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Beyond the fourth wave of genome-wide obesity association
studies
CH Sandholt1, T Hansen1,2,3 and O Pedersen1,2,3,4

Obesity and related complications are major health burdens. Almost 700 million adults are currently obese globally and the
prevalence is predicted to rise towards 2030. The sudden change of lifestyle with physical inactivity and excessive calorie intake
undoubtedly have a major part of the epidemic development; however, some individuals seem to be more prone to be affected by
an unhealthy lifestyle than others. Hence, genetic predisposition also has an essential role in determining disease susceptibility and
response to lifestyle factors. Since the introduction of genome-wide association studies (GWAS), the success of identifying obesity
susceptibility variants have increased, and a total of 32 variants have been identified associating genome-wide significantly with
body mass index (BMI) and 18 with measures of fat distribution during four overall obesity GWAS waves. However, the immediate
success of the GWAS approach has eased off, but the proportion of explained variance for BMI by the identified obesity variants
remains low. This review suggests and discusses new initiatives to take GWAS of obesity to the next level, including gene–
environment interactions as modulating/masking factors, low-frequent or rare variants and ways to address such analyses, and
finally reflections about the applicability of epigenetic modifications when elucidating the genetic background of obesity.
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INTRODUCTION
Obesity and the complications associated with excessive body fat
accumulation has become a major global health burden.
Projection estimates predict that the number of obese adults will
rise from 500 million in 2008 to over 700 million in 2015, and this
trend will continue towards 2030.1,2 The rapid increase in
incidence and prevalence of obesity seems to be explained
predominantly by the radical change in lifestyle during the last
century where high intake of energy-dense food and physical
inactivity have become more common. Yet, some individuals
seem to be more susceptible to this obesogenic environment,
underlining an important genetic component, that also has been
established in several twin, family and adoption studies, with
heritability estimates ranging from 40 to 70%.3–5

Obesity is a result of positive energy balance, and biological
pathways such as appetite regulation, metabolism and adipogen-
esis are important factors in the aetiology; however, the complete
molecular background of obesity is far from understood. It is
anticipated that a deeper understanding of the genetic predis-
position to the disease will contribute to the identification of new
biological pathways, and hence new drug targets, as well as better
prediction and prevention strategies. However, common obesity is
a complex, heterogeneous and multi-factorial disease and
consequently the unravelling of its genetic architecture has
turned out to be a challenging task.

Before 2007 where genome-wide association studies (GWAS)
were introduced, obesity gene identification was facilitated using
the biological candidate gene method or linkage studies. These

methods have resulted in the suggestion of numerous genes;
however, none which could be firmly validated.6 Retrospectively,
the lack of success was linked to substantial shortcomings of both
these methods. Commonly, they suffered from inadequate
statistical power to detect the outlined associations, whereas a
major limitation of the biological candidate method was
inadequate biological and genomic knowledge. Linkage studies
identified extremely broad genomic regions and the subsequent
fine-mapping to pinpoint the causative gene and/or variant was
virtually impossible at the time, and the only withstanding gene is
PCSK1 identified using a combination of the two methods.7

The overall lack of success identifying disease-associated genes
combined with the aspiration to increase the general biological
knowledge and pathological understanding of complex diseases
have facilitated new and innovative approaches including GWAS,
where the entire genome is scanned for common disease-
associating variants in a hypothesis-free manner. This review
depicts the progress made within the genetic field of obesity
following the introduction of GWAS, with an overview of the
identified variants and the method refinements made continually
through the GWAS waves. Endingly possible ways ahead and new
strategies within the GWAS framework will be discussed.

GENOME-WIDE ASSOCIATION STUDIES
The advent of GWAS was facilitated by technological progress and
increased knowledge about the human genome, with the
International HapMap Consortium (www.hapmap.org) as a major
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driving force. The complete outline of common single-nucleotide
polymorphisms (SNPs) and the existing linkage disequilibrium
enabled near-genomic coverage (B80%) of common variation
using a moderate number of SNPs (B500 000–1 600 000).
Simultaneously, progression in genotyping methods shifting to a
chip-based technology made massive SNP typing with high
accuracy at relatively low costs possible. The number of SNPs
analysed and their hypothesis-free scattering across the genome
has revolutionised the association study approach, but has also
created challenges both in regards to significance threshold,
replication demands and interpretation of the functionality.
However, as the GWAS waves progressed most challenges have
been addressed and adaptive refinements have been made
continually. Stringent genome-wide significance thresholds
(o10� 8) have been established to overcome false-positive
findings and a design that involves a discovery stage and at least
one replication stage has been introduced to ensure higher
validity of the findings. Moreover, imputation strategies have been
applied8,9 to allow combination of data across GWAS populations
effectively enlarging the study samples through meta-analyses
consequently increasing the power to detect associations.
Nevertheless, as these refinements to ensure reproducibility
have been an adaptive process, some non-replicable findings
did emerge when the GWAS approach was first implemented in
the search for obesity susceptibility variants.

GWAS SUGGESTED OBESITY SUSCEPTIBILITY LOCI
The first GWAS of obesity phenotypes was published in 2006.
Compared with the later GWAS it was small not only in respect to
the number of SNPs analysed but also in respect to the sample
size, as a total of 86 604 SNPs were analysed in 694 participants
from family studies, and therefore it is often regarded as a pre-
GWAS. One SNP, rs7566605 near INSIG2, was suggested to
associate with obesity, which was validated in the independent
replication stage10 (Table 1).

