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Abstract: Mitogen-Activated Protein Kinase (MAPK) genes encode proteins that regulate biotic
and abiotic stresses in plants through signaling cascades comprised of three major subfamilies:
MAP Kinase (MPK), MAPK Kinase (MKK), and MAPKK Kinase (MKKK). The main objectives of
this research were to conduct genome-wide identification of MAPK genes in Helianthus annuus
and examine functional divergence of these genes in relation to those in nine other plant species
(Amborella trichopoda, Aquilegia coerulea, Arabidopsis thaliana, Daucus carota, Glycine max, Oryza sativa,
Solanum lycopersicum, Sphagnum fallax, and Vitis vinifera), representing diverse taxonomic groups of
the Plant Kingdom. A Hidden Markov Model (HMM) profile of the MAPK genes utilized reference
sequences from A. thaliana and G. max, yielding a total of 96 MPKs and 37 MKKs in the genomes of
A. trichopoda, A. coerulea, C. reinhardtii, D. carota, H. annuus, S. lycopersicum, and S. fallax. Among them,
28 MPKs and eight MKKs were confirmed in H. annuus. Phylogenetic analyses revealed four clades
within each subfamily. Transcriptomic analyses showed that at least 19 HaMPK and seven HaMKK
genes were induced in response to salicylic acid (SA), sodium chloride (NaCl), and polyethylene
glycol (Peg) in leaves and roots. Of the seven published sunflower microRNAs, five microRNA
families are involved in targeting eight MPKs. Additionally, we discussed the need for using MAP
Kinase nomenclature guidelines across plant species. Our identification and characterization of
MAP Kinase genes would have implications in sunflower crop improvement, and in advancing our
knowledge of the diversity and evolution of MAPK genes in the Plant Kingdom.

Keywords: Abiotic stress; cellular signaling; protein kinase; MAPK cascade; MAPK nomenclature;
sunflower; RNA-seq

1. Introduction

Plant responses to abiotic and biotic stresses involve protein kinases that are crucial to signal
transduction pathways [1]. The protein kinases are involved in a phosphorylation of Serine/Threonine
and Tyrosine sidechains of proteins [2]. Among these protein kinases, Mitogen-Activated Protein
Kinase (MAPK) cascade genes are key components of signal transduction pathways in animals, plants,
and fungi [3] that help transduce extracellular signals to intracellular responses [4]. Discovered in
1986, the MAPK gene family was originally found in animal cells as a microtubule-associated protein
kinase [5]. The first reports of plant MAPK gene family in 1993, identified MsERK1 in alfalfa [6] and
D5 kinase in pea [7]. MsERK1 is believed to play a role as an inducer of mitosis in root nodules during
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symbiosis by Rhizobium and D5 kinase as a cell cycle regulator in pea [6,7]. In addition to such roles
in cell proliferation and cell differentiation, MAPK genes are involved in regulating various biotic
(e.g., bacteria, fungi, viruses) and abiotic (e.g., light, drought, UV, salinity, pH, cold) stress responses [8].

Stress signals trigger the MAPK cascade, which is composed of reversibly phosphorylated
kinases such as MAP Kinase (MAPK, MPK), MAPK Kinase (MAP2K, MAPKK, MKK), and MAPKK
Kinase (MAP3K, MAPKKK, MKKK) [9,10]. The MKKKs constitute a relatively larger gene family,
constituting three sub-groups of genes: the MEKKs, Rafs, and ZIKs [11]. Each of these proteins in
the cascade is activated through the recognition and phosphorylation of a specific serine/threonine
amino acid motif [12]. An external or internal stimulus triggers the first step, the activation of
an MKKK member, through receptor-mediated phosphorylation or intermediate bridging factors
or interlinking MKKKs [10]. The phosphorylated MKKK member induces the activation of MKK
through the phosphorylation of two serine or threonine amino acid residues in the conserved motif
S/TxxxxxS/T [10]. The activated MKKs, which are dual-specificity kinases, in turn, trigger the
phosphorylation of MPKs at the Thr-Asp/Glu-Tyr [T(D/E)Y] motif located in the activation loop
(T-loop) between kinase subdomains VII and VIII [3,10,13]. Apart from T(D/E)Y motif in many plant
species, some other variants such as T(Q/V/S)Y, T(/Q/R)M, MEY, TEC in the activation loop have also
been reported [1]. The MPK members phosphorylate a variety of substrates, including transcription
factors, protein kinases, and cytoskeleton proteins [10,14]. The activation of the MAPK cascade genes
induces the translocation from the cytoplasm to the nucleus [15], further enacting the specific cellular
response to the external stimuli through gene activation and inactivation. The detailed illustration
of the MAP Kinase signaling pathway in response to diverse abiotic and biotic stresses in plants is
represented in Figure S1 adapted from various studies [16–24].

