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ABSTRACT
Altered chromatin structure is a hallmark of cancer, and inappropriate regulation 

of chromatin structure may represent the origin of transformation. Important studies 
have mapped human nucleosome distributions genome wide, but the role of chromatin 
structure in cancer progression has not been addressed. We developed a MNase-
Transcription Start Site Sequence Capture method (mTSS-seq) to map the nucleosome 
distribution at human transcription start sites genome-wide in primary human lung 
and colon adenocarcinoma tissue. Here, we confirm that nucleosome redistribution 
is an early, widespread event in lung (LAC) and colon (CRC) adenocarcinoma. These 
altered nucleosome architectures are consistent between LAC and CRC patient 
samples indicating that they may serve as important early adenocarcinoma markers.  
We demonstrate that the nucleosome alterations are driven by the underlying 
DNA sequence and potentiate transcription factor binding. We conclude that DNA-
directed nucleosome redistributions are widespread early in cancer progression. We 
have proposed an entirely new hierarchical model for chromatin-mediated genome 
regulation.

INTRODUCTION

Despite the central role of chromatin as the ultimate 
substrate for all nuclear events, the structure of chromatin 
remains poorly characterized. The human genome is 
packaged into chromatin, whose fundamental subunit is 
~147bp of DNA wrapped around a histone octamer to 
form the nucleosome [1]. The location and density of 
nucleosomes with respect to the underlying DNA sequence 
is an important factor in determining access to the genome 
for DNA-templated processes [2-4]. Little is known 

regarding the precise role of nucleosome distribution in 
these processes, because there have been relatively few 
studies measuring the distribution of nucleosomes across 
the genome in multiple cell types and physiological 
contexts.

Genome-wide nucleosome distribution information 
is critically important for understanding genomic 
processes, yet this information is lacking for a variety 
of human cell states. Genome-wide measurements of 
the locations of genome binding factors by Chromatin 
immunoprecipitation (ChIP), polymorphisms by exome 
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sequencing, or DNA methylation by bisulfite conversion, 
have become routine and robust assays of genomic 
structure and organization. A literature search on any of 
these assays returns thousands of results, while searches on 
“nucleosome distribution” returns an order of magnitude 
fewer results. Only a handful of seminal papers have 
measured genome wide human nucleosome positions in 
a limited number [1-2] of cell states [5-8]. To address this 
shortcoming, we have developed a robust, cost-effective 
sequencing-based nucleosome distribution mapping 
platform to analyze chromatin structure at the transcription 
start site (TSS) of ~22,000 open reading frames in the 
human genome. We have applied this approach to study 
the nucleosome distribution in primary patient tumor 
samples representing multiple stages and grades of both 
lung adenocarcinoma (LAC) and colorectal cancer (CRC). 

A complete understanding of the distribution of 
nucleosomes across the genome in cancer is currently 
lacking, yet it is critically important for understanding 
cancer etiology in basic biological and clinical contexts. 
We have previously shown extensive nucleosome 
distribution changes at a subset of genes in patients with 
low-grade LAC,[9]. Mononucleosomally protected DNA 
was isolated from patient derived primary LAC tissue and 
used to query high-resolution tiling microarrays. These 
microarrays were custom-designed to measure nucleosome 
distribution changes at the 2000 bp surrounding the TSS of 
~900 cancer- and immunity-related genes. Those studies 
were limited in the breadth of loci studied by the number 
and density of probes that it was possible to print on the 
microarray. In the present report, we have redesigned the 
original experimental approach for the targeted sequencing 
of TSSs by paired-end sequencing.

We have developed a solution-based sequence 
capture method enabling the enrichment of the 2000 bp 
surrounding the TSS of ~22,000 open reading frames in 
the human genome. Due to the importance of promoter 
composition in gene regulation, we designed the method 
to map nucleosomes at the regions surrounding the TSS. 
This capture method reduces the sequence space of the 
human genome from 3.4 Gb in total to ~50Mb of TSSs, 
a 98.5% reduction. This enrichment is analogous to 
that achieved for well-documented exome sequencing 
experiments [10]. Using this targeted enrichment of 
mononucleosomally-protected DNA, which we call 
mTSS-seq (MNase-protected DNA, transcription start 
site capture- sequencing), we were able to achieve high 
enough sequencing coverage to determine individual 
nucleosome positions, at an average of ~100 reads per 
nucleosome, exceeding the necessary coverage for high-
resolution nucleosome position mapping [5, 7, 11, 12]. 

 This technique represents a unique source of 
nucleosome distribution information at the TSS, and 
has not been previously executed on a genome-wide 
scale. The relative enrichment or reduction of sequences 
from this assay allows us to determine changes in 

nucleosome distribution among a variety of sample 
types. This approach offers several clear advantages. 
Our approach measures nucleosome distribution at all 
TSS in the human genome. The targeted enrichment 
is a cost-effective approach to whole genome studies 
and allows for comprehensive nucleosome distribution 
mapping to be completed on several samples. This 
nuclease protection assay is highly relevant to diffusible 
molecules such as transcription factors and the paired end 
sequencing approach provides information on protected 
fragment size. We can therefore use this assay to analyze 
subnucleosomal-sized fragments for an additional layer 
of genomic regulatory information [11, 13]. Using our 
newly developed mTSS-seq approach, we have mapped 
nucleosome distribution with unprecedented breadth and 
depth in human cancer patient samples.

RESULTS

Development of a solution-based TSS-enrichment 
sequence capture method for mononucleosome 
DNA from primary patient tissue 

In this study, we measured genome-wide chromatin 
structure in primary patient tumors using a newly 
developed approach that we present here for the first 
time. At the outset, we used matched tumor and normal 
tissue from grade one and three LAC patients on which 
we have previously reported [9]. The workflow is shown 
in Figure 1A where, following digestion with MNase, 
mononucleosomal DNA was isolated (all material below 
~150bp was excised from a 2% agarose gel). In many 
cases we used the exact mononucleosomally protected 
DNA sample prepared for the original report on these 
patients (Supplementary Table 1 – MNase preparation 
column). This MNase digested, mononucleosome DNA 
material was used to prepare multiplexed libraries. 
Notably, selection of material from the nucleosomal 
ladder that was 150bp and lower allowed for analyses of 
subnucleosomal fragments derived from other non-histone 
DNA-binding proteins such as transcription factors. 
We efficiently tracked addition of adaptor and barcode 
ligated material at every step of the library preparation 
and accurately quantified the exact number of molecules 
adjusted for size to be sequenced. This ensured that the 
majority of the reads we obtained would strictly give 
nucleosome and subnucleosome information.