The true GWAS era was introduced a year later, and so far it
constitutes of four waves. Most GWAS of obesity has used body
mass index (BMI) as a continuous trait, whereas others have
examined extreme obesity in children or adults, under the
assumption that morbidly obese individuals might be enriched
in obesity susceptibility variants. The first obesity GWAS wave
resulted in the suggestion of four susceptibility loci. FTO was
originally highlighted in a GWAS of type 2 diabetes;11 however,
adjustment for BMI revealed that the association was mediated
through obesity.12 Variants in or near FTO have since become the
most replicated obesity susceptibility locus, emerging in all
subsequent GWAS performed on obesity13–21 except one.22 In
the discovery study, the lead SNP (rs9939609) showed a BMI
increase of 0.36 kg m� 2 and an odds ratio of 1.31 (1.23–1.39) per
risk allele carried (Table 1). In the wake of the FTO discovery, a few
GWAS suggested variants in or near PFKP,13 CTNNBL1 and FDFT1,22

but replication has been problematic23–25 even in the replication
stage of the discovery studies.13,22 In the second GWAS wave,
the GIANT (Genetic Investigation of ANthropometric Traits)
consortium performed meta-analyses of B17 000 Caucasian
individuals and identified variants in or near MC4R associating
with measures of obesity26 (Table 1) and the same variants were
also shown to associate with fat distribution represented by waist
circumference27 (Table 2).

The third obesity GWAS wave included three studies. A meta-
analysis of GWAS and an independent GWAS identified variants in
or near TMEM18, SH2B1, KCTD15, NEGR1,15,16 GNPDA2, MTCH2,15

BDNF, SEC16B, FAIM2 and ETV5(ref. 16) genome-wide significantly
associated with BMI. Both studies included B32 000 individuals
and showed effect sizes ranging from 0.06 to 0.54 kg m� 2 when
comparing homozygous risk allele carriers with non-carriers
(Table 1). The third study was performed in study samples of

early-onset extreme obesity and reported four putative loci,
NPC1, MAF, PTER and PRL; however, only MAF showed stringent
genome-wide significance.17 In addition to GWAS performed
using measures of general obesity, a parallel GWAS strategy
focused on measures of fat distribution using waist circumference
and waist-to-hip ratio (WHR) adjusted for BMI. Four novel loci were
identified associating with fat distribution measures; LYPLAL1 with
waist circumference in women (Table 2), TFAP2B, MSRA28 and
NRXN3(ref. 29) with WHR (Table 3).

The fourth obesity GWAS wave was dominated by two meta-
analyses performed by the GIANT consortium, one comprising
B124 000 individuals in the discovery stage and B250 000 in
total using BMI,18 and another comprising B77 000 individuals
using WHR adjusted for BMI as obesity measure.30 These identified
18 and 13 novel loci, respectively, listed in Tables 1 and 3,
respectively. Generally, the WHR variants show stronger associa-
tion in women than in men, in accordance with the gender-
specific difference in fat distribution. Three loci have been
suggested in GWAS of extreme obesity; SDCCAG8 and TNKS
observed in study samples of children and adolescent,19 KCNMA1
found in an adult population,20 and finally, two loci, OLFM4 and
HOXB5, have been identified in studies of common childhood
obesity21 (Table 1). Thus, a total of 43 loci have at present been
suggested to predispose to overall adiposity and 18 loci to visceral
fat accumulation. Of these, 32 BMI and 14 waist/WHR variants are
genome-wide significant (Figure 1), as well as one variant (MAF)
associating with morbid obesity. The vast majority identified
in the fourth wave through extremely large meta-analyses with
decreasing effect sizes as consequence (Figure 1).

REPLICATION OF GWAS FINDINGS IN INDEPENDENT STUDIES
Replication in independent study samples was especially impor-
tant in the first obesity GWAS wave, before the genome-wide
significance threshold was introduced and replication demands
were systematically met. Nevertheless, even after refining the
GWAS approach, such studies still have their justification, as they
estimate independent effect sizes not inflated by ‘winner’s curse’
and also often extend with analyses of additional related
phenotypes, thereby contributing to the elucidation of the overall
metabolic impact of identified variants/loci. FTO remains the best
replicated obesity gene, as well as the strongest, and a
tremendous number of studies have validated the association.31

Likewise, the relatively strong association with obesity observed
for variants near MC4R has been well replicated in independent
studies.32,33 For the loci identified in the third GWAS wave,
replication attempts have primarily been performed in Caucasian
population with divergent results. Among the most successfully
validated are TMEM18,19,34–36 NEGR1,34,36,37 SH2B1,34,36,37

MTCH2,34,36,37 GNPDA2,35,37,38 FAIM235,38 and BDNF,35,38 a pattern
also recognised in Asian populations.39–41 Some attempts have
been made to validate the fat distribution loci identified in the
third wave, however, with limited success.42,43 These missing
associations in independent studies probably reflect a lack
of power due to the relatively low effect sizes.

