
Hindawi Publishing Corporation
Experimental Diabetes Research
Volume 2012, Article ID 519784, 5 pages
doi:10.1155/2012/519784

Review Article

Bone: Incretin Hormones Perceiver or Receiver?

Ilaria Dicembrini,1 Edoardo Mannucci,2 and Carlo Maria Rotella1

1 Section of Endocrinology, Department of Clinical Pathophysiology, Careggi Teaching Hospital,
University of Florence and Obesity Agency, 50127 Florence, Italy

2 Careggi Teaching Hospital, Diabetes Agency, 50127 Florence, Italy

Correspondence should be addressed to Carlo Maria Rotella, c.rotella@dfc.unifi.it

Received 6 March 2012; Accepted 9 May 2012

Academic Editor: Giovanni Di Pasquale

Copyright © 2012 Ilaria Dicembrini et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Novel incretin-based drugs, such as glucagon-like peptide-1 receptor agonists (GLP-1 RA) and dipeptidyl peptidase-4 inhibitors
(DPP-4i), have been last introduced in the pharmacological treatment of type 2 diabetes. In the last few years, the interest on the
relationship of gut hormones with bone metabolism in diabetes has been increasing. The aim of present paper is to examine in
vitro and in vivo evidence on the connections between incretin hormones and bone metabolism. We also discuss results of clinical
trials and metaanalysis, explore the effects of incretin drugs in vitro on osteogenic cells and osteoclasts, and speculate on the
possibility of different effects of GLP-1 RA and DPP-4i on the risk of bone fractures risk in humans. Although existing preliminary
evidence suggests a protective effect on the bone, at least for DPP-4i, further controlled, long-term studies with measurement of
bone markers, bone density, and clinical fractures rates are needed to substantiate and confirm those findings.

1. Introduction

Glucose, protein, and fat and mixed meal ingestion is
associated with a significant reduction in markers of bone
resorption, detectable by twenty minutes after feeding [1].
Bone formation is also influenced, but it seems to be less
responsive to nutrients than resorption [2]. Biochemical
assessment of bone turnover demonstrates that food intake
is the major cause of the reduced bone turnover during
daytime, which is followed by a nocturnal increase [3]. In
addition, the observation that parenteral feeding is related to
bone mass reduction [4] suggests a functional link between
gut and bone metabolism through hormones responding
to nutrients absorption, such as, incretins. The concept
of incretins has been introduced to define gastrointestinal
hormones released after meal ingestion, which modulate
glucose homeostasis, mainly through both glucose-induced
enhancement of insulin secretion and inhibition of glucagon
release, such as glucagon-like peptide-1 (GLP-1). Beneficial
extraglycemic actions on body weight, blood pressure,
dyslipidemia, cardiac and endothelial function are further
reported. Novel drugs based on the incretin system, such
as, glucagon-like peptide-1 receptor agonists (GLP-1 RA)

and dipeptidyl peptidase-4 inhibitors (DPP-4i), have been
approved for the therapy of type 2 diabetes [5]. In the last few
years, the interest on the relationship of gut hormones with
bone formation and turnover in diabetes has been increasing,
with preliminary data suggesting the possibility of positive
effects of GLP-1 RA and DPP-4i on bone health. The aim of
present paper is to examine in vitro and in vivo evidences
on the connections between incretin hormones and bone
metabolism. We also discuss results of clinical trials and
meta-analysis, thus explore investigating the in vitro effects
of incretin drugs in vitro on osteoblasts and osteoclasts,
and speculate on the cells and presenting the possibility of
different effects of GLP-1 RA and DPP-4i effects on the risk
of bone fractures risk in humans clinical studies.

2. The Gut-Brain-Bone Axis and Diabetes

The regulation of bone turnover in response to feeding is
complex with probable involvement of several mediators.
The most important mediators identified are intestinal
(GLP-1, GLP-2, Glucose-dependent Insulinotropic Peptide
or GIP, and Peptide YY) and pancreatic beta cell (insulin,

mailto:c.rotella@dfc.unifi.it


2 Experimental Diabetes Research

CNS

GLP-1

GIP

GLP-2

Adrenergic tone

Thyroid

Calcitonin

Bone

Gut PYY

FormationResorption

+

−

− −
−

Figure 1: Gut mediators of the acute bone turnover in response to feeding. GLP-1: glucagon-like peptide-1; GLP-2: glucagon-like peptide-2;
GIP: glucose-dependent insulinotropic peptide; PYY: peptide YY; CNS: central Nervous System. Broken lines represent putative pathways.

amylin, preptin, and pancreatic polypeptide) hormones [6].
Pancreatic peptides have direct actions on bone cells, while
Peptide YY probably acts through arcuate nucleus in the
central nervous system, thus regulating adrenergic tone and
bone metabolism (Figure 1).