Following preparation of the libraries, we used 
our custom-designed solution-based sequence capture 
to select the 2000bp surrounding the TSS of ~22,000 
human open reading frames, allowing us to capture 
nucleosomes covering ~48Mb of the human genome. 
Prior to performing paired-end sequencing on the captured 
material, we quantified the enrichment of our sequence 



Oncotarget13431www.impactjournals.com/oncotarget

Figure 1: The newly developed mTSS-Capture method combined with paired-end sequencing maps genome-wide 
nucleosome distribution in primary patient samples and identifies bona fide nucleosome characteristics, concordant 
with other human nucleosome mapping studies. A. Work-flow of the mTSS-seq method. Following MNase digestion using 
a titration of MNase, populations of mononucleosomally protected DNA and subnucleosomal fragments are isolated, and prepared as 
libraries for Illumina sequencing. Solution-based sequence capture is performed using biotinylated oligos, enabling the enrichment of 
fragments within 2kb of each transcription start site in the human genome. Paired-end 50bp sequencing was then performed on each index. 
B. Alignment of the mTSS-seq midpoints to the human genome using the UCSC genome browser for LAC patient #4137 Normal tissue is 
shown for chr11, hg19 (http://genome.ucsc.edu). Zooming in twice at 100X allows for further visualization of the sequence capture oligos 
surrounding the TSS in a 500kb and a 5kb region showing the ATM locus. C. Averaged, normalized reads per million (y-axis) from mTSS-
seq plotted as fragments (gray) and midpoints (black), centered on and surrounding 2kb of the TSS for ~22,000 open reading frames in 
hg19 (x-axis). DNase I-hypersensitivity (GSM736580; green) and RNA polymerase II from ChIP-seq (GSM935299; blue) data from A549 
cells are shown. (D) LAC patient 4137 Normal nucleosomal midpoints (blue track) were plotted in the UCSC genome browser against the 
published human lymphocyte nucleosome distribution maps by Gaffney et. al. (green track) for the ZNF451 and CCDC97 loci. Sequence 
capture oligos and corresponding RefSeq gene models are shown for each locus. Correlations are shown for ZNF451 and CCDC87, 
respectively.
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capture by qPCR using specific primers to regions on-
target and off-target from the capture (Supplementary 
Table 2). In the captured libraries, the difference between 
the on-target (enriched) and off-target (depleted) CT values 
differed at an average of 9 cycles, a minimum of 100-
fold enrichment (Supplementary Figure 1A). Following 
sequencing, we aligned the paired-end reads to the human 
genome and determined the size of each fragment from 
the separation of the paired ends (Supplementary Figure 
1B). The majority of the sequenced fragments were 
within the 75-200bp size range, showing that the range 
of sizes across samples was relatively consistent. Figure 
1B shows the frequency of inferred nucleosome midpoints 
in genome traces across chromosome 11, and zoomed in 
twice at 100X to eventually show a single locus (TSS of 
the ATM gene) and the resulting nucleosome distribution 
map (Figure 1B). The sequence capture oligos used to 
capture the 2kb surrounding the TSS are shown in this 
view, along with the data corresponding to the targeted 
regions, which in every case made up over 90% of the 
total sequencing reads (Supplementary Table 3). 

Paired-end reads generated by mTSS-Seq yield 
typical nucleosome characteristics, and are 
concordant with previous reports in the literature

To validate the use of mTSS-seq to accurately map 
nucleosome distribution we identified typical nucleosome 
characteristics in our data, and compared our data to 
other published human nucleosome mapping studies. To 
determine whether our data contained typical nucleosome 
properties we plotted both the average nucleosome 
distribution for all TSSs in the genome and determined 
dinucleotide frequencies. Nucleosome organization 
averaged around the TSS of ~22,000 human genes shows 
a canonical structure with phased nucleosomes centered 
on a nucleosome depleted region [7]. We determined 
the average nucleosome organization at the TSS for our 
data by aligning all TSSs and plotting the corresponding 
sequence fragment midpoints for the 2kb surrounding the 
TSS (Figure 1C). Our mTSS-seq data recapitulate the 
pattern of other studies that plotted average nucleosome 
occupancy at the TSS in humans, where there is a 
NDR (nucleosome-depleted region) surrounding and 
immediately downstream of the TSS, with well-positioned 
nucleosomes flanking the NDR [7]. Additionally, 
we demonstrated that the NDR directly upstream of 
the TSS overlaps with a peak in genomic DNase I 
hypersensitivity, and a ChIP peak for RNA polymerase 
II is seen just downstream of the TSS within the gene 
body, as anticipated [7, 14-17]. We further validated our 
technology with a sequence analysis of the nucleosome-
sized fragments generated by mTSS-seq.

A major determinant of the ability of DNA to 
conform to the histone octamer into a nucleosome is 

the specific patterns of dinucleotides [18]. Specifically 
periodic AA distributions occur in sequences higher 
than expected, and are thought to be responsible for 
genome organization into nucleosomes [19-22]. The 
periodic occurrence of A/T containing dinucleotides at 
~10 bp intervals was calculated from first principles and 
verified in several subsequent studies [23-26]. When we 
examined the dinucleotide frequency of 150 bp fragments, 
we found the acknowledged 10bp periodicity for A/T 
containing dinucleotides, comparable to the frequency 
patterns identified in other human studies (Supplementary 
Figure 1C) [5, 26, 27]. These results affirm that the high 
resolution maps provided by mTSS-seq are consistent with 
the major qualitative features of nucleosome distribution 
at the TSS, and with the sequence composition of bona 
fide nucleosomal particles.