GAINED BIOLOGICAL KNOWLEDGE FROM THE OBESITY
GWAS WAVES
The potential knowledge gained through obesity GWAS findings
are generally accumulating as the speed of translation into
new biological insight in retrospect has been overestimated.
Major impeding factors of the overall biological elucidation have
been the fact that the vast majority of the identified obesity
susceptibility variants are located in non-coding areas of the
genome, including intronic or intergenic regions (Tables 1–3), and
the obvious functionality of the SNPs is therefore difficult to
establish within the frames of current genomic knowledge. Hence,
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the identified variants could either be linkage disequilibrium
markers of the causal variant, but some could theoretically be the
true causal variant, lying in unknown regulatory motifs or small
coding areas of non-described regulatory molecules. Hence, a
more thorough understanding of the human genome is required
to label variants as functional or non-functional linkage disequili-
brium markers with any certainty. In addition, the genomic
location of the variants makes a precise link between SNP and
affected gene difficult to establish, and consequently, no specific

novel biological pathway or mechanism has yet been pinpointed.
Nevertheless, it has been suggested that non-coding variants
influence transcript regulation rather than gene function44 and
some interesting observations are emerging when expression
patterns are studied. A majority of the suggested genes
harbouring variants associated with overall obesity, represented
by BMI, are highly expressed in the central nervous system,
whereas many of the suggested fat distribution genes are highly
expressed in peripheral tissues.45

Table 1. Variants and loci suggested to associate with obesity and/or BMI in GWAS

Regional gene(s) Chromosome SNP ID SNP type RAFa Effect size
BMI (kg m� 2)a

Effect size obesity
(OR 95% CI)a

Discovery
study

INSIG2 2q14 rs7566605 Intergenic 0.37 1.00b 1.22 (1.05–1.42)b 10
FTO 16q12 rs9939609 Intronic 0.45 0.36 1.31 (1.23–1.39) 12
PFKPc 10p15 rs6602024 Intronic 0.10 0.84d — 13
CTNNBL1 20q11 rs6013029 Intronic 0.05 0.12 1.42 (1.14–1.77)e 22

rs6020846 Intronic 0.07 0.09 1.32 (1.07–1.62)
FDFT1c 8p23 rs7001819 Intergenic 0.41 — — 22
MC4Rf 18q21 rs17782313g Intergenic 0.24 0.22d 1.12 (1.08–1.16) 26
TMEM18 2p25 rs6548238h Intergenic 0.84 0.26 1.19 (1.10–1.26) 15

rs7561317g Intergenic 0.84 0.19i 1.20 (1.13–1.27) 16

SH2B1, ATP2A1 16p11 rs7498665 Coding
0.41 0.15 1.11 (1.06–1.17) 15
0.44 0.45i 1.08 (1.03–1.13) 16

KCTD15 19q13
rs11084753h Intergenic 0.67 0.06 1.04 (0.98–1.10) 15
rs29941 Intergenic 0.70 0.45i 1.10 (1.04–1.15) 16

NEGR1 1p31
rs2815752h Intergenic 0.62 0.10 1.05 (1.01–1.11) 15
rs2568958g Intergenic 0.58 0.43i 1.07 (1.02–1.12) 16

GNPDA2 4p13 rs10938397h Intergenic 0.45 0.19 1.12 (1.07–1.17) 15
MTCH2 11p11 rs10838738h Intronic 0.34 0.07 1.03 (0.98–1.08) 15
BDNF, LIN7C, LGR4 11p14 rs925946 Intergenic 0.30 0.19j 1.11 (1.05–1.16) 16
SEC16B, RASAL2 1q25 rs10913469 Intergenic 0.20 0.50i 1.11 (1.05–1.18) 16
FAIM2, BCDIN3D 12q13 rs7138803 Intergenic 0.37 0.54i 1.14 (1.09–1.19) 16
ETV5, SFRS10, DGKG 3q27 rs7647305 Intergenic 0.77 0.54i 1.11 (1.05–1.17) 16
NPC1 18q11 rs1805081 Coding 0.44 � 0.06 0.71 (0.62–0.84) 17
MAF 16q23 rs1424233 Intergenic 0.43 0.03 1.39 (1.23–1.54) 17
PTER 10p12 rs10508503 Intergenic 0.09 0.02 0.68 (0.38–0.98) 17
PRL 6p22 rs4712652 Intergenic 0.41 � 0.08 0.83 (0.68–0.98) 17
RBJ, ADCY3, POMC 2p23 rs713586h Intergenic 0.47 0.14 1.07 (1.05–1.09) 18
GPRC5B, IQCK 16p12 rs12444979h Intergenic 0.87 0.17 1.08 (1.04–1.11) 18
MAP2K5, LBXCOR1 15q23 rs2241423h Intronic 0.78 0.13 1.07 (1.04–1.10) 18
QPCTL, GIPR 19q13 rs2287019h Intronic 0.80 0.15 1.09 (1.05–1.12) 18
TNNI3K 1p31 rs1514175h Intronic 0.43 0.07 1.04 (1.02–1.07) 18
SLC39A8 4q24 rs13107325h Coding 0.07 0.19 1.10 (1.05–1.15) 18
FLJ35779, HMGCR 5q14 rs2112347h Intergenic 0.63 0.10 1.05 (1.03–1.08) 18
LRRN6C 9p21 rs10968576h Intronic 0.31 0.11 1.04 (1.02–1.06) 18
TMEM160, ZC3H4 19q13 rs3810291h Intergenic 0.67 0.09 1.06 (1.03–1.08) 18
FANCL 2p16 rs887912h Intergenic 0.29 0.10 1.06 (1.03–1.08) 18
CADM2 3p12 rs13078807h Intronic 0.20 0.10 1.03 (1.00–1.06) 18
PRKD1 14q11 rs11847697h Intergenic 0.04 0.17 1.10 (1.03–1.17) 18
LRP1B 2q21 rs2890652h Intergenic 0.18 0.09 1.05 (1.02–1.08) 18
PTBP2 1p21 rs1555543 Intergenic 0.59 0.06 1.02 (0.99–1.04) 18
MTIF3, GTF3A 13q12 rs4771122 Intronic 0.24 0.09 1.05 (1.01–1.08) 18
ZNF608 5q23 rs4836133 Intergenic 0.48 0.07 1.03 (1.01–1.05) 18
RPL27A, TUB 11p15 rs4929949 Intergenic 0.52 0.06 1.03 (1.01–1.05) 18
NUDT3 6p21 rs206936 Intronic 0.21 0.06 1.03 (1.01–1.06) 18
NRXN3k 14q31 rs10150332 Intronic 0.21 0.13 1.09 (1.05–1.12) 18
TFAP2B 6p12 rs987237 Intronic 0.18 0.13 1.09 (1.05–1.12) 18
TNKS, MSRA 8p23 rs17150703 Intergenic 0.10 � 0.10 1.06 (0.86–1.30) 19
SDCCAG8g,l 1q44 rs12145833 Intronic 0.87 0.05 1.15 (0.96–1.37) 19
KCNMA1g,l 10q22 rs2116830 Intronic 0.80 1.00 1.26 (1.12–1.41) 20
OLFM4m 13q14 rs9568856 Intergenic 0.16 — 1.22 (1.14–1.29) 21
HOX5Bm 17q21 rs9299 Coding 0.65 — 1.14 (1.09–1.20) 21