Diabetes is related to an increased risk of bone fractures
[7]. A systematic review performed on 16 eligible studies
indicates a significant increased risk of hip fracture both in
type 2 diabetic women (overall relative risk (RR) 2.1; 95%
confidence interval (CI): 1.3, 2.2) and men (overall RR 2.8;
95% CI: 2.6, 15.1) [8]. The observed increase in fracture
risk is likely to be related to impaired bone quality rather
than to bone mineral density. The related mechanisms, due
at least in part to hyperglycemia, neuropathy, and higher
incidence of hypovitaminosis D, are not yet fully understood
[9]. However, disease progression is associated with low
bone turnover, suggesting potential influences of antidiabetic
agents on bone density and fracture rates. The increased
incidence of bone fractures in patients with diabetes could
also be due, at least part, to the effect of glucose- lowering
therapies. It has been observed that long-term treatment with
thiazolidinediones (TZDs) is associated with an increased
risk of fracture in women with type 2 diabetes compared with
other antidiabetic agents [10, 11]. The effect of TZD on bone
fractures could be due to a specific inhibition of osteoblast
differentiation and activity [12]. Furthermore, most available
studies report a higher incidence of bone fractures in insulin-
treated patients, in comparison with noninsulin-treated
type 2 diabetic individuals [13], even after adjusting for
concomitant antidiabetic medications [14]. The underlying
mechanism is not completely understood, however, the
contribution of an increased risk of falls induced by hypo-
glycemia cannot be excluded [15]. Moreover, a modifiable
nutritional factor, such as, vitamin D deficiency, is also
believed to play a role. Recent epidemiological evidence
supports an increasing prevalence of hypovitaminosis D,
inversely related to BMI, in all subset populations including
children and adolescents [16]. Low 25-OH vitamin D levels
are associated with higher probability of future diagnosis of
type 2 diabetes, and in patients with established diabetes,

with an increased incidence and progression of macro- and
microvascular complications [17]. Cross-sectional studies
confirmed an association between vitamin D status and risk
of falls [18], but evidence from randomized clinical trials is
required.

3. GLP-1 and Bone: Mechanisms of Action

GLP-1 is secreted by intestinal endocrine L cells, mainly after
nutrient intake and rapidly inactivated by DPP-4 produced
by endothelial cells. GLP-1 stimulates insulin secretion and
inhibits glucagon secretion both in a glucose-dependent
manner, thus ameliorating glucose homeostasis. A wide
range of extrapancreatic actions on body weight, lipid profile
and cardiovascular system has been recently described [5].
Mixed meal [19] and oral-glucose-load-induced [20] GLP-
1 response have been reported to be reduced in Type 2
diabetes in comparison with healthy subjects; considering
the possible involvement of GLP-1 in bone metabolism, the
impairment of the GLP-1 axis could theoretically contribute
to the increased risk of fractures in type 2 diabetes.

The actions of GLP-1 are predominantly mediated by
a G protein-coupled receptor (GLP-1 R) expressed in the
pancreas, stomach, intestine, kidney, lung, vascular system,
heart, and brain. GLP-1 R activation stimulates adenylate
cyclase, with formation of cyclic adenosine monophosphate
(cAMP) and subsequent phosphorylation of protein kinase A
[21]. In rodents, GLP-1 R has been detected on parafollicular
thyroid C cells and GLP-1-mediated activation leads to C-
cell proliferation and to calcitonin release, which could
contribute to decrease bone resorption [22]. Moreover,
genetic disruption of GLP-1 R in Glp-1 r−/− knockout mice
resulted in decreased cortical bone mass, and increased
osteoclasts number. The bone resorption increase appeared
to be sensitive to an acute calcitonin administration, thus
promoting a calcitonin-dependent pathway in the GLP-
1 mediated control of bone metabolism [23]. However,
important differences on the expression levels of GLP-1 R
between rodents and human have been described. In rodents
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(both mice and rats) C cells are relatively abundant, and
calcitonin represents an important regulatory hormone in
calcium homeostasis. In humans, conversely, C cells are
significantly less represented and the physiological role of the
hormone, except for some circumstances, such as, pregnancy
and lactation, is uncertain [24]. Knudsen et al. showed a
lack of functional response to GLP-1 in terms of cAMP
production and calcitonin release in human TT thyroid C-
cell line compared to rat C-cell lines MTC 6–23 and CA-
77. The clinical relevance of these findings was confirmed
by large clinical trials performed in type 2 diabetic patients
treated with GLP-1 R agonists [22].