We next wanted to verify that our mTSS-seq data 
agreed with precedent human nucleosome mapping 
studies at specific loci. This comparison is particularly 
important, as averages and qualitative measures of general 
nucleosome distributions are not necessarily sufficient to 
make claims about nucleosome organizations at specific 
loci. We compared the nucleosome distribution data 
of normal lung epithelial patient tissue from our study 
(patient #4137N) to data from a human lymphoblastoid 
cell line, and found a positive global correlation of 
0.37 [5]. We have shown two representative examples 
at the loci ZNF451 (r=0.84) and CCDC97 (r=0.52), 
demonstrating the similarity between our mTSS-seq 
derived data and the lymphoblastoid cell line data (Figure 
1D). We next validated the mTSS-seq data by comparison 
to our previously published microarray-based study [9]. 
We have been able to detect changes in nucleosome 
distribution between normal and tumor tissue in the early 
LAC patients, and these changes are consistent with 
those observed by microarray (Supplementary Figure 
1D). Our comprehensive mTSS-seq approach therefore 
allows the generation of nucleosome distribution maps 
and measurement of changes between samples with 
similar accuracy to previously published studies, with 
an increased breadth, querying all TSSs of the human 
genome.

mTSS-Seq identifies specific nucleosome 
architectures and genome-wide nucleosome 
distribution alterations in the progression of LAC

Our previous study demonstrated that nucleosome 
redistributions occurred at 50% of the ~900 TSS studied. 
It was important to determine whether the widespread 
nature of these changes was limited to the loci studied in 
the previous investigation, or whether these changes were 
part of a larger genome wide nucleosomal reorganization. 
To investigate genome-wide changes in nucleosome 
distribution at the TSS, we first calculated the difference 
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between the normal and tumor datasets for each patient. 
Sorted difference maps of these data show that the grade 
one nucleosome distribution differences are widespread 
and dispersed throughout the genome, while these 
differences are greatly diminished in both grade three 
patients (Figure 2A). Additionally, the difference maps 
show that the widespread changes observed exclusively 
in the grade one patients are associated with a lower 
occupancy in the tumor as compared to normal. These 
results demonstrate that the nucleosome distribution 
changes exclusive to the grade one tumors are widespread 
and shows lower occupancy at the TSS across the entire 
human genome. 

In order to determine if the genome wide 
nucleosome distribution changes in grade one tumors 
were similar between patients, we quantified the overlap 
in genes with nucleosome distribution alterations between 
the grade one patients. We first calculated the correlation 
between normal and tumor for each grade one patient 
for every gene, and then identified overlapping genes 
in the least correlated 20% (~4,300 genes). We found 
that 1,804 genes with the greatest degree of change 
between normal and tumor overlapped between the 
grade one patients (Figure 2B). Additionally, the grade 
one patients showed a broad range of low correlation 
values (ranging from -0.5-0.8), whereas the grade three 
patients had a smaller range of values (ranging from 0.5-
0.9) (Figure 2C). The significant degree of overlap in 
nucleosome distribution changes suggests a concerted set 
of nucleosome distribution changes for these loci in early 
adenocarcinoma. 

To test for nucleosome distribution organizations 
in the early tumors that might indicate shared chromatin 
structural events in early LAC, we categorized 
nucleosome profiles surrounding each TSS in the 
genome. We used k-means to align and cluster all genes 
based on nucleosome occupancy for a patient tumor 
and matched normal tissue (Figure 2D). Since it was 
previously determined that four significantly distinct 
clusters defined nucleosome architectures, we used k=4 for 
k-means clustering of our data, and grouped the profiles 
in a window of 1000bp surrounding the TSS of the entire 
genome [12]. We found that decreasing the number of 
clusters combined clusters 1 and 4, whereas increasing the 
number of clusters separated cluster 3 into two separate 
clusters (each new cluster emphasizing the -1 and -2 
nucleosomes, respectively, which are shown together in 
the current cluster 3). Therefore, we determined that four 
clusters showed the most distinct nucleosome architectures 
for primary LAC patient samples. We observed that across 
the genome there are differences between the normal 
and tumor patient samples, with the most pronounced 
changes occurring in clusters 1 and 4. We show a global 
loss of nucleosome occupancy and increased nucleosome 
phasing in the tumor sample. Clusters 1 and 4 display an 
impressive loss of nucleosomal occupancy upstream of 

the -1 nucleosome. These clusters indicate that changes in 
nucleosome occupancy in the grade one patients may play 
a role in the concerted gene regulation associated with 
transformation.

We next wanted to determine whether the 1,804 
TSSs with altered nucleosomal structure shared in 
common between low-grade patients grouped into any 
particular cluster. We found that the majority (76%) of the 
1804 shared genes were located in clusters 1 (32%) and 4 
(44%) (582 and 799, respectively). Upon testing whether 
genes in each cluster were enriched for any particular gene 
ontology (GO) process, we found that each cluster had 
statistically significant GO enrichment (Figure 2E) [28]. 
Interestingly, genes in clusters 1 and 4 were each enriched 
for GO processes including chromatin and cancer-
associated processes, such as nucleosome assembly, 
mRNA process, and mitotic G2 DNA damage checkpoint. 
Additionally, the genes in clusters 1 and 4 shared identical 
GO function for G-protein coupled receptor activity 
(P-value=1.51 x 10-19). Clusters 2 and 3 were enriched for 
genes with very general cell and molecular processes.

Nucleosome distribution alterations are consistent 
between patients with early LAC

The similarity in the degree of difference between 
normal and tumor tissue for the grade one patients, the 
high overlap between patients for loci with altered 
nucleosome distribution, and the enrichment of those loci 
in related ontological categories indicated consistency 
between patients. We next visually inspected the 
nucleosome redistributions at specific loci to see whether 
the nucleosome distribution patterns at individual loci 
were similar between patients. The average nucleosome 
distribution plots for the 1,804 shared grade one genes 
showed many changes in nucleosome distribution among 
the grade one patients, and few changes among the grade 
three patients (Figure 3A). The loss of occupancy in the 
grade one tumor is particularly clear in these average 
plots, with a majority of this loss occurring downstream 
of the TSS. Figure 3 shows five representative genes 
that are misregulated in adenocarcinoma: ATM, CASC1, 
CDKL2, CCR10, and HKR1 (Figure 3B-3F) [29-39]. 
In each case, the locus showed substantial differences 
between the grade-one patient normal and tumor samples. 
In a majority of cases we found that specific nucleosome 
distribution changes were consistent between and unique 
to the grade-one tumors (Figure 3B-3F, “Grade One” 
column, highlighted). Grade-three tumor samples rarely 
deviated from the nucleosome distribution pattern seen 
in normal tissue (Figure 3B-3F, “Grade Three” column, 
gray shaded). These results confirm a common mechanism 
driving the nucleosome distribution changes in the grade 
one tumors. 