Abbreviations: BMI, body mass index; CI, confidence interval; GWAS, genome-wide association studies; OR, odds ratio; RAF, risk allele frequency; SNP, single-
nucleotide polymorphism. aRAF and effect size from first discovery study. bUnder a recessive model. cReplication failed in discovery study. dAbsolute BMI
scores assuming a s.d. of 4.3 kgm� 2. eComparing homozygotes for the risk allele with non-carriers. fDiscovered by combination of GWAS data with other
study samples in meta-analyses. gLead SNP from discovery study. hDiscovered in meta-analyses of GWAS. iAbsolute BMI scores calculated for homozygotes for
the risk allele vs non-carriers in the discovery study by Loos et al.44 jBMI effect size from Loos et al.44 kPreviously identified as fat distribution loci. lIdentified in
extreme obese children and adolescent. mIdentified in GWAS of common childhood obesity.
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Some of the suggested genes have known functions related to
obesity; MC4R that is important in appetite regulation,46 BDNF that
has been linked with the reward system and eating disorders,47

SH2B1 that is implicated in leptin and insulin signalling,48 and
NRXN3 also implicated in reward behaviour.29 TMEM18 is possibly
responsible for neural development and NEGR1 controls neuronal
outgrowth;15 however, a direct link with obesity has not been

established. Several of the identified genes are specifically
expressed in hypothalamic regions that could indicate important
roles in controlling appetite. These include FTO,49–51 MTCH2,
FAIM2, GNPDA2, KCTD15, ETV5 and NPC1;15 however, their exact
biological function and link with obesity remain to be elucidated.
Although overall adiposity, for a major part, seems to be mediated
through the central nervous system, specific fat deposits or fat

Table 2. Variants and loci suggested to associate with waist circumference in GWAS

Regional gene(s) Chromosome SNP ID SNP type RAFa Effect size waist (cm) Discovery study

MC4R 18q22 rs12970134b Intergenic 0.30 1.48 27
TFAP2B 6p12 rs987237 Intronic 0.16 0.46c,d 28
MSRA 8p23 rs545854e Intergenic 0.18 0.52c,d 28
NRXN3 14q31 rs10146997 Intronic 0.21 0.65d 29

Abbreviations: RAF, risk allele frequency; SNP, single-nucleotide polymorphism. aRAF and effect size from first discovery study. bLead SNP from discovery study.
cEffect size reported for the combined stage 1 and 2. dAbsolute waist circumference scores assuming an s.d. of 13.1 cm. eThe SNP has changed name from
rs7826222.

Table 3. Variants and loci suggested to associate with WHR in GWAS

Regional gene(s) Chromosome SNP ID SNP type RAFa Effect size WHR Discovery study

LYPLAL1 1q41
rs2605100b

Intergenic
0.69 0.040 28

rs4846567 0.28 0.034 30
RSPO3 6q22 rs9491696c Intronic 0.52 0.042 30
VEGFA 6p12 rs6905288c Intergenic 0.56 0.036 30
TBX15, WARS2 1p11 rs984222c Intronic 0.37 0.034 30
NFE2L3 7p15 rs1055144c Intergenic 0.21 0.040 30
GRB14 2q24 rs10195252c Intergenic 0.60 0.033 30
DNM3, PIGC 1q24 rs1011731c Intronic 0.57 0.028 30
ITPR2, SSPN 12p11 rs718314c Intergenic 0.74 0.030 30
LY86 6p25 rs1294421c Intergenic 0.39 0.028 30
HOXC13 12q13 rs1443512c Intergenic 0.24 0.031 30
ADAMTS9 3p14 rs6795735c Intergenic 0.41 0.025 30
ZNRF3, KREMEN1 22q12 rs4823006c Intergenic 0.57 0.023 30
NISCH, STAB1 3p21 rs6784615c Intronic 0.94 0.043 30
CPEB4 5q21 rs6861681c Intronic 0.34 0.022 30