The possibility that GLP-1 might directly act on bone
cells has also been investigated. The G protein-coupled GLP-
1 R is expressed on human osteoblastic precursor cells
[25] but not on mature osteoblasts [26]. The osteoblast
activity modulation by GLP-1 seems to be related to different
development stage. In human bone marrow stromal cells,
GLP-1 promotes cellular proliferation and cytoprotection,
preventing differentiation into adipocytes [27]. It has been
recently demonstrated that GLP-1 can functionally interact
with osteoblastic cells through a receptor, different from the
GLP-1 R previously described. In liver and muscle [28], the
effects of GLP-1 on glucose homeostasis are not related to a
cAMP stimulation but to a rapid hydrolysis of glycosylphos-
phatidylinositoli (GIPs), generating inositolphosphoglycans
(IPGs) and to a phosphatidylinositol-3 kinase (PI3K) and
mitogen activated protein kinase (MAPK) activities. In a
well-characterized later stage of osteoblastic cell line, such
as MC3T3-EI, GLP-1 has shown to promote the immediate
hydrolysis of GPIs, and this effect is consistent with the
specific binding to a functional receptor independent of
the cAMP-linked GLP-1 R. These data support the effect
of IPGs as a second messenger and a GLP-1-induced
stimulation upon PI3K and the existence of MAPK activities
in osteoblastic cells [29] but required confirmation in vivo,
particularly in humans.

In streptozotocin-induced diabetic and fructose-stimu-
lated insulin-resistant rats, an insulin- and PTH-independ-
ent bone anabolic effect of GLP-1 has been recently shown,
following 3-day continuous infusion on the trabecular bone
structure [30]. In both these experimental models, GLP-1
and Exendin-4 (a natural GLP-1 RA) increased osteopro-
tegerin/receptor activated of NF-κβ ligand (OPG/RANKL)
ratio, interacting with the Wnt pathway in osteoblasts to
decrease bone remodeling. In particular, analysis of bone
structure by microcomputer tomography supported a trend
toward a small-size increase of BMD in the appendicular
skeleton [31]. Similar results were reported in high-fat
diet fed rats, following the same administration scheme
[32]. These studies suggest a GLP-1-induced inhibition
of bone resorption by osteoclasts, through direct effects
on osteoblasts both in animal models of type 2 diabetes
and metabolic syndrome, thus promoting a further careful
evaluation of bone effects in ongoing Phase III clinical trials
investigating the efficacy of a long-acting GLP-1 R analog,
such as, liraglutide, in the treatment of obesity.

In response to feeding, as previously reported, different
gut mediators are cosecreted. GIP, an incretin peptide, such

as, GLP-1, is released from enteroendocrine K cells and func-
tional GIP receptors are detected on osteoblasts-like cells,
thus regulating their proliferation and activity. However,
GIP receptors are in vitro downregulated by continuous
exposure to GIP, thus requiring a pulsatile hormone release
to stimulate osteoblasts [26]. Transgenic mice overexpressing
GIP show increased bone mass and reduced bone loss with
aging [33]. At the same time, GLP-2 and peptide YY are
cosecreted with GLP-1 from L cells after feeding. GLP-2
receptors are expressed on osteoclasts, and a related decrease
on bone resorption has been shown in vitro [26]. Peptide YY
knock-out mice showed a significant decreased bone mass
and a further increase of bone loss after ovariectomy [34].