Oncotarget13434www.impactjournals.com/oncotarget

Figure 2: Widespread nucleosome distribution changes are common between grade one patients and have specific 
nucleosome architectures that are enriched for specific GO processes. A. Heatmaps representing Normal minus Tumor 
differences are shown for each patient at each TSS in the human genome (~22,000 genes). Loci are sorted on the mean difference value 
across 2000 bp surrounding the TSS (white line) for all genes, ordered on the basis of each patient’s corresponding normal data. The two 
grade one patients are on the left and the two grade three patients are on the right. Black represents areas with few differences between 
normal and tumor, yellow (positive values) indicates higher nucleosome occupancy in the normal and blue (negative values) indicates 
higher nucleosome occupancy in the tumor. B. Correlation values were calculated between normal and tumor for each grade one patient, 
and the genes in the lowest 20% (indicating change between normal and tumor) were selected (~4,300 genes each). The overlap of genes 
determined as changed for each grade one patients is shown, 1,804 genes. C. Correlation values between normal vs. tumor for each of the 
common 1,804 genes are plotted as boxplots for each patient, showing a range of lower correlation values in both the grade one patients 
(left two boxplots) as compared to the range of higher correlation values in the grade three patients (right two boxplots). D. The average 
nucleosome occupancy and corresponding heatmaps are shown for the Normal (black) and Tumor (red) data for grade one patient #4137, 
generated using k-means clustering with k=4 centered on the 1000bp surrounding the TSS for every human gene. The four clusters contain 
3,460, 7,665, 4,246 and 6,486 genes, respectively. In the average plots, the y-axis is the mean score for both normal (black) and tumor 
(red) data, for each cluster. The x-axis is the genomic position for both the average plots and heatmaps. In the heatmaps, white represents 
nucleosome depletion and black (normal) or red (tumor) represents nucleosome occupancy. We determined that the majority of the 1,804 
genes identified in part B of this figure belonged to clusters 1 and 4. E. The enrichment of genes in each cluster for a ontologic process was 
calculated. The four processes most overrepresented by genes are shown for each cluster with corresponding P-value.
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Figure 3: Average and gene-specific plots show many nucleosome distribution changes that are consistent between 
patients in low-grade tumors and minimal changes in high-grade tumors. A. Average nucleosome distribution of normal 
tissue (black) and tumor tissue (red) for grade one patients (#4137 and #1357) and grade three patients (#873 and #386) for 1,804 genes 
shared between grade one patients. Five additional genes implicated in cancer are shown B. ATM C. CASC1 D. CDKL2 E. CCR10 and F. 
HKR1. The x-axis represents a 2kb range of genomic position centered on the TSS, and the y-axis is fragments per million. Regions with 
most significant change in the grade one patients are highlighted in a shaded red for emphasis, while corresponding regions of no change 
in grade three patients are shaded in grey.
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Nucleosome distribution changes are driven by 
DNA sequence

Given the commonalities between the nucleosome 
distribution changes between the patients, we wanted 
to understand the influences driving the nucleosome 
distribution changes in the grade one samples. 
Nucleosome distributions are governed by the interplay 
between regulatory complexes, such as transcription 
factors and chromatin remodelers, and features intrinsic 
to the DNA sequence. We were interested in determining 
the extent to which DNA sequence contributed to the 

grade-one changes. We compared our experimentally 
determined nucleosome distributions to computationally 
predicted nucleosome occupancy scores based solely 
upon primary sequence [40, 41]. We reasoned that if DNA 
sequence played a role in in these distributions, then the 
predictions based upon the computational model would 
match the measured nucleosome distributions in the grade-
one samples. 

Of the 1,804 loci with nucleosome distribution 
changes shared between the grade-one patients, an average 
of ~1,500 genes (85%) had a higher correlation with the 
DNA-encoded nucleosome positions than the matched 
normal sample, indicating that those loci are moving 

Figure 4: Nucleosome distribution changes are driven by DNA sequence. A. Correlation values for the normal patient data 
(black) and grade one tumor patient data (red) versus the computationally predicted DNA encoded nucleosome occupancy model. The 
x-axis is the 1,804 genes in common between grade one patients, sorted on the correlation of the tumor data with the DNA encoded 
nucleosome occupancy model, and the y-axis is the Pearson’s correlation coefficient from the comparison of each data set versus the 
computational model values. B. The correlation values for the average data from the normal tissue (black) and grade three tumor tissue 
(red) versus the DNA encoded nucleosome occupancy. Axes are identical to those in (A). The nucleosome distribution data for normal 
tissue (Normal, black lines) and grade one tumor tissue (red lines) are shown compared to DNA encoded nucleosome occupancy model 
scores (blue- DNA encoded, four genes from Figure 3: C. ATM, D. CASC1, E. CDKL2, and F. CCR10. The x-axis represents a 2kb range 
of genomic position centered on TSS. The y-axis is the normalized fragments per million. Regions with most significant difference in the 
normal compared to the model are highlighted in a shaded red for emphasis, while corresponding regions of no change in the grade one 
tumor compared to the model are shaded in grey. Correlation values between the data and model are included for each gene; in all cases, 
the model is more highly correlated with the grade one tumors than the normal tissue or grade three tumors.



Oncotarget13437www.impactjournals.com/oncotarget

to positions favored by the underlying DNA sequence 
(Figure 4A). In contrast, the same loci in the grade three 
tumors did not show increased agreement with the DNA-
encoded positions; rather, the correlations between the 
grade three tumor and model based on DNA sequence 
were similar to those between the matched normal and 
model. Overall, the loci for the average grade one tumor 
data showed an average 215% increase in correlation 
with the computational model, as compared with the 
average normal data. The grade three tumors showed a 
17% decrease in correlation to the computational model 
compared to normal.

We then determined the DNA-directed nature of 
grade one tumor nucleosome distribution changes at 
individual loci. We co-plotted the nucleosome distribution 
data with the DNA-based model of nucleosome occupancy 
at the representative loci analyzed earlier. The agreement 
between the grade one nucleosome redistributions and 
the positions directed by the underlying DNA sequence 
was evident when we plotted the measured and predicted 
nucleosome distributions at specific loci (Figure 4C-4F). 
The correlation coefficient was always highest in the 
predicted versus grade-one data. These results suggest that 
DNA-encoded nucleosome signals direct nucleosomes to 
default positions upon transformation in early LAC.

