show lower levels of
Glu + glutamine (Glu + Gln = GIx) in the basal ganglia compared
to their non-using counterparts. We did not have a specific hypothe-
sis regarding concentrations of other metabolites given that other
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researchers have not concentrated their assessments on the striatum.
However, the limited available literature suggested the possibility of
altered mins as well as NAA levels in users versus controls.

2. Materials and methods
2.1. Participants

Twenty-seven marijuana users (MJU: 16 males, 11 females) were
recruited into the study through local advertisements on the University
of Minnesota-Twin Cities campus. Marijuana users' ages ranged from
18-to-21 years, with a mean and standard deviation of 19.5 +
0.6 years (Table 2). Exclusion criteria are described below. Twenty-six
healthy young adult non-users (10 males, 16 females), who were par-
ticipants in a large, longitudinal study of normal brain development,
served as a control sample. Control participants' ages ranged from
13-to-24 years, with a mean and standard deviation of 19.3 +
3.1 years. The recruitment strategy for the control sample has been
described elsewhere (Muetzel et al.,, 2008; Olson et al., 2009; Porter et
al., 2011). Briefly, participants younger than 18 years of age were
recruited through a database of research volunteers throughout the
Metro community, through post-cards mailed to University of Minneso-
ta civil service employees, and through local advertisements. Partici-
pants over the age of 18 years were recruited using on-campus
advertisements. During the controls' third longitudinal follow-up visit,
MRS was added to the protocol as time allowed. Thus, the control sam-
ple described in this study has a broader age range than the MJU sample,
a feature that was considered in the statistical approach described
below.

A description of the study was initially given to both the MJU and
control participants over the phone. Interested participants were then
invited to complete a brief phone screening to ascertain study eligibil-
ity. Exclusion criteria included major physical, neurological or psychi-
atric illness, substance use disorders (other than marijuana and
alcohol use for the user group), head injuries resulting in loss of con-
sciousness >20 min, mental retardation, learning disabilities, current
use of psychoactive medications, non-native English speaking, vision
or hearing that was not normal or corrected to normal, complications
at birth, current pregnancy, and MRI contraindications (e.g., metallic
implants, severe claustrophobia, orthodontic braces, etc.). Inclusion
criteria for MJU participants included current use of marijuana at
least five times per week for at least one year, and an age of onset
of use prior to the age of 17 years. Marijuana users were also exclud-
ed if they were daily cigarette smokers, or if their alcohol use
exceeded four drinks for females and five drinks for males on more
than two occasions per week. Marijuana users were asked to refrain
from drug use for at least 12 h prior to their visit (as assessed through
self report) to avoid acute intoxication during study procedures. Par-
ticipants provided written informed consent (or assent when applica-
ble; parents of participants younger than age 18 provided consent)

Table 1
Prior studies using MRS spectroscopy to investigate associations with marijuana use.
Study Method Field (T) N (female) Age (years) M]J use (days/month) Targeted region Results
MJU Control MJU Control
Chang et al. (2006) SVS 4 24 (4) 30 (6) 36 +£2 42 + 2 20 Basal ganglia Lower Glu, NAA, Cho
Thalamus in MJU
Higher tCr in MJU
Hermann et al. (2007) MRSI 1.5 12 (0) 0(0) 2242 23 4+ 2 25 DLPFC Lower NAA
Prescot et al. (2011) SVS 3 17 (2) 9) 18 £ 1 16 £ 2 * Cingulate cortex Lower Glu, tCr, miIns,
and NAA in MJU
Silveri et al. (2011) MRSI 4 13 (0) 10 (0) 21+£3 25+5 22 Striatum, occipital lobes, Lower mins in MJU

parietal lobes

Note: Ages are reported as the mean age + standard deviation, * = days per month use not reported. Abbreviations: Cho = choline, DLPFC = dorsolateral prefrontal cortex, Glu =
glutamate, mIns = myo-inositol, MJ = marijuana, MJU = marijuana users, MRSI = magnetic resonance spectroscopic imaging, NAA = N-acetylaspartate, SVS = single voxel spec-

troscopy, T = Tesla, tCr = total creatine.
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Table 2
Sample characteristics.
MJU (n = 27) Controls (n = 26) t(df) p

Males (n) 16 10 - -
Female (n) 11 16 - -
Age (range, yrs) 18.4-20.9 13.3-24.5 - -
Age (mean + SD,yrs) 19.5 & 0.6 193 + 3.1 —0.22(51) 0.83
FSIQ (mean =+ SD) 114 + 12 117 £ 9 0.7(51) 0.49
PEI Alcohol Use 37+£10 15+ 14 —6.6(51) <0.001

(mean 4+ SD)

Note: Sex distributions by group did not differ statistically [X?(1, n = 53) = 2.29,
p = 0.17], FSIQ = full scale intelligence quotient, estimated with the Wechsler Abbre-
viated Intelligence Scale.

and all study procedures were approved by the University of
Minnesota's Institutional Review Board.