Abbreviations: GWAS, genome-wide association studies; RAF, risk allele frequency; SNP, single-nucleotide polymorphism; WHR, waist-to-hip ratio. aRAF and
effect size from first discovery study. bAssociation restricted to women. cIdentified through meta-analyses of GWAS.
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Figure 1. Development during the obesity GWAS waves. The progression of the four obesity GWAS waves (2007–2010); genome-wide
significant associated loci associating with BMI, waist circumference and WHR, respectively, identified in individual GWAS (black), in both
individual GWAS and meta-analysis (green) and in meta-analyses alone (blue). The number of identified genome-wide significant loci
increases concurrently with an increase in individuals included in the studies (grey bars), having a decreasing effect size as a consequence
(squares). Effect sizes are taken from Tables 1–3.
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accumulation seems to be controlled peripherally, for example, by
the adipose tissue itself. This is illustrated by TFAPB2 and LYLPLAL1,
which both show high expression in adipose tissue28 and are
responsible for lipid accumulation and lipase activity, respectively.
The implication of different tissues in overall adiposity and visceral
fat accumulation is thus one major biological gain from the
obesity GWAS waves.

However, even though GWAS have succeeded in identifying
obesity susceptibility variants, especially compared with the
previous methods, the proportion of explained variance is still
rather low. The GIANT consortium estimated that the confirmed
obesity variants explained 1.45% of the inter-individual variation
in BMI,18 and obviously a large task still exists in identifying the
remaining heritability. Theoretically, a fifth GWAS wave could
include even larger meta-analyses, but this would inevitable result
in the identification of variants with smaller effect sizes, and it
must be considered doubtful whether such knowledge can be
translated into increased explained genetic variance. Hence, new
strategies must be adopted to take gene identification to the next
level, incorporating innovative thinking and new statistical
approaches.

BEYOND GENETIC MAIN EFFECTS—GENE–ENVIRONMENT
(G� E) INTERACTIONS
One way to unravel some of the missing or hidden heritability of
obesity could be by taking lifestyle factors into account. The
environment has changed rapidly during a relatively short period
of time, resulting in prevailing sedentary lifestyle and unhealthy
dietary habits. During this time, the genetic pool has been stable,
and as the obesogenic environment affects individuals at different
levels, an important interplay between genes and environmental
factors as causation of the obesity epidemic is indicated.
This conviction is supported by studies observing an increase in
the genetic contribution to BMI variance during the time the
environmental changes occurred.52 Thus, a further elucidation of
the genetic architecture of complex diseases could involve a
comprehensive understanding of more aspects involved in its
multi-factorial background, and an evaluation of plausible G� E
interactions. However, several challenges supervene when
implementing such interactions in genetic epidemiological
studies of obesity. First, the identification and prioritisation
that environmental exposures are not always straightforward.
For complex diseases, such as obesity, the heterogeneous
multi-factorial aetiology makes it is a rather demanding task, as
numerous potential factors could be intertwining and interplaying
with disease risk. Commonly accepted environmental risk factors
of obesity are physical inactivity and unhealthy diet, and
consequently, these are the most studied factors. Second,
environmental factors can be difficult to quantify, and beha-
vioural aspects are especially complicated to estimate. A large gap
exists between the gold standard and timely and economically
feasible approximations, and large-scale epidemiological studies
often rely on subjective self-reports for quantification of both
physical activity and dietary patterns. Problems with obesity-
specific over- or underreporting have been recognised when
accessing both physical activity and food intake,53,54 but this must
still be counterbalanced with the feasibility of the measuring
method. Third, methodologically we are far from the ideal
scenario where the statistical models used to estimate or
elucidate obesity risk can include all modulating factors. This
would require models of extreme complexity and the number of
parameters needed to be estimated may potentially be infinite.
Therefore, current statistical models are unable to fully mimic
biological and environmental systems, and with concern of
simplicity and practicability models are restricted to include
combinations of few genetic and environmental factors. Fourth,
adequate statistical power is extremely hard to achieve in G� E

interaction analyses. Substantial genetic main effect is needed to
obtain the statistical power to detect possible modulating effects
of the environment, and even the introduction of GWAS has only
resulted in the identification of few variants with sufficient impact
to enter such analyses. In addition, even with adequate genetic
main effects well-powered G� E interaction studies would still
require extremely large study populations,55–57 only achievable
through collaborations and meta-analyses.

In the post GWAS era, the most studied locus with respect to
environmental influences has been FTO and especially the impact
of physical activity has been evaluated. After the discovery of FTO,
it was reported that the increased obesity risk associated with the
rs9939609 T-allele was attenuated by physical activity.58

Comprehensive replication attempts have been made in study
populations of different ethnicities and with different assessments
of physical activity, and validation were achieved in some59–68 but
far from all69–74 studies, and these inconsistencies left it
unresolved whether physical activity reduced the effect of FTO
on obesity. To clarify this incongruence, a large meta-analysis
comprising 218 166 individuals from 48 different studies has been
performed. Overall, a nominal significant interaction was observed
with a per allele decreasing effect on BMI of 0.14 kg m� 2

(pint¼ 0.005) when comparing physically active and inactive
individuals.75 This conclusion could be proof-of-concept in more
than one sense. It indicates that well-augmented and biologically
plausible G� E interactions do in fact exist, and that several
studies can be combined successfully using approximations to
standardised quantifications of environmental risk factors.