Altered nucleosome distribution in LAC 
potentiates transcription factor binding

In order to determine whether transcription 
factor binding occurred in the context of nucleosome 
redistributions in LAC, we first calculated regions of 
difference between normal and tumor throughout all TSSs 
for grade one and grade three patients. We found ~18,000 
regions of difference in the grade one and ~6,000 regions 
of difference in the grade three samples by this method 
(Figure 5A). The threshold applied to determine regions of 
difference was the most stringent cut-off that discriminated 
between the samples, while revealing a substantial enough 
number of regions to perform downstream analyses in the 
grade three patients since there were far fewer regions 
of difference than in the grade one patients. Overall, the 
total difference values for the grade one patients have a 
much higher range than the values for grade three patients. 
Therefore, although a region was determined above a 
threshold, the difference value was reliably lower in the 
grade three compared to the grade one patients, agreeing 
with our earlier observations that changes in nucleosome 
distribution occur early in the progression of cancer 
(Supplementary Figure 2A).

Using transcription factor binding site (TFBS) data 
identified by ChIP-seq in a lung adenocarcinoma cell line 
(A549) we quantified binding sites for nine transcription 
factors Ctcf (GSM803456), Bcl3 (GSM1010775), 
Yy1 (GSM1010794), Sin3a (GSM1010882), Taf1 

(GSM1010812), P300 (GSM1010827), Creb1 
(GSM1010719), Ets1 (GSM1010829) and Atf3 
(GSM1010789) at the regions of difference in grade 
one and grade three patients [42]. In order to determine 
enrichment, we shuffled the TFBSs identified in the 
A549 study and then calculated a ratio of the number 
of binding events in the regions of difference to that 
shuffled control (a value of one indicates no significant 
enrichment or depletion compared to the shuffled data). 
We found significant enrichment over shuffled TFBSs 
tested at regions of difference in the grade three patients, 
and depletion of TFBSs in the grade one patients (Figure 
5B). In order to verify that the TFBS depletion in the 
regions of difference was a feature exclusive to the grade 
one patients, we first determined the overlap of regions of 
difference between the grade one and grade three patients, 
and we found that 2,331 regions were shared in common 
(Figure 5C, Supplementary Figure 2B-D). When we 
compared each of these categories to TFBSs, we found 
that the regions unique to grade one patients were depleted 
of TFBSs, whereas the shared genes and the genes unique 
to grade three patients were highly enriched for TFBSs 
(Figure 5D). These results suggest that changes in 
nucleosome distribution in the grade one tumors broadly 
alter access to the genome, and the changes that persist in 
the grade three patients are likely the result of differential 
transcription factor binding.

To investigate whether the nucleosome distribution 
changes in the grade one tumors exposed DNA at loci 
for genomic licensing, we measured the proportion of 
subnucleosomal MNase protected fragments at regulatory 
factor binding sites. It has been shown that subnucleosomal 
fragments (< 100±20 bp) derived from MNase digestion of 
DNA may act as a proxy for protection by DNA-binding 
proteins, such as transcription factors.[11, 13] To test the 
hypothesis that nucleosome distribution changes alter 
access to the genome potentiating transcription factor 
binding, we examined binding alterations at specific 
transcription factor binding sites. Using subnucleosomal 
fragment data for all fragments less than 125bp from grade 
one and grade three patients we plotted all reads centered 
on the binding sites for Ctcf (Figure 5E) and Creb1 (Figure 
5F). We found that when normal and tumor tissue were 
compared, there is a 13% decrease in binding of Ctcf and 
a 19% decrease of Creb1 binding in the grade one patients, 
while for the grade three patients there was a 47% increase 
in binding of Ctcf and a 31% increase of Creb1 binding. 
We also plotted the nucleosome size fragments with a 
size range of 130-175bp for each patient and transcription 
factor, and confirmed that these inferred transcription 
factor binding events were associated with nucleosome 
free regions, typical of regulatory factor binding sites [11, 
13]. Taken together, our results suggest that nucleosome 
redistribution, which provides the opportunity for 
transcription factors to bind with a greater probability, is a 
potentiating event in the progression of cancer. 
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Figure 5: Altered nucleosome distribution in LAC potentiates transcription factor binding. A. Regions of difference 
in grade one patients (17,565) and grade three patients (5,916), obtained by thresholding regions with a difference greater than 5. The 
threshold applied to determine regions of change was the most stringent cut-off that discriminated between the samples, while revealing 
a substantial enough number of regions to perform downstream analyses in the grade three patients since there were far less regions of 
change than in the grade one patients. Regions common between patients were merged so that duplicated regions were removed. We 
identified 17,565 regions of difference in the grade one patients and 5,916 regions in the grade three patients. B. We determined the 
number of transcription factor binding sites for each region of difference in the grade one and the grade three patients, and calculated the 
ratio between the observed/shuffled. The black vertical line is drawn at 1, and values above 1 represent enrichment and below 1 represent 
depletion of transcription factor binding sites in the regions. We performed this analysis for nine transcription factors: Ctcf (GSM803456), 
Bcl3 (GSM1010775), Yy1 (GSM1010794), Sin3a (GSM1010882), Taf1 (GSM1010812), P300 (GSM1010827), Creb1 (GSM1010719), 
Ets1 (GSM1010829) and Atf3 (GSM1010789). C. Venn diagram of overlap between regions corresponding to genes between the grade one 
patients and grade three patients: regions unique to grade one patients, shared regions, and regions unique to grade three patients. D. For 
each of the categories from panel C, we determined the enrichment of transcription factor binding sites at the regions of difference through 
the same procedure and for the same nine transcription factors from panel B. The colored boxes correspond to the categories determined 
from the Venn diagram in panel C. Subnucleosomal fragment data (<125bp) for normal (black lines) and tumor (red lines) for each grade 
one patient #1357 and grade three patient #873 were aligned and centered on representative transcription factor data E. Ctcf (GSM803456) 
and F. Creb1 (GSM1010719) peaks from ChIP-seq in A549 cells. Additionally, nucleosome size fragment scores (130-175bp) for normal 
(shaded, dashed black lines) and tumor (shaded, dashed red lines) for each patient were also aligned and centered on Ctcf and Creb1 peaks.
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Nucleosome distribution changes are widespread 
in the progression of CRC, consistent with 
LAC, driven by DNA sequence and potentiate 
transcription factor binding