2.2. Assessments

2.2.1. Diagnostic assessment

After the phone interview, eligible participants were invited to the
University of Minnesota's Center for Neurobehavioral Development for
an in-person screening session to further ascertain eligibility and to ver-
ify information given over the phone. The Kiddie Schedule for Affective
Disorders and Schizophrenia, Present and Lifetime version (K-SADS-PL)
was used to assess for current or past Diagnostic and Statistical Manual,
Fourth Edition (DSM-IV) axis I disorders, including childhood disorders
given the relative youth of the sample (Kaufman et al., 1997). The pres-
ence or absence of DSM-IV disorders was confirmed by case consensus
meetings with staff members including a license-eligible clinical psy-
chologist. In addition, a two-subtest (Vocabulary and Matrix Reasoning)
version of the Wechsler Abbreviated Scale of Intelligence was adminis-
tered to yield estimated full scale IQ (Wechsler, 1999). Participants
who met all inclusion criteria after the in-person interview were invited
back for a comprehensive neuropsychological testing battery and an
MRI scan. This report focuses on spectroscopy findings.

2.2.2. Substance use assessment

In addition to the K-SADS-PL, the Personal Experience Inventory (PEI)
(Henly and Winters, 1989) was used to further assess alcohol and mari-
juana use in both the MJU group and in the healthy controls. Briefly, the
PEI consists of two main sections, one focused on patterns and severity of
substance use, and the other focused on psychosocial consequences of
use. In most cases, participants endorse items from the inventory using
a four-point Likert response format (e.g., strongly disagree, disagree,
agree, strongly agree). Different versions of the PEI have been developed
for adolescents versus adults. Participants younger than 18 years of age
received the adolescent version and participants older than 18 years of
age received the adult version; both versions were computer adminis-
tered. All MJU participants received the adult version. Scoring was
implemented to create comparable metrics across the two versions. Fi-
nally, an in-house questionnaire based on guidelines provided by the Na-
tional Institute on Alcohol Abuse and Alcoholism was implemented to
assess detailed daily, weekly, yearly and lifetime use patterns of alcohol
and marijuana in the sample, considering frequency and amount of use.

2.3. MR data acquisition

Magnetic resonance data were acquired using a 3 Tesla (T)
whole-body TIM TRIO system (Siemens, Erlangen, Germany) housed at
the University of Minnesota's Center for Magnetic Resonance Research.
Radiofrequency transmission was performed with a whole body coil,
and signal was received with a 12-channel receive-only head coil.

A 10-second, 3-plane localizer image was first acquired for posi-
tioning of subsequent scans. A coronal T;-weighted, magnetization
prepared rapid gradient echo (Mugler and Brookeman, 1990)

sequence was used to acquire a high-resolution scan for MRS voxel
positioning and tissue segmentation (repetition time (Tg) =
2530 ms, echo time (Tg) = 3.65 ms, inversion time (T;) = 1100 ms,
flip angle = 7°, number of slices = 240, matrix size = 256 x 256,
field of view (FOV) = 256 mm x 256 mm, slice thickness = 1 mm).

All spectra were acquired using a localization by adiabatic selec-
tive refocusing (Garwood and DelaBarre, 2001) sequence from an
8 mL (2 cm x 2 cm x 2 cm) voxel placed in the right basal ganglia
(Fig. 1). After water suppression was performed with variable pulse
power and optimized relaxation delays (Tkac et al., 1999), all reso-
nances were excited by using a nonselective numerically optimized
5.12 ms adiabatic half-passage pulse. Three-dimensional localization
was then performed with a pair of adiabatic full-passage pulses in
each dimension. Each adiabatic full-passage pulse was an
offset-independent adiabatic pulse, HS1, with a pulse length of 8 ms
and a bandwidth of 2.5 kHz (Garwood and DelaBarre, 2001; Silver
et al., 1984). Each free induction decay (FID) was acquired with
2048 complex points and a spectral width of 1.5 kHz. FIDs were
stored separately in memory and then both frequency and phase
corrected based on NAA signal before summation. The Tg was 3 s, Tg
was 70.8 ms, and the number of scans (Ns) was 192. A water refer-
ence was also acquired. Each voxel measurement began with an ad-
justment of the first- and second-order shims using the standard
Siemens shimming method. In cases where poor water line-width
was observed after the standard shimming method, FAST(EST)MAP
was applied (Gruetter, 1993; Gruetter and Tkac, 2000).