The advent of sequencing technologies and rapid progress in bioinformatics tools has assisted
the sequencing of the plant genomes at a faster pace. Genome-wide identification of MPKs
and MKKs has been documented in various plant species, including both model and crop
species [14,25–39]. Previous identification and characterization of MAP Kinase cascade proteins
in rice, Arabidopsis, and other plants [4,39,40] provide a wealth of information for comparative analyses
of these proteins in species that have yet to be studied. The availability of the complete genome
sequences from each of the major plant groups such as Asterids (Daucus carota [41], Helianthus
annuus [42], Solanum lycopersicum [43]), Amborellales (Amborella trichopoda [44]), Ranunculales
(Aquilegia coerulea [45]), Bryophyte (Sphagnum fallax [46]), and Algae (Chlamydomonas reinhardtii [47])
allowed us to identify the MPK and MKK genes of these species and assess phylogenetic relationships.
Domesticated sunflower is the fourth most important oilseed crop in the world (http://www.fao.org/)
and can adapt to diverse environmental conditions such as drought and maintain the stable yields [48].
Thus, the MAPK gene family might play an important role in helping sunflower adapt and survive
in different environmental conditions. This research was carried out with two major objectives:
(a) detailed identification and functional characterization of MPK and MKK genes in H. annuus;
and (b) assess phylogenetic relationships of MPK and MKK genes of H. annuus with that of A. coerulea,
A. trichopoda, C. reinhardtii, D. carota, S. fallax, and S. lycopersicum and including the homologs from
relatively better-studied plant species from Rosids (A. thaliana, G. max, and V. vinifera) and a monocot
(O. sativa). Findings from this study might support further efforts in crop improvement focused on the
development of cultivars that maintain yield when challenged by biotic and abiotic stresses as well as
understand the evolution pattern of MAPK gene family in sunflower and other plant species.

2. Materials and Methods

2.1. Retrieval and Identification of Putative MAP Kinase Cascade Genes

Genome-wide identification of MPK and MKK cascade genes was performed using protein
sequences of A. coerulea (v 3.1), A. trichopoda (v 1.0), C. reinhardtii (v 5.5), D. carota (v 2.0), H. annuus
(r 1.2), S. fallax (v 0.5), and S. lycopersicum (iTAG2.4) obtained from the Phytozome database [45].

http://www.fao.org/
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Sunflower protein sequences from INRA inbred genotype XRQ whose genome is 3.6 gigabases and
encodes 52,243 proteins distributed over 17 chromosomes [42] were analyzed in the present study.
The 20 MPK and ten MKK sequences of A. thaliana [25] along with 38 MPK and 11 MKK sequences
of G. max [26] were used as reference sequences for the identification of MPK and MKK proteins.
The multiple sequence alignment of these reference sequences was employed in HMM profiling
using the program HMMER (version 3.1b2) [49] at a threshold e-value of 0.01. MPK and MKK
genes were further identified using InterProScan (version 5.27) [50], Pfam ID [51], and PROSITE ID
(http://prosite.expasy.org/). The proteins with PfamID of MAPK domain (PS01351), ATP-binding
domain (PS00107), protein kinase domain (PS50011), and serine/threonine protein kinase active site
(PS00108) were used for identification of corresponding MPK and MKK proteins (Figure 1). Multiple
expectation maximization for motif elicitation (MEME) [52] and multiple sequence alignment analysis
was performed to confirm the presence of the following signature motifs: (a) the phosphate binding
P-loop, GxGxxG [1], where ATP binds in protein kinases; (b) the catalytic C-loop, D(L/I/V)K, found
within the S/T PK active site signature; and (c) the activation- or T-loop, T(D/E)Y in MPK and
GTxxYMSPER in MKK proteins. The following parameters for MEME were employed: maxsize:
100,000; mod: zoops; nmotifs: 10; minw: 6; and maxw: 25. Furthermore, MKK genes were identified
using BLAST [53], with an e-value cutoff of 0.01, in which A. thaliana MKK sequences were used as a
query, and the top ten hits for each A. thaliana MKK query sequence were employed for MKK gene
identification. The protein theoretical molecular weight and isoelectric point were predicted using
compute pI/Mw tool available in ExPASy (http://au.expasy.org/tools). Subcellular localization of the
putative MPK and MKK genes of sunflower were analyzed using TargetP 1.1 [54].
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Figure 1. Schematic representation of in silico approaches used in the identification of MPK and MKK
genes in seven plant species and their downstream analyses.

2.2. Phylogenetic Tree Construction and Homology Assessment

The multiple sequence alignment of identified MPK and MKK proteins of H. annuus and other species
used in this study was performed using CLUSTALW [55] and MUSCLE [56] in Geneious [57] and subjected
to phylogenetic analysis employing the maximum likelihood (ML; with 100 replicates) using MEGA
(version 7.0.14) [58]. The phylogenetic analyses employed an evolutionary model ‘Jones-Taylor-Thornton
with gamma distribution and invariant sites (JTT+G+I)’, the best evolutionary model resulted from
the ModelTest analysis using MEGA7. The trees using MPK and MKK sequences were rooted with
corresponding human MAPK proteins [HsMAPK1 (GenBank: NP_002736.3) and HsMAPKK1 (GenBank:
AAI37460.1), respectively] as an outgroup. Timetree was constructed using the Reltime method [59] from
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MEGA7 to study the evolutionary divergence of MKK3 proteins belonging to all species under study.
The following criteria were used for the construction of Timetree: constraints used: 3 [Divergence time:
O. sativa and A. trichopoda (168–194 MYA), G. max and H. annuus (110–124 MYA), and V. vinifera and
A. thaliana (105–115 MYA), obtained from http://www.timetree.org/ [60]]; variance estimation method:
analytical; statistical method: maximum likelihood; substitution model: JTT; rates among sites: 5 categories
(+G, parameter = 0.6307); rate variation model allowed: ([+I], 0.00% sites); amino acids involved: 11; and
total positions: 574 positions. Homology to MPKs and MKKs of other plants was assessed using
the BLASTp top-hit approach (https://blast.ncbi.nlm.nih.gov/Blast.cgi) with non-redundant protein
sequences (nr) database.

2.3. Chromosomal Locations and Gene Structure

All 17 chromosome sequences of H. annuus accessed from the Phytozome database were uploaded
into the program Geneious [57]. The chromosome locations of MPK and MKK genes of sunflower
were visualized using annotation file in Generic Feature Format (GFF) obtained from the annotation
database of Phytozome. The exon-intron distribution pattern was obtained by the Gene Structure
Display Server [61].

2.4. Nomenclature of MPKs and MKKs

Nomenclature of sunflower MPKs and MKKs was carried out using MAPK gene nomenclature
guidelines [3,4]. The nomenclature uses the following format: (a) the first letter (upper case) of the
genus name followed by two to three letters of species (lower case) was used; (b) a number was
provided based on the homology to the Arabidopsis MAPK cascade genes; and (c) the number was
followed by a hyphen and a number if paralogs were present. Such guidelines for nomenclature
of MPKs and MKKs have been employed in many studies [1,4,26,27,33–36,62–65]. In this study,
we renamed GSVIVT01005924001 (VvMPK2) and GSVIVT0102277001 (VvMPK10), identified by Cakir
and Kılıçkaya 2015 [37], as VvMPK22 and VvMPK23, respectively, which were not identified in a study
by Mohanta et al. 2015 [1].

2.5. Expression Analysis and miRNA Prediction of Sunflower MPKs and MKKs

The expression pattern of sunflower MPKs and MKKs was investigated using data accessed from
NCBI SRA SRP092742 [SRR4996815 (polyethylene glycol or peg)-treated pooled root samples), SRR4996819
(NaCl-treated pooled root samples), SRR4996823 (Peg-treated pooled leaf samples), SRR4996828 (pooled
control root samples), SRR4996834 (NaCl-treated pooled leaf samples), SRR4996836 (pooled control leaf
samples), SRR4996839 (salicylic acid-treated pooled leaf samples), and SRR4996847 (salicylic acid-treated
pooled root samples)]. These data are the result of the application of one hormone treatment (0.05 µM
SA), two abiotic stresses [Peg 6000 (100 g/l), which creates osmotic stress, and NaCl (100 mM) for salt
stress], and control [dimethyl sulfoxide (DMSO) only] collected from root and leaf samples. The detailed
experiment is described in Badouin et al. 2017 [42]. Briefly, roots and first leaves were collected after
six hours of treatment (SA, Peg, NaCl, and DMSO), and applied to two-week-old sunflower seedlings
(INRA inbred genotype XRQ) grown in a hydroponic system. The collection was repeated three times
and was pooled after separate RNA extractions in equimolar concentration. RNA sequencing of root
and leaf samples was performed as non-oriented pair end libraries (2*76 bp for roots and 2*100 for
leaves). The quality control of these reads was accessed by running the FastQC program (version
0.11.3) [66], and trimming was done using Btrim64 (version 0.2.0) [67] to remove low-quality bases
(QC value > 20; 5-bp window size). High-quality pair-end reads were mapped against the coding
sequences of H. annuus (Hannuus: Hannuus_494_r1.2.transcript.fa.gz) obtained from the Phytozome
database using the Salmon (version 0.9.1) [68] in Bioconda [69]. The codes that were used for data
processing are available as Supplementary File S1. The obtained transcript estimated quantification
reads for each treatment were compared with their respective reads from the controls to calculate the
log2Fold Change (log2FC) and visualized using integrated Differential Expression and Pathway analysis

http://www.timetree.org/
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(iDEP 0.81 R/Bioconductor packages; http://bioinformatics.sdstate.edu/idep/) [70]. The heatmap was
generated using the following criteria: distance–correlation, linkage–average and cut-off Z score–4 to
study the hierarchical clustering and expression pattern of MPK and MKK genes in different tissues under
different treatments. k