To determine whether the widespread nucleosome 
redistributions were a feature unique to LAC or if 
nucleosome alterations are a common characteristic 
of adenocarcinoma types, we mapped the nucleosome 
distribution in CRC patients. We performed mTSS-seq 
on matched normal tissue and tumors of stage two (S2), 
stage three (S3) and stage four (S4). We calculated the 
correlation between normal and tumor nucleosome 
distribution for each patient, and found widespread 
changes in patients with early-CRC (S2 and S3). There 
were 2,133 genes shared in common between these 
patients early CRC patients. We next compared these 2,133 
common CRC genes with the 1,804 common LAC genes, 
and found 709 genes with altered nucleosome distribution 
shared between LAC and CRC. The nucleosome 
distribution at the ATM, HKR1, NOP16, and KIF2B 
genes for early LAC and all CRC patients showed that 
the nucleosome redistributions identified are consistent 
between the early CRC CRC patients, and are absent in 
the advanced (S4) CRC patient (Figure 6A-6D). These 
plots also show that nucleosome redistributions in early 
CRC are consistent with changes in early LAC patients for 
ATM, HKR1, NOP16, and KIF2B genes (Figure 6A-6D) 
[29, 35, 38, 39]. This consistency between the two early 
adenocarcinomas is an important finding, indicating that 
nucleosome redistributions are a common genomic feature 
of early transformation.

To assess the role of cis and trans-acting factors 
governing nucleosome redistributions in the progression 
of CRC, we first compared the experimentally determined 
nucleosome distributions for the common CRC genes to 
the computationally predicted model. We found that the 
early CRC tumors had a higher correlation than normal 
with the predicted model at over 58% of genes. The S3 
CRC tumor and matched normal data compared to the 
predicted model at ATM and HKR1 genes showed a 
greater agreement between the predicted model and the 
tumor than between predicted model and the normal 
data (Figure 6E-6F). Finally, centering subnucleosomal 
fragments on CTCF binding peaks showed a decrease 
in binding in the early CRC patients and an increase in 
binding in the more advanced CRC patients (Figure 
6G). These results confirm that nucleosome distribution 
changes are widespread and consistent in both early LAC 
and CRC, are directed by the underlying DNA sequence, 
and likely potentiate an increase in transcription factor 
binding in advanced cancer.

DISCUSSION

A full comprehension of the relationship 
between chromatin structure and genome function in 
cancer necessitates genome-wide chromatin structural 
measurements at multiple points in time throughout cancer 
progression. Although there have recently been a handful 
of extremely important studies measuring nucleosome 
distribution in a variety of organisms, there have been no 
genome-wide nucleosome distribution maps in primary 
patient tumors compared to their matched normal tissue [5-
7, 9, 11, 12, 27, 41, 43]. To meet this need, we developed 
an innovative approach, mTSS-seq, to comprehensively 
measure genome wide nucleosome distribution changes in 
the progression of cancer. In this study, we validated our 
approach for high resolution, genome-wide nucleosome 
distribution mapping utilizing data from a very high 
quality human MNase-seq nucleosome mapping study, 
and our previous microarray based nucleosome maps from 
LAC patients. We anticipate that this first comprehensive 
analysis of the relationship between chromatin structure 
and genome regulation in the progression of cancer will 
pave the way for similar detailed studies in other diseases. 

In our previous work we introduced a model in 
which we identified widespread changes in nucleosome 
distribution as a feature specific to low grade cancer. We 
derived that model from the study of ~900 cell cycle- 
and immunity-related genes [9]. Because the original 
model was based on a limited set of genes, we wanted to 
determine whether the changes in nucleosome distribution 
were a widespread feature across all genes in the human 
genome. Therefore, we developed the mTSS-seq target 
enrichment platform to test and expand our original 
model across the entire human genome in multiple 
patient samples. Using mTSS-seq, we measured changes 
in nucleosome distribution between tumor and normal 
tissue, for each LAC patient, and made three initial 
striking discoveries: 1) nucleosome distribution changes 
are indeed a widespread feature across the entire genome 
in the tumor samples from early LAC patients, suggesting 
global dysregulation of chromatin remodeling as an early 
transformation event; 2) nucleosome distribution changes 
are consistent among the early LAC patients, suggesting a 
common dysregulation among patients; and, 3) widespread 
nucleosome distribution changes are comparatively absent 
in more advanced tumors, suggesting that the remodeling 
dysregulation does not persist into advanced tumors. 
Widespread nucleosome distribution changes that appear 
in low-grade as opposed to more advanced tumors that are 
consistent between patients indicates an early, concerted 
genomic event in the progression of cancer. It is tempting 
to speculate that if changes in nucleosome distribution act 
as an indicator of impending transcriptional regulation, 
then our nucleosome distribution measurements could act 
as predictive indicators of early transformation events. 
This explanation is manifested in a recent report from 
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Figure 6: Nucleosome distribution changes in early-CRC are widespread, concordant with LAC changes, DNA-directed 
and potentiate transcription factor binding. A. Nucleosome distribution plots at the ATM gene are shown for normal (black lines) 
compared to matched grade one LAC tumor (as seen in Figure 3B; red lines), and for the normal compared with matched S2, S3 and S4 CRC 
tumors (red lines). The x-axis represents the TSS +/- 1kb, and the y-axis is fragments per million. Regions with most significant change in 
the grade one patients are shaded in red for emphasis, while corresponding regions in grade three, which are unchanged between normal 
and tumor samples, are shaded in grey. Three other cancer-related genes are shown to illustrate the widespread nucleosome distribution 
changes in the progression of CRC, and concordance with LAC changes B. HKR1 C. NOP16 D. KIF2B. The nucleosome distribution data 
for normal tissue (black lines) and S3 CRC tumor tissue (red lines) are shown compared to predicted nucleosome occupancy based on DNA 
sequence (blue lines), for genes from Figure 4C and this figure B: E. ATM, and F. HKR1. The x-axis represents the TSS +/- 1 kb, and the 
y-axis is the normalized fragments per million. Regions with most significant difference in the normal compared to the model are shaded red 
for emphasis, while corresponding regions in the S3 tumor are shaded in grey. Additionally, correlation values between the data and model 
are included for each gene; in all cases, the model is more highly correlated with the S3 tumors than the normal tissue. G. Subnucleosomal 
fragment data (<125bp) for normal (black lines) and tumor (red lines) for each CRC patient were aligned and as a representative centered 
on transcription factor data for Ctcf (GSM803456) peaks from ChIP-seq in A549 cells. Additionally, nucleosome size fragment scores 
(130-175bp) for normal (shaded, dashed black lines) and tumor (shaded, dashed red lines) for each patient were also aligned and centered 
on Ctcf peaks.
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our lab in which widespread, transient, DNA-directed 
nucleosome redistributions were observed at immune 
loci upon reactivation of Kaposi’s sarcoma-associated 
herpesvirus (KSHV), an oncogenic viral system [41].