2.4. MRS voxel placement

The MR spectroscopy voxel was positioned in the right basal
ganglia using the T;-weighted image. The caudate and putamen
were the primary regions of interest. The voxel was positioned in
the following way: (1) left/right—the voxel was positioned so that it
was as medial as possible, without containing any portion of the lat-
eral ventricle, (2) anterior/posterior—the voxel was positioned as an-
terior as possible in the caudate, without entering the anterior horn of
the lateral ventricle, (3) superior/inferior—the voxel was positioned
such that the inferior portion of the voxel was as close as possible
to the most inferior aspect of the putamen (to avoid artifact from
the vasculature inferior to this position), and such that the superior
portion of the voxel was approximately 3 mm inferior to the most su-
perior aspect of the caudate (to avoid signal contamination from the
lateral ventricles). Fig. 1 illustrates the voxel placement in a typical
subject. Confirmation of consistent voxel placement across subjects
was achieved by segmenting and parcellating the T;-weighted image.

2.5. MR data processing

2.5.1. Structural MRI data processing

A high-resolution structural scan was acquired to position the
voxel during data acquisition and to determine the tissue composi-
tion of the voxel through segmentation. The T;-weighted scan
was processed using the standard FreeSurfer pipeline (http://surfer.
nmr.mgh.harvard.edu) for tissue segmentation and anatomical
parcellation (Fischl et al., 2002). Further details related to the
FreeSurfer processing can be found online, and in one of our previous
publications (Porter et al., 2011). In-house software was used to com-
pute the transformation matrix from the scanner coordinates to the
FreeSurfer-processed T;-weighted image. A mask representing the
spectroscopy voxel in the anatomical image space was then created
using tools from the FMRIB Software Library (Smith et al., 2004),
which was subsequently segmented and parcellated using the
FreeSurfer anatomical information. Thus, each T;-weighted voxel
(1 mm isotropic resolution) within the spectroscopy volume
(2 cm x 2 cm x 2 cm), was classified as either white matter, gray
matter, cerebrospinal fluid (CSF), or non-brain, and was further
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Fig. 1. Voxel placement and representative spectrum. The location and size (2 x 2 x 2 cm?®) of the voxel shown as yellow box on (A) T;-weighted and (B) parcellated with
FreeSurfer images in axial, coronal, and sagittal views. (C) In vivo data, LCModel fit, residual, and baseline for the representative spectrum. A close match between the LCModel
fit and the in vivo spectrum was achieved as evidenced by the noise-dominated fit residual.

parcellated into subcortical and cortical structures. This was done to
confirm a consistent voxel placement across all subjects (i.e., the ma-
jority of the spectroscopy voxel contents were within the basal
ganglia in all subjects) and to determine the basic tissue composition
within the voxel (i.e., gray matter, white matter, or CSF). Further de-
tails of the voxel composition can be found in the results section
below.

2.5.2. Quantification

The acquired spectra were analyzed using LCModel 6.1-4A
(Provencher, 1993, 2001)(Stephen Provencher, Inc., Oakville, Ontario,
Canada), with the basis set generated using in-house programs based

on the density matrix formalism (Henry et al., 2006) in Matlab (The
MathWorks, Inc., Natick, MA, USA) using the known chemical shifts
and J-couplings (Govindaraju et al., 2000; Kaiser et al., 2010). The
simulated spectra of the following twenty metabolites were included
in the basis set for LCModel: alanine (Ala), ascorbate (Asc), aspartate
(Asp), Cr, GABA, glucose (Glc), Gln, Glu, glycerophosphorylcholine
(GPC), glycine (Gly), glutathione (GSH), lactate (Lac), mins,
NAA, N-acetylaspartylglutamate (NAAG), phosphocreatine (PCr),
phosphorylcholine (PCho), phosphorylethanolamine (PE), scyllo-
inositol (sIns), and taurine (Tau). Experimentally measured metabolite-
nulled macromolecular spectra from 41 subjects were also included in
the basis set (T, = 827 ms, Ns = 64). No baseline correction,
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zero-filling or line broadening were applied to the in vivo data prior to the
analysis. The LCModel fitting was performed over the spectral range from
0.5 to 4.2 ppm.

Subjects were excluded from the analysis if their NAA line-width
was greater than 8 Hz. Further, criteria for selecting reliable metabo-
lite concentrations were based on Cramér-Rao lower bounds (CRLB),
which are estimates of the %SD of the fit for each metabolite
(Provencher, 1993). Only results with a CRLB <30% were included
in the analysis. Concentrations with CRLB >30% were classified as
not detected. Only metabolites that had a CRLB below 30% in more
than 75% of the spectra were included in the neurochemical profile.
If the covariance between two metabolites was consistently high (in-
verse correlation coefficient <— 0.5), such as in the case of Cr and PCr,
their sum (total creatine, tCr) was reported rather than their individ-
ual values. The tCr concentration was quantified using the water
reference. Since no difference was observed in tCr between groups,
all subsequent metabolite concentrations were quantified using the
tCr concentration (assumed to be 8 mM).