Another approach recently adopted in G� E interaction
analyses is the conversion of several obesity variants into a
genetic predisposition score to circumvent lack of power to detect
the interactions individually. The applicability was illustrated by a
study comprising 20 430 individuals, where 12 SNPs from the first
two obesity GWAS waves were combined in a genetic predisposi-
tion score summarising the number of BMI increasing alleles. Each
BMI increasing allele was associated with a 0.154-kg m� 2 increase
in BMI, more pronounced in physically inactive individuals
(0.205 kg m� 2 per allele) than in physically active individuals
(0.131 kg m� 2 per allele; pint¼ 0.005).76 Collectively, these results
indicate that a vast amount of genetic information is hidden
or modulated by different lifestyle patterns, and that G� E
interaction analyses likely will help improve our understanding of
the pathophysiology of obesity and related phenotypes in the
future.

Ideally, G� E interaction analyses should be included already in
the discovery phase of future GWAS. This could lead to the
identification of associations masked by environmental exposures,
and hence variants with limited overall genetic main effect but
pronounced effect in subgroups of the population. However, the
implementations of G� E interactions in GWAS discovery phases
pose a huge challenge to international collaborations, consortia
and meta-analyses as it is recommended that the study samples
are four-doubled when interaction terms are included in the
statistical models.77

Methodologically, there is a long way before complete
capability to model the complex biology of combined genetic
predisposition and modulating environmental exposures is
accomplished. Several methods have begun emerging with
different focus areas. Some aim at implementing the G� E
interaction analysis in the GWAS discovery phase using the
likelihood-ratio tests,78–80 thereby increasing the power to detect
associations masked by environmental exposures.81 Others refine
associations of genetic variants with known main effect on disease
risk, for example, using Bayesian approaches and random forest,
to cope with the uncertainties in the general assumption
about independence between genetics and the environmental
exposure.82–84 These methods are also employed when searching
for the combination of genotypes and environmental factors or
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interaction chains, with highest impact on disease risk.82,84,85

Finally, pathway-driven approaches collecting multiple genetic
variants according to their biological function and pathway
involvement is gaining ground in G� E interaction analyses.86

However, these innovative methods are not widely used yet, but
they could withhold promises for the future for better selection of
well-argued combinations of genetic variants and environmental
factors in multi-factorial analyses.82,85,87

MISSING HERITABILITY
The current GWAS design has focussed on common SNPs as the
predominant type of variation. Nevertheless, a substantial part of
the missing or hidden heritability could be found in other types of
variants, either structural or of lower frequency.

Copy number variations (CNVs)
The implication of structural variations in common diseases as
represented by SNPs in linkage disequilibrium with CNVs on GWAS
arrays have been low,88,89 which could be a result of
underrepresentation of such CNV tagSNPs on genotyping chips.
Nevertheless, for obesity a few examples have in fact been
suggested. The obesity-associated signal rs2815752 tag a 45-kb
deletion upstream of NEGR1. Hence, the deletion is a causal
candidate for the association signal, but further work is needed in
terms of fine-mapping and functional studies before this can be
firmly determined.15 Further evidence that CNVs contribute to the
genetic architecture of obesity comes from the finding that large
deletions on chromosome 16q11 are associated with severe
obesity,90,91 and the deletion spans a large number of genes
including SH2B1 also identified in GWAS of obesity.15,16 A genome-
wide analysis has suggested that CNVs at chromosome 11q11 are
involved in early-onset extreme obesity; however, this did not reach
genome-wide significance.92 Moreover, a spectacular pattern of
CNVs has been observed at chromosome 16p11.2. Where deletions
in this chromosomal region causes morbid obesity,93 duplications
result in underweight among both children and adults94 as an
impressive example of how gene dosage can be linked with
extreme mirror body composition phenotypes.

Hence, implications of the involvement of structural variation in
obesity are present, but due to technical challenges in identifying,
quantifying and hence genotyping the CNVs, the complete impact
of these types of variation is difficult to estimate with any accuracy
before new and better approaches have been developed.

Low-frequent and rare variants
The risk allele frequencies of the obesity variants identified
through the GWAS waves are all quite high (Tables 1–3). Much
speculation about missing heritability and improvement of
explained variance has focussed on detecting variants with lower
frequencies but substantially higher impact on disease risk. Low
frequency (B1–5%) and rare (o1%) variants could have large
effect sizes, increasing the risk two- to threefold, without
demonstrating Mendelian inheritance,95 and it has been
suggested that low-frequent and rare variants in fact are disease
disposing,96 and that they can be used for efficient prediction in
complex diseases.97 However, detection of potentially disease
predisposing, low-frequency and rare variants requires
sequencing of a large number of cases and controls,98 which is
a demanding task both with respect to costs and the amount of
data created. Nevertheless, initiatives to sequence the entire
human genome,99 as well as extensive sequencing of all coding
regions (the exome) in the B20 000 known human genes,100 are
already ongoing, and the number of identified low-frequent and
rare variants is excessive. It is expected that each of these variants
will have a relatively low impact on the disease endpoint and in
combination with the heterogeneous nature of common complex

diseases, the power to detect associations when testing one
variant at the time will be rather low. New analytical strategies
cumulating several variants are therefore optimal to obtain
adequate statistical power. A tremendous number of methods
for these genetic burden tests have recently been developed.101

Some methods use simplistic collapsing of the rare variants
(usually o1%) analysing them as one unit, and some weigh the
variants using allele frequencies or predicted functionality. As
simple pooling of variants can be hampered by associations in
different directions, some methods use data-based algorithms,
which allow variants to be either protective or deleterious to
overcome the diminishing association signal introduced by
opposing associations.101

Nevertheless, the gain of identifying a catalogue of low-
frequency or rare variants with larger impact on disease risk
would be tremendous. A contribution of low-frequency and rare
variants in common complex diseases seems to be established,102

and it has been estimated that B30 variants with a frequency of
1% and an odds ratio of B3 putatively could explain all inherited
variance of complex disease.103

Epigenetic modifications
Factors not directly changing the DNA sequence could also
contribute to the missing heritability of complex diseases, for
example, epigenetic alterations. Epigenetics refer to modifications
that regulate gene activity and/or expression rather than its DNA
sequence.104 This could be methylation of the DNA sequence, in
imprinting, packing of DNA on histones or as blockage of specific
gene transcription through methylation of CpG islands in
promoter regions. Epigenetic modifications can be programmed
already in the intrauterine environment,105,106 and interestingly,
rodent models show inheritance through generations.107 If this is
validated to apply to humans, it will interfere with the accepted
notion that genetic variation is the only source of heritable
diseases, and could give rise to new fundamental theories about
heritability of metabolic diseases.108 To what extend epigenetic
modifications contribute to the total heritability of obesity is
presently unknown. A complicating factor when elucidating the
role of epigenetic modifications in complex diseases is the fact
that they are highly dynamic and display great tissue specificity.109

As obesity in part is a central nervous system-mediated disorder,
tissue samples are inaccessible, further complicating the complete
understanding of the role of these modifications. However,
several loci related to obesity have interestingly been shown to
be subject to genetic imprinting,107,110 indicating the importance
of epigenetic modifications. Moreover, it has been suggested
that epigenetics could constitute the link between genetic
susceptibility and environmental factors,111 as the plasticity of
methylation patterns and histone packing fits perfectly with the
dynamic structure of environmental exposures.112 Future steps
could therefore include linking the causally unexplained GWAS
association signals with epigenetics,113 yet, major efforts lie ahead,
even though new technological advances move towards the point
where epigenetic can be taken to a large-scale genome-wide
level.114,115 Among other epigenetic modifications and regulators
of gene expression are microRNAs, which are small non-coding
RNA molecules shown to have a role in many biological and
pathological processes through regulation of gene expression.116

Several microRNAs have been shown to interfere with genes in
adipogenesis and lipid metabolism; however, the precise
mechanisms and extent has not been clarified.117,118

CONCLUDING REMARKS AND LOOKING AHEAD
For human genomics research, 2007 was a banner year, where
the use of genotyping platforms made GWAS feasible and
lifted genetic epidemiological studies to a higher level. The
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breakthroughs of the HapMap project were integrated in an
agnostic approach revealing SNPs located in unanticipated
locations of the genome and near loci with no prior link to the
disease of interest.

In obesity research, the success of GWAS has resulted in four
major waves and a total of 32 validated genome-wide significant
loci associated with measures of overall adiposity and 18 loci
associated with visceral fat accumulation. However, the instant
and immediate success seems to have eased off, and the
identification of new SNPs and novel loci only proceeded through
the establishment of consortia and collection of large sample
sizes in meta-analyses. However, despite a reasonable number
of obesity susceptibility variants identified, the proportion of
explained genetic variance of BMI remains low.18 The discrimi-
nation ability between normal weight and obese individuals is
likewise inadequate and far from clinically useful.18,37,119 Still,
overall important lessons have been learned during the four
obesity GWAS waves; fewer variants than expected has been
identified, which could be a result of overestimated or anticipated
statistical power given the effect sizes appearing. Nevertheless, it
is possible that some missing heritability lies in the variants
associating near genome-wide significantly in the fourth GWAS
wave, but given the heterogeneous and complex nature of the
disease, where a high number of common variants most likely
contributes in divergent combinations in different individuals, it
requires an extremely large study sample to obtain statistical
power to clarify this and, the contribution of such variants to
explained genetic variance and discrimination ability is, for the
same reasons probably, low.18 Therefore, different and innovative
strategies increasing the likelihood of identifying new obesity
variants with high impact should be incorporated in future GWAS
obesity waves.

Emerging strategies include a shift from focussing at common
adult obesity to focus at common childhood obesity, and such an
initiative has already yielded success. A GWAS meta-analysis of
totally 5530 cases and 8318 controls, using age- and gender-
matched measures of BMI, identified two loci, OLFM4 and HOXB5,
associating genome wide significantly with common childhood
obesity,21 and this and similar strategies will undoubtedly
contribute to the genetical knowledge of overall obesity in the
future.

However, studying the extremes of the BMI distribution still
seems as a possible and reasonable way to move forward towards
a further unravelling of obesity genetics. Quite some examples
already exist where genes causing monogenic forms of obesity
through rare, severe and often private mutations also appear in
GWAS of common obesity represented by less severe and often
non-coding SNPs in proximity to the gene, such examples includes
variants near MC4R, POMC and BDNF.

More general initiatives can be made to increase the probability
of identifying novel obesity susceptibility variants. The use of
refined and more accurate phenotypes could entail more precise
classification of existing obesity subtypes, thereby increasing the
statistical power to detect distinctive associations. Several
approaches and directions could be pursued, one being the
improvement of body composition measures. BMI is an accessible
measure but dependent on both fat mass and lean mass, and it
has been shown to provide misleading information about overall
fat content.120 If, for example, the use of skinfold measures and
bioimpedance measurements, which gives more accurate
estimate of body fat content, were implemented in the GWAS
strategy, it would probably increase the likelihood of detecting
novel and more specific obesity variants as in the case of
rs2943650 near IRS1, which was identified in a GWAS of body fat
percentage.121 Another approach could be the identification
of serum biomarkers, such as adipokines, potentially able to
differentiate between various fat deposits, such as visceral and
omental fat.122 Finally, a complementary phenotyping approach

could be innovative reflections about the obesity phenotype, for
example, focussing on the central nervous system-controlled part
of obesity and the neurobiological mechanisms that override the
tightly controlled energy homeostasis. Such information on
individual addictive behaviour including food preferences could
be gained from questionnaires and from functional neuroimaging.

Within genomics, the possibilities of developing and improving
the GWAS approach are many. One obvious way to move forward
is by focussing on low-frequent and/or rare variants.
Novel reference genomes and newly developed algorithms123

make more accurate imputation a plausible gateway to the
analyses of low-frequent variants in GWAS settings and this may
very well be the next step forward in the unravelling of the
genetic background of complex diseases, including obesity.
Nevertheless, rare variants are currently not covered by such
imputation strategies and initiatives using deep next generation
sequencing approaches have, as discussed, already been applied
to identify disease predisposing variants with frequencies below
5%. Where whole genome sequencing continues the GWAS
outline, with no a priori hypothesis as to genomic location, whole
exome sequencing is based on the anticipation that the majority
of functional variants will be located in regions presently known to
be coding, which also makes the interpretation of functionality
more straightforward with the current genomic understanding.
Both approaches rely on sequencing cases and controls; however,
when studying obesity, this setup and consequently statistical
power to identify predisposing variants could be compromised by
the fact that the disease theoretically consists of a large number of
subtypes with phenotypic distinctions that could be at an almost
personal level. No obvious solution exist to circumvent this, but
genetics could turn out to be an important contributor when
identifying obesity subtypes, as the general subdivision or
classification could be predicted by the underlying genetic
architecture.

However, substantial challenges emerge when association
studies shift focus from common to low-frequent and/or rare
variants. Single SNP analyses will be statistically underpowered
even in extremely large study populations and hence, large efforts
are being put into the development of genetic burden tests were
the combined and weighted effect of multiple risk and suscept-
ibility variants in a single gene, a restricted genomic region or in
genes involved a biological pathway can be analysed. Some of the
developed methods even allow inclusion of interaction terms and
this way G� E or gene–gene (G�G) interactions, or in theory
even longer interaction chains, could therefore be incorporated
into these collapsing methods making this an interesting avenue
for future studies.

Even though progress and innovation is important, the bulge of
work that has accumulated during the first four obesity GWAS
waves cannot be dismissed. It is argued that the non-coding
association signals are markers and not the actual causal variants,
and this is a highly plausible explanation in the context of the
current knowledge about the human genome; however, this is far
from complete. Furthermore, the function of most of the human
genes, as well their regulation, is unknown; therefore, important
transcription factors, and hence also transcription factor binding
sites could theoretically exist. Such undiscovered regulatory motifs
and coding sequences for small regulatory molecules could justify
the theory of the identified association signals being positioned in
functional regions. A deeper understanding regarding the
genomic location of the identified variants could be an important
indicator of where to search for genomic variation in future
GWAS and whole genome sequencing waves. One approach that
has been used to narrow down the functional variant is
resequencing of flanking regions; however, even this can be a
daunting task as the distance between the association signal
and a causative variant is unknown and in theory can be quite
substantial.
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Although deep imputation strategies and genetic burden test
combining multiple common, low-frequent and rare variants
identified through sequencing are realistic approaches in the near
future, long-term strategies could include taking large parts of the
human genomic sequence into consideration as a personal
‘barcode’. This could instead of focussing on single-nucleotide
exchanges also include a more precise mapping of structural
variation such as insertions/deletions or CNVs, as well as non-
coding RNAs and CpG islands, which could bring the determina-
tion of epigenetic modifications much further compared with
what is possible today.

Conclusively, the success in genetic epidemiology studies
introduced by GWAS has started a scientific avalanche that
hopefully will lead to the development of new statistical tools,
more detailed genomic insight, deeper biological understanding
of disease pathology and translation into clinical use. Eventually,
these efforts may have great impact on the treatment strategies
for common metabolic disorders like obesity. Moreover, they may
at an early stage enable prediction of individuals at high risk of
developing obesity making more effective prevention strategies
feasible, which could be one of the turning points for the current
metabolic health crisis.
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