In the current study, we have additionally expanded 
the original model by demonstrating that the nucleosome 
distribution changes occur through genetically-encoded 
regulatory signals: the nucleosomes in the grade one 
tumors are remodeled to positions encoded by the DNA 
sequence. Again, this observation is consistent with our 
work on KSHV, in which we established that transient 
nucleosome redistributions, rather than basal architectures, 
adopt locations favored by the underlying DNA sequence 
[41]. In the current study, we demonstrate that the low-
grade tumor samples had a higher correlation with the 
predicted model as compared to normal tissue at over 
85% of remodeled genes, indicating that nucleosome 
distribution alterations are driven by the underlying DNA 
sequence [18, 40, 41]. An appealing interpretation that 
reflects these consistent grade-one nucleosome distribution 
alterations is that the redistributions result from the 
misregulation of a chromatin remodeling complex that 

culminates in nucleosomal redistribution to DNA-directed 
positions. This is conceivable given the evidence in the 
literature on genomic dysregulation through mutation of 
chromatin remodeling complexes in cancer determined 
by exome sequencing [44-48]. An intriguing, remaining 
question centers on the apparently ephemeral nature 
of these grade-one changes, and the degree to which 
redundant and overlapping chromatin regulatory activities 
play a role in the complex progression of cancer.

To answer questions regarding the effects of these 
apparently transient nucleosome redistributions, we 
provide evidence that nucleosome redistributions likely 
potentiate transcription factor binding events. Using 
subnuclesomal sized DNA fragments as an indicator of 
transcription factor binding, we measured depletion or 
enrichment of transcription factor sized protections at 
known transcription factor binding sites identified by 
ChIP in A549 lung cancer cells. We observed an increase 
in the presence of subnucleosomal fragments in high grade 
tumors compared to normal tissue at known transcription 
factor binding sites identified by ChIP in A549 lung 
cancer cells, indicating the presence of a sequence-

Figure 7: A model for chromatin based hierarchical genome regulation. A. We have developed a model describing chromatin-
based hierarchical genome regulation. In this model, a superset of genomic loci is made available for licensing through transient DNA-
directed nucleosome redistributions: a genomic intermediate. Loci in a physiology with the appropriate regulatory machinery will be 
licensed for a genomic response. Those without the regulatory machinery will not be affected. This model maximizes the potential for 
multiple concerted responses with a limited number of genomic architectures. However, if any point of this hierarchy is disrupted oncogenic 
transformation can occur. B. An interpretation of these results is that regulatory factors are initially unable to bind basal nucleosome 
architecture (as in the normal). Inappropriate widespread nucleosome redistributions to DNA-directed positions in early tumors potentiate 
the binding of regulatory factors (such as transcription factors) outside of their physiological context. Nucleosomes return to their basal 
architecture in advanced tumors, possibly through redundant and compensatory remodeling machinery. However, the regulatory mark 
remains, which further contributes to the progression of cancer.
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specific DNA-binding protein [42]. This increase in 
transcription factor binding in advanced tumors relative 
to the normal tissue and grade one tumors suggests that 
nucleosome redistributions early in the progression of 
cancer potentiated the licensing of these regulatory factors.

A particularly remarkable extension of the 
original study is the finding of widespread nucleosome 
redistributions in the progression of CRC that are 
concordant with the changes observed in LAC. In LAC, 
nucleosome distribution alterations are widespread in low 
grade tumors (grade one, stage one), and these alterations 
are not seen in high grade tumors (grade three, stage two). 
We showed that these widespread nucleosome distribution 
alterations also occur in early CRC (stage two and three), 
and these changes are relatively absent in more advanced 
CRC (stage four). There is a high overlap of genes with 
nucleosome distribution alterations between LAC and 
CRC. Moreover, we have shown that the redistributions 
in CRC have a strong agreement with genetically encoded 
nucleosome distribution signals, indicating that the 
nucleosome distribution changes are DNA-directed as 
in LAC. The discovery of increased transcription factor 
binding events in advanced tumors was also observed in 
CRC patients. Utilizing a high-resolution, genome-wide 
technology to identify widespread chromatin structural 
changes in early tumors across multiple cancer types 
while defining the functional regulation through analysis 
of cis- and trans- acting factors validates the power of this 
approach to study chromatin structure in the progression 
of multiple cancers and disease states.

Taken together these results clarify structure-
function relationships in the human genome, and support 
a hierarchical mechanism for chromatin mediated genomic 
regulation [41]. This study demonstrates that widespread, 
DNA-directed nucleosome redistributions are limited 
to early tumors in LAC and CRC. This hierarchical 
model describes the interpretation that these nucleosome 
redistributions likely allow for inappropriate regulatory 
licensing in cancer (Figure 7A). Indeed, inappropriate 
genomic licensing is frequently cited as a characteristic 
of transformed phenotype [49, 50]. We propose that 
in the later stage and grade tumors when nucleosomes 
return to their basal positions, the regulatory machinery is 
altered, and contributes to the progression of the disease 
(Figure 7B). This comprehensive and integrated analysis 
of the relationship between chromatin structure and the 
progression of cancer has allowed us to define nucleosome 
alterations as generally exploited sites of concerted 
dysregulation in cancer. 