4. Incretins and Bone:
Clinical Evidence in Humans

Long-term exposure of type 2 diabetic patients to exenatide,
an incretin mimetic agent, was not significantly associated
to an increased bone fracture risk, despite the progressive
weight loss: at 82 weeks an average weight reduction of
4.4 kg was reported, with a mean of 11.9 kg (−11.4% of
baseline body weight) in highest weight loss quartile [35].
Several previously reported studies have shown that a 5–10%
weight loss is associated to a significant decrease in bone
mass and to an increase of bone resorption, especially in
obese postmenopausal women [36]. Moreover, bone mineral
density and markers of calcium homeostasis (serum alkaline
phosphatase, calcium and phosphate) were not affected by
44 week treatment with exenatide in comparison to insulin
glargine, a long-acting insulin, in type 2 diabetic subjects
[37].

In a recent small double blind randomized clinical
trial enrolling drug naı̈ve type 2 diabetic patients, one-year
treatment with DPP-4i (vildagliptin 100 mg daily) was not
significantly related to significant change both in markers of
bone resorption and calcium homeostasis in comparison to
placebo [38].

A recent meta-analysis was performed including 28 clini-
cal trials with a duration of at least 24 weeks, enrolling 11,880
and 9,175 patients for DPP-4i and comparators, respectively.
Following a treatment of 35 weeks mean duration, 63 bone
fractures were reported as serious adverse events. Despite
short duration of trials, absence of discrimination between
sex and pre-/postmenopausal state and evaluation of only
severe bone fractures, DPP-4i, compared with placebo or
other treatments, were associated with a reduced risk of
fractures (Mantel-Haenszel odds ratio [MH-OR] 0.60, 95%
CI 0.37–0.99, P = 0.045), even after the exclusion of com-
parisons with thiazolidinediones or sulfonylureas (MH-OR
0.56, 0.33–0.93, P = 0.026) [39].

On the other hand, GLP-2 injection in postmenopausal
women resulted in a significant reduction of bone turnover
in a dose-dependent manner [40]. The decrease of bone
resorption by GLP-2 required an intact gastrointestinal tract,
where GLP-2 receptors have been located in the myenteric
plexus. The lack of GLP-2 response in jejunostomy patients
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[41] supported the afferent nerve fibres involvement in the
regulation of bone metabolism by GLP-2.

5. Conclusions

The mechanisms through which feeding regulates bone
turnover is complex and probably involved several media-
tors. Gastrointestinal peptides, such as, GLP-1, GIP, GLP-2
and peptide YY have been shown to favour bone formation
over resorption. In the last few years, growing experimental
evidences reported positive effects of novel incretin-based
antidiabetic drugs on bone health. Clinical data on bone
fractures risk profile during GLP-1 RA and DPP-4i therapies
could vary with respect to their concomitant different
(positive and neutral, resp.) effect on body weight. A
positive action of GLP-1 RA on bone homeostasis could be
overshadowed by weight loss-induced bone mass decrease,
thus determining neutrality of GLP-1 RA treatment on
bone fracture risk profile in human clinical trials. Moreover,
despite stimulation of GLP-1 R through specific agonists,
inhibition of incretin-hormone degrading enzyme DDP-4
enhances postprandial availability of different gut mediators
of acute bone metabolism, such as, GLP-1, GIP, GLP-2, and
peptide YY. Additional beneficial effects on bone health could
be achieved by DPP-4i, in comparison to GLP-1 RA, through
an overall involvement of the gut-brain-bone axis [6].

Taken together, this evidence could further explain
potential different effects of GLP-1 RA and DPP-4i on
bone fracture incidence and calcium homeostasis in human
clinical studies. Further controlled, long-term studies with
measurement of bone markers, bone density, and clinical
fractures rates will be required to demonstrate conclusive
efficacy along with underlying mechanisms responsible for
incretin-related bone protection both in diabetic and not
diabetic obese population. Pending further evidence, it is
mandatory to promote the mainstay of osteoporosis preven-
tion in type 2 diabetes: physically active, healthy lifestyle, and
optimization of glucose control with low hypoglycemic risk,
along with vitamin D repletion in deficient patients [42].
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[28] M. L. Villanueva-Peñacarrillo, E. Delgado, M. A. Trapote et al.,
“Glucagon-like peptide-1 binding to rat hepatic membranes,”
Journal of Endocrinology, vol. 146, no. 1, pp. 183–189, 1995.

[29] B. Nuche-Berenguer, S. Portal-Núñez, P. Moreno et al., “Pres-
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