2.6. Statistical approach

Data were analyzed with the Statistical Package for the Social Sci-
ences, version 19 (SPSS Inc., Chicago, IL, USA, www.spss.com). Data
were examined for normality in order to ensure appropriateness of
parametric statistics. Univariate analyses of covariance (ANCOVA)
were used to test group effects between the MJU individuals and
the controls, with age and alcohol use entered as covariates. Group
and sex were both entered as between-subjects variables. Alcohol
use frequency over the past 12-month period summarized by the
PEI was used in the above model as the alcohol use covariate.
Two-way interaction effects between group and sex, when present,
were examined further by running the model separately in males
and females (to quantify the effect of group within sex), or by exam-
ining sex effects within MJU individuals and controls (to examine
the effect of sex within group). Finally, significant effects were
re-evaluated by matching the MJU and control samples by age to ver-
ify that patterns remained significant with more stringent control
over developmental differences that might otherwise impact the
findings.

3. Results
3.1. Sample demographic characteristics

The MJU and control groups were well matched in terms of sex
(chi squared test, X3(1, n = 53) = 2.29, p = 0.130), and mean age
(F(1,51) = 0.047, p = 0.83), despite the larger range in age in the
controls. The groups were matched in estimated two-scale IQ
(F(1,51) = 049, p = 0.49) with mean IQs in the high average
range. There was no group by sex interaction for age or for 1Q. Mari-
juana users were college students of middle to high-middle socioeco-
nomic backgrounds and most were free of a non-substance DSM-IV
Axis | diagnosis (Table 3). None were psychotic. Nearly all met
DSM-IV diagnostic criteria for marijuana abuse or dependence. Use
of other recreational drugs within the MJU group was limited, with
no participants meeting DSM-IV criteria for abuse or dependence.
One subject met diagnostic criteria for current alcohol dependence,
and a small proportion met criteria for alcohol abuse (30%). Com-
pared to controls, alcohol use over the past twelve months use was
found to be significantly higher in the MJU group, F(1,51) = 43.93,
p < 0.001. Marijuana users on average had a PEI score of 3.7, which
corresponds to endorsing use of alcohol between 21 and 100 times
in the previous 12 months. Controls on average had a PEI score of
1.5, which corresponds to endorsing use of alcohol between 1 and
20 times in the previous 12 months. When the sample is restricted
to include only individuals aged 17 and higher, the difference in

Table 3
Substance use characteristics in male versus female marijuana users.
Variable Males Females F P
Age of marijuana use onset 153 (0.95) 15.1(1.4) 025 .63
Current marijuana use 254 (4.5) 24,5 (3.5) 142 25
occasions past month
Current marijuana use hits 11.3 (7.6) 7.1 (3.7) 285 .11
per day (past month)
Maximum hits in 24 h (past year) 38.6(249) 245(197) 219 .15
Number of symptoms of 41 (1.5) 35(2.2) 098 .33
marijuana dependence
Number of symptoms of 1.6 (1.6) 045 (0.52) 489 .05

alcohol dependence
Proportion with presence 0.06 0.36 132
of non-marijuana and
non-alcohol related DSM-IV
psychopathology (current or past)

¢ Note: Fisher's Exact Test was used due to insufficient cell counts for the Chi-Square test.

alcohol use remains significant but the mean value for control partic-
ipants is slightly higher at 1.9. Thus, the amount of alcohol use en-
dorsed over the past twelve months was entered as a covariate in
analyses comparing metabolite concentrations between groups.

The marijuana users reported that their age of first use of marijua-
na was 15.2 4+ 1.2 years, and also reported smoking 9.8 (48.7) hits
per day during the past year. In addition, supplemental analyses
were conducted to verify that female users did not differ from male
users in their self-reported patterns of use, age of use onset, use of
alcohol, or symptoms of psychopathology (based on K-SADS screen-
ing items and supplement items when applicable). Findings are
presented in Table 3. The only group difference to emerge was that
female users reported fewer symptoms overall of alcohol abuse/
dependence than did males. Otherwise, they did not significantly dif-
fer in variables that would suggest an increased frequency or duration
of marijuana use, use of other substances, or presence of concomitant
psychopathology.

3.2. Voxel tissue composition

The spectroscopy voxel was consistently placed in the same ana-
tomical location, centered in striatum, in both marijuana users and
controls (Table 4). The voxel was primarily composed of gray matter,
as determined by the FreeSurfer parcellation procedure. The majority
of the voxel composition (roughly 98% of the volume) was statistical-
ly similar between groups, with the exception of the pars opercularis,
which accounted for less than 1% of the total voxel composition.
The remaining 2% of the voxel composition was relatively variable
(i.e., the parcellations not included in Table 4). Moreover, these
additional regions always represented very small amounts of tissue
(<1% of the total voxel volume in all cases and <0.5% in most cases),
and were not represented in all subjects.

3.3. Data quality

Independent samples t-tests were used to examine measures of
data quality, and no differences were found between marijuana
users and controls in line-width (t = 0.91(51), p = 0.37) or SNR
(t = —1.05(51), p = 0.30), Table 5.

3.4. Group comparisons of metabolite concentrations

Table 5 shows study sample sizes for each metabolite after quality
control criteria (CRLB, line-width, minimum SNR) were applied to the
data. When these criteria were applied, there were sufficient cases to
examine, NAA + NAAG (tNAA), tCr, total choline (tCho), Glx, mlins,
and Tau + Glc. In total, two MJU subjects and three controls were


http://www.spss.com

586 R.L. Muetzel et al. / Neurolmage: Clinical 2 (2013) 581-589

Table 4
Subcortical volumes represented within the MRS voxel.
Volume proportion p

FreeSurfer Label MJU Controls
Putamen 0.451 0.445 0.635
Insula (white) 0.169 0.160 0.339
Unsegmented (white) 0.150 0.144 0.609
Pallidum 0.108 0.122 0.094
Insula 0.058 0.055 0.787
Caudate 0.036 0.035 0.922
Pars Opercularis 0.008 0.004 0.062
Vessel (other) 0.005 0.005 0.570
Sum of Labels 0.982 0.977 0.358

Note: The labels listed in Table 3 are those that are represented in both controls and
marijuana users, and make up roughly 98% of the tissue within the spectroscopy
voxel for both groups. The remaining tissue classifications within the voxel (i.e., 2% of
the tissue) were not represented in both groups (i.e., meaningful statistics could not
be computed). Structures are classified as gray matter unless otherwise noted in
parentheses next to the FreeSurfer label and bold indicates there was a group
difference in volume.

excluded from analyses based on line-width (Table 5). The additional
two MJU subjects and one control subject were excluded from analy-
ses of Tau + Glc due to high CRLB. Table 5 also shows descriptive sta-
tistics for each metabolite, including means and CRLB for marijuana
users and controls. As described above, metabolite concentrations
were examined after scaling to tCr since no difference was observed
in tCr between groups when using water as the reference (p > 0.05).

Univariate ANCOVAs with age and alcohol use entered as covari-
ates, were used to compare metabolite concentrations in the MJU
and control groups, and to examine sex differences. Findings are
presented in Table 6. No main effects of group, sex, age or alcohol
use were observed for tNAA or Tau + Glc.

A main effect of sex was observed in the tCho, independent of
group, age, and alcohol use (Table 6). Males demonstrated higher
levels. There was no significant effect of group nor was the group by
sex interaction significant.

When miIns was examined, there were no main effects of group or
sex, but there was a significant group by sex interaction (Table 6).
When the sexes were examined separately, there was no main effect
of group within males (p = 0.37), but there was a significant group
difference in females, F(1,20) = 6.48, p = 0.02, 7; = 0.25 with
higher values in MJUs versus controls. Within users, females also
demonstrated higher values than males, F(1,21) = 5.39, p = 0.03,
73 = 0.20.

Similarly, for the analysis of Glx, there were no main effects of
group or sex, controlling for age and alcohol use, but there was a sig-
nificant group by sex interaction (Table 6). When the sexes were ex-
amined separately, there was a main effect of group within females,
F(1,23) = 4.99,p = 0.04,7}5 = 0.20, while male MJ users did not dif-
fer statistically from male controls (p = 0.92, 7j; = 0.00). Further
analyses indicated that within controls, males and females did not
differ in their values (p = 0.30, 7’]3 = 0.06). Within users, female MJ

users showed lower Glx than male M] users, F(1,24) = 8.02, p =
0.01,7j; = 0.28.

Although age was not statistically different between the MJU
group and the control group, it was verified that in the above Glx
and mins analyses, age was not a significant contributor to either
model. In addition, further ANCOVA analyses were conducted to re-
strict the overall age range in the control group. For this analysis,
the six control subjects who were younger than 17 years of age
were removed, and the ANCOVAs, with group and sex as between
subjects factors, and age and alcohol use as covariates, were re-run.
This analysis yielded similar effects to those described above. For
Glx, the two-way interaction effect between group and sex was
even stronger than what was observed in the full sample. The group
by sex interaction was reduced to a trend level (p = 0.09) for mIns
but with a similar effect size (ﬁg = 0.08) suggesting that a reduction
in statistical power accounted for the loss of significance.

Lastly, while not a significant predictor in our models, alcohol use
was further explored for interaction effects in Glx and mlIns given the
group-by-sex interaction found for these metabolites, and because al-
cohol use was less prominent in females in the MJU group. When a
group-by-alcohol use (summarized by the PEI) interaction term was
added to the model, the results remained unchanged in relation to
the group-by-sex interaction, and the new interaction term was not
significant. The addition of a sex-by-alcohol use interaction term
was not significant, though it did result in slightly larger p-values
for the mlns group-by-sex interaction, and also the GIx group-
by-sex interaction. However, in both metabolites, the group-by-sex
interaction remained with a trend-level p-value. It does not seem,
then, that the extent of alcohol use within the MJU group drives the
group-by-sex interaction that was observed for Glx and miIns. The
study is not adequately powered to be able to reliably detect a
three-way group-by-sex-by-alcohol use interaction.

4. Discussion

This study examined a cohort of college-aged heavy marijuana
users and a control group of non-using young-adults. Using
MR-spectroscopy, it was shown that females, but not males, who
used marijuana heavily starting in mid-adolescence and persisting
for several years have lower levels of glutamate and glutamine
(scaled to tCr) in the dorsal striatum when compared to controls,
even after accounting for age and alcohol use. Similarly, female but
not male users differ from controls in their estimated concentrations
of myo-inositol, demonstrating higher levels than controls. These pat-
terns are interpreted as pathological in the female users given that
male users had comparable levels to controls of both sexes. Female
users did not differ from male users in their overall rates of
self-reported marijuana use, in their concomitant level of alcohol
use (though they did report fewer alcohol-related symptoms), in
their numbers of symptoms of marijuana dependence, or presence
of other conditions that might impact brain metabolism.

Table 5
MRS quality measures and metabolite summary.
Cumulative MJU Control

Measure % of sample N Mean + SD CRLB + SD N Mean + SD CRLB + SD
Line-widthyaa(Hz) 100 27 6.25 4 1.40 - 26 6.65 + 1.78 -
SNRnaa 100 27 25.5 + 3.6 - 26 245 4+ 3.2 -
tNAA 90 25 11.1 £ 0.52 1.12 + 033 23 10.9 + 0.71 1.22 + 042
tCho 90 25 1.84 £ 0.19 3.12 4+ 0.67 23 1.74 £ 0.19 3.30 + 0.56
Glx 90 25 10.1 £ 1.37 6.84 4+ 1.28 23 10.7 &+ 0.94 6.57 4 0.99
mins 90 25 3.57 + 0.74 10.6 + 4.06 23 3.55 4+ 0.80 10.5 + 4.02
Tau + Glc 85 23 1.70 + 048 17.1 £+ 4.69 22 1.70 + 0.46 18.1 + 6.26
tCr 90 25 8.00 £ 0.00 1.76 £+ 0.44 23 8.00 + 0.00 1.96 + 0.21

Note: NAA signal was used to estimate linewidth and SNR in LCModel.
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Table 6
ANCOVA results comparing metabolite concentrations in mju and control groups by sex.
MJU Control
Male Female Male Female Group Sex Group by sex
Metabolite M (SEM) M (SEM) M (SEM) M (SEM) F p s F p in F p i
tNAA 11.29 (.23) 11.05 (.19) 10.68 (.26) 10.92 (.19) 1.58 22 .04 .00 .98 .00 1.28 .26 .03
tCho 1.93 (.07) 1.77 (.05) 1.85 (.07) 1.62 (.05) 2.06 .16 .05 14.68 .00 .26 0.30 .59 .01
Glx 10.87 (.42) 9.47 (.35) 10.12 (.47) 10.82 (.35) 33 .57 .01 1.12 30 .03 7.98 .01 .16
mins 3.40 (.28) 3.89 (.23) 3.81 (.31) 3.26 (.24) .10 .76 .00 .02 .90 .00 4.23 .05 .09
Tau + Glc 1.58 (.20) 1.75 (.15) 1.94 (.20) 1.58 (.16) .16 .69 .00 40 .53 .01 2.68 11 .06

Mean values represent estimated marginal means + 1 SEM, controlling for the effects of age and alcohol use frequency. Statistics are presented on tests of the estimated marginal

means.

These findings have broad parallels in the extant literature, both in
relation to the overall patterns observed but also in relation to sex dif-
ferences. Decreased glutamate/glutamine concentrations have been
reported in two other MRS studies of marijuana users, one that focused
on the basal ganglia (Chang et al., 2006) and one that targeted the ante-
rior cingulate cortex (Prescot et al., 2011). First, in an older cohort of
marijuana users than is described in the current study, Chang et al.
(2006) reported lower glutamate levels in the basal ganglia, suggesting
that heavy marijuana use during young adulthood as well as later in life
is associated with disruptions in glutamate signaling as has been shown
for other drugs of abuse (Kalivas et al., 2009). Recently, Prescot et al.
(2011) reported lower glutamate concentrations in the anterior cingu-
late cortex, which was nonetheless strongest when females were elim-
inated from the analysis. Interpretation of the current findings is
complicated by poor resolution of the glutamate versus glutamine sig-
nal. Glutamate is present in all cell types with the largest pools evident
in glutamatergic neurons; smaller pools are evident in GABA-ergic neu-
rons and astroglia. Upon release, astroglia convert glutamate to gluta-
mine, which in turn is transferred back to the neuron for conversion
once again to glutamate (Albrecht et al., 2010; Daikhin and Yudkoff,
2000). Glutamine is primarily located in astroglia. Thus, low glutamate
levels would be difficult to ascribe to a particular neuronal process. In
contrast, if glutamine levels are low, then glial dysfunction may be
present, a finding that would be consistent with white matter aberra-
tions in marijuana users (Matochik et al., 2005; Zalesky et al., 2012).

Others have not reported specific metabolic disruptions in female
marijuana users; indeed, within young samples, marijuana is more
commonly used in males (Johnston et al,, 2011). Although it has
been recognized that females are at an increased risk for some behav-
ioral consequences of drug use such as sexual risk-taking (Hallfors et
al.,, 2005) and an increased risk of depression and anxiety following a
pattern of daily marijuana use (Patton et al., 2002), there are relatively
few human studies of brain-based sex differences associated with
marijuana. Women have shown slightly more severe neurocogntive
deficits related to marijuana use compared to men (Pope et al., 1997).
McQueeny et al. (2011) showed adolescent girls had larger amygdalae
and increased internalizing symptoms when compared to both control
and marijuana using boys. Moreover, certain behavioral problems have
also been linked to prenatal marijuana exposure in girls, but not in boys
(EI Marroun et al.,, 2011). Recent neuroimaging work suggests that
young female users may be vulnerable to marijuana-induced alter-
ations in brain volume, given suggestions of greater prefrontal cortex
volumes and relatively poorer levels of executive function (Medina et
al., 2009). Alcohol is similarly disruptive to females' cognitive function
and regional brain morphology (Medina et al., 2008; Squeglia et al.,
2009b), and it has long been recognized that females are more vulner-
able to psychomotor sensitization with psychostimulant exposure
(Camp and Robinson, 1988).

Preclinical data are somewhat stronger and indicate that female
adolescents are particularly vulnerable to the effects of long-term
THC administration on the CB; receptor system in multiple brain re-
gions, including the prefrontal cortex, striatum, and periaqueductal

gray (Burston et al., 2010). A recent study of THC in mid-adolescent
rats during the period of drug administration and following absti-
nence indicated greater sensitization of THC-induced locomotor
depression in females versus males. Moreover, high doses resulted
in increased anxiety-like behaviors during THC administration, par-
ticularly in females (Harte-Hargrove and Dow-Edwards, 2012), al-
though a general tendency is for females to experience greater
anxiolytic effects of the drug. Glutamate is critically important in
the neuroplasticity that accompanies the transition from drug use to
abuse (Kalivas and Volkow, 2005). Under conditions of extreme trau-
ma or stress, its release is associated with neurotoxicity and cell death
(Wang and Qin, 2010). Endocannabinoids block glutamate release
under such conditions (Gerdeman and Lovinger, 2001), which could
lead to neuroprotection. However, the concomitant observation of
high mins levels argues against this interpretation. Given that mins
is considered to be a glial marker, high levels would be associated
with gliosis as well as white matter injury as occurs in the context
of neural injury. High mIns concentrations have been observed in
early dementia, in frank Alzheimer's disease, as well as in abstinent
methamphetamine users, although this latter observation was in the
frontal lobes (Ernst et al., 2000; Huang et al., 1999; Jack, 2012). This
pattern is intriguing given that deficits in learning and memory repre-
sent one of the robust areas of reported cognitive dysfunction in mar-
ijuana users (Solowij and Battisti, 2008). Although our data analyses
do not suggest that female marijuana users in this sample are more
vulnerable to cognitive impairments (Becker et al., under review),
this is a relatively young and high functioning sample. It may be
that frank behavioral deficits will emerge more strongly in females
over time as chronicity of use progresses. We hypothesize, too, that
we may have observed altered NAA levels had we also measured
frontal concentrations of each metabolite.

Even though our statistical analyses do not show any significant ef-
fect of alcohol, it is important to consider the possibility of an underly-
ing biological interaction between the two substances. Male
marijuana users in this study had the highest levels of alcohol use, but
did not show significant neurochemical alterations relative to controls.
Females showed the greatest apparent impact of marijuana use on GIx
and mins, but in the context of lower levels of alcohol use. These find-
ings could suggest a neuroprotective effect in individuals who use
both marijuana and alochol, as described by others (Squeglia et al.,
2009a). Alternatively, previous work has shown greater levels of Glx
in the anterior cingulate of chronic alcohol users relative to controls
(Yeo et al,, 2013). Considering this, taken together with the findings of
the present study, it is possible use of the two substances together
may drive metabolite concentrations to “normal” levels via opposing
processes, as has also been suggested by others in the context of brain
morphology (Squeglia et al., 2009a). Differences in metabolic function
in heavier versus lighter alcohol users can also impact the conversion
of acetate into glutamate (Jiang et al., 2013). It is possible, then, that
the male marijuana users in this study who were heavier alcohol
users as compared to females, demonstrated differences in glutamate
metabolism, contributing to the observed sex difference. However this
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assertion is only speculative. While our data do not fully support these
conclusions, the issue of alcohol use in the context of marijuana use re-
quires careful examination in future studies.

Sex but not group-related effects were also observed in total choline
estimated concentrations (scaled to total creatine). Independent of
marijuana use, males showed higher estimated concentrations of tCho
compared to females. Numerous choline-containing compounds con-
tribute to the tCho signal measured in this study, complicating the inter-
pretation of this sex difference. For example, phosphatidylcholine plays
an important role in the phospholipid bilayer in cell membranes, and
choline is essential in the formation of the neurotransmitter acetylcho-
line. Generally speaking, increases in choline signal in the brain have
been demonstrated in cases with pathology (Govindaraju et al.,, 2000).

5. Limitations of the study

While this study has numerous strengths, it is not without limita-
tions. Given time constraints on the scanning protocol, glutamate and
glutamine could not be resolved separately from the acquired spectra.
Even though this is a common problem, especially at lower field
strengths (i.e,, 3 T and lower), it poses limitations on the interpretation
of the data because of the different biochemical functions of these me-
tabolites. After release of glutamate into the synapse, cycling between
glutamate and glutamine occurs in glial support cells in order to main-
tain high SNR in glutamatergic neurons, and to protect against adverse
excitotoxic effects (Daikhin and Yudkoff, 2000). Resolution of the gluta-
mate versus glutamine signals would allow stronger interpretations to
be offered regarding the meaning of the low levels observed in female
users. Given that more extensive spectroscopy scanning is time-
intensive and requires higher field strengths to be conducted most effi-
ciently, these findings together with other recent studies (Chang et al.,
2006; Prescot et al., 2011; Silveri et al, 2011) suggest that a more
in-depth examination of neurochemical metabolism within frontostriatal
circuits in heavy marijuana users is warranted. Another limitation of the
study is the constrained spatial resolution of the spectra. It would be
beneficial to examine additional brain structures, however spectral reso-
lution was chosen over spatial resolution for the current study. Moreover,
while the sample sizes are small in relation to the reported group by sex
interactions, numerous reports exist which demonstrate a similar a pat-
tern of sex-effects, where females who use or are exposed to illicit sub-
stances (including marijuana) are differentially affected (EI Marroun et
al,, 2011; McQueeny et al,, 2011; Squeglia et al., 2011). Finally, we did
not measure urine or hair concentrations of THC, so it is possible that
participants in the study used less marijuana than they reported. We
find this to be unlikely given the level of detail that was provided about
habits surrounding use in our direct interviews, participants' consistent
reporting regarding their symptoms of DSM-IV marijuana dependence,
and concomitant evidence of neurocognitive impairment consistent
with marijuana exposure (Becker et al., under review). Further, the
majority of previous studies that collected urine/hair data and quanti-
fied cannabinoid concentrations did not show significant associations
between these concentrations and brain metabolite data, suggesting
such data are perhaps not necessary for this type of analysis in the
presence of detailed clinical assessments. Nonetheless, the study would
be strengthened by the ability to compare brain metabolic data with
cannabinoid levels as obtained by blood, hair or urine analysis.

6. Conclusion

Marijuana use is becoming more prevalent on college campuses
and its legalization is being increasingly discussed and advocated
(Caulkins et al,, 2012; SAMHSA, 2011). The sample studied here is
representative of relatively high functioning college students (and
thus typical of users on college campuses) in terms of their
higher-than-average 1Qs, middle income status, and low risk for
other forms of psychopathology. Alcohol use, which was more

extreme in the drug user sample, was controlled in the data analysis.
Thus, the patterns observed here can be more readily linked to mari-
juana exposure and are not likely due to the presence of other con-
founds that have been raised in other studies such as comorbid
depression and concomitant psychoactive medication use (Prescot
et al,, 2011), as well as limitations of analyses restricted to only one
sex (Hermann et al., 2007; Silveri et al., 2011), Moreover, like Silveri
et al. (2011), this study focuses on individuals in the midst of active
use versus abstinence or withdrawal and thus represents a snapshot
of how the brain is metabolically functioning during daily life.
Moving forward, it will be important to collect additional data,
which has both higher spectral and spatial resolution. Having higher
spectral resolution will allow for the distinction between glutamate
and glutamine to be made, and will also allow for additional metabo-
lites to be quantified. Better spatial resolution will allow for re-
searchers to decipher whether the effects described in this report
are localized to the basal ganglia, or if they are distributed throughout
cortical and subcortical regions. Moreover, the sex differences
reported here suggest intriguing avenues through which hormonal
state might interact with neurochemistry in the basal ganglia to im-
pact that region's integrity of function in the context of drug use. In
addition, the question of whether marijuana use leads to tissue dam-
age, or whether the neurochemical imbalances observed here repre-
sent characteristics inherent to those who use the substance on a
regular basis, remains unclear. Prospective longitudinal studies are
needed to follow individuals over time, prior to and after the initia-
tion of substance use, to gain a better understanding of the exact in-
terplay between substance use and the underlying neurophysiology.
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