MATERIALS AND METHODS

Patient samples and tissue processing

Primary samples from surgically removed tumors of 
lung adenocarcinoma patients, and corresponding normal 
tissue were obtained from the University of Massachusetts 
Medical School (UMMS) Tissue Bank, and prepared as 
previously described [9]. Primary samples from colorectal 
adenocarcinoma patients with a surgically removed 
tumor, and corresponding normal tissue were obtained 
from the Mayo Clinic through Dr. Lisa Boardman under 
the Biospecimens for Gastrointestinal Health Research, 
IRB 622-00. A total of seven tumor specimens were 
included in this study (LAC: two grade one, two grade 
three; CRC: one of each stage one, two and three), with 
matched normal tissue for each tumor specimen, for a 
total of 14 genomes that were sequenced. The tumor 
and normal material was snap-frozen in liquid nitrogen 
within 1 h after surgery. Samples were examined by 
board-certified pathologists, using hematoxylin and eosin 
staining. Samples were selected by grade and stage, and 
only samples with 80% or more tumor cells were included, 
as assessed by histological examination. Patient samples 
were anonymized, and we received patient history along 
with the samples. Harvesting of nuclei, MNase digestion 
and mononucleosomal isolation were performed on each 
sample as previously described [9]. See Supplementary 
Table 1 for preparation information on each patient 
sample.

Mononucleosome DNA Library Preparation

MNase digested DNA sequencing libraries were 
prepared using the NEBNext® Ultra™ DNA Library 
Prep Kit for Illumina® (NEB #E7370S/L), starting with 
thirty nanograms of input mononucleosomal DNA. 
Following end prep and adaptor ligation, libraries 
were cleaned-up with AMPure® XP Beads (Beckman 
Coulter, Inc. #A63881) without size selection due to the 
original input of a size population of ~150bp. Universal 
and indexed sequences were added through 8 cycles of 
PCR, using NEBNext® Multiplex Oligos for Illumina® 
(Index Primers Set 1, NEB #E7335S/L). The NEBNext® 
Multiplex Oligos kit contains indices 1-12 which 
correspond to the identical product if using Illumina® 
TruSeq primers. The libraries were quantity and quality 
checked using the Qubit Fluorometer High Sensitivity 
Kit and Agilent High Sensitivity DNA kit on the Agilent 
2100 Bioanalyzer. The average size of material across 
all libraries was 275bp, and the average total material in 
this region was more than 90%; there were no adapter or 
primer dimers.
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Solution-based Sequence Capture, enabling TSS-
enrichment

We used a custom designed Roche Nimblegen 
SeqCap EZ Library SR to capture ~2kb regions flanking 
the TSS for every gene in the human genome, using the 
HG19 build. The TSS sequences were repeat masked, 
so only unique probes were included. We performed 
the sequence capture according to the manufacturer’s 
protocol. Following a 72 hour capture hybridization, we 
performed a 15 cycle PCR amplification using the TruSeq 
primers 1 (AAT GAT ACG GCG ACC ACC GAG A) and 
2 (CAA GCA GAA GAC GGC ATA CGA G). We then 
performed a quantitative real-time PCR to confirm that 
regions within the sequence capture were successfully 
enriched, and that regions excluded from the capture 
were depleted post-capture. We selected three regions 
within the 2kb TSS of genes that we knew to be in the 
SeqCap design (on-target), and for the same three genes 
we selected regions outside of the 2kb TSS that were 
not in the SeqCap design (off-target). The on-target and 
off-target regions and primer sequences can be found in 
Supplementary Table 2. Dilutions were made in elution 
buffer to 10 nM stock in 0.05% Tween-20.

Illumina Flowcell hybridization and sequencing

The multiplexed samples were loaded at 12pM on 
two lanes of an Illumina HiSeq 2500 system, HiSeq Flow 
Cell v3. For the HiSeq, the suggested range is 10-20pM. 
Kits used were the TruSeq PE Cluster Kit v3 -cBot – HS 
and the TruSeq SBS Kit v3.

There are two measures for data quality: the first 
is clusters that pass filter (PF) and the other is a quality 
score, which is given as a percentage of reads > Q30. The 
reads are based on the reads that pass the chastity filter 
not the Q30 filter. In addition, each lane was spiked with 
1% PhiX as the control. The software performs real-time 
reporting of error rates for the PhiX spike-in lanes. The 
sequencing was a paired-end 50 bp run on the HiSeq, 
using HiSeq Control Software (HCS) version 2.0. The 
LAC lane had cluster density of 695K/mm(2), a PF of 
94% , and 96.6% of the reads having a quality score >Q30. 
The CRC lane had cluster density of 736K/mm(2), a PF 
of 94%, and 96.1% of the reads having a quality score 
>Q30. The samples that were sequenced by on the MiSeq 
were run on 3 lanes, and was paired-end 150bp sequenced 
(Supplementary Table 1 – sequencing processing). The 
first lane was loaded at 8pM and generated 1468 clusters 
k/mm2. The other two lanes were loaded at 4pM and 
obtained 681 k/mm2 and 658 k/mm2 clusters, respectively. 
MiSeq V2 reagents were used and the MiSeq default 
settings were applied to generate fastq files that contain 
only PF reads (pass filter). The reads were demultiplexed 
on the MiSeq using the default settings. All sequence 

data discussed in this publication have been deposited in 
NCBI’s Gene Expression Omnibus (Edgar et al., 2002) 
and are accessible through GEO Series accession number 
GSE74340 (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE74340).

Alignment and data processing bioinformatics

Casava software was used to demultiplex the indices 
in each lane. Illumina adapters were clipped from reads 
with cutadapt [51] and aligned to the hg19 human genome 
assembly with bowtie2 2.1.0 with default parameters 
[52]. Unpaired and non-uniquely-mapped reads were 
discarded with samtools [53]. Individual nucleosome 
footprints were extracted from BAM files with bedtools 
2.17 (54). Nucleosome occupancy profiles were obtained 
by calculating the fragments per million that mapped 
at each base-pair in the probed regions with bedtools. 
Nucleosome dyad frequencies (midpoints) were obtained 
by calculating the sum of nucleosome dyads (fragment 
centers) in 100-bp windows at a 10-bp step-size with 
bedtools. Data were subsequently processed in R 2.15.1 
[55]. Data was uploaded to the UCSC genome browser for 
further analysis (http://genome.ucsc.edu) [56, 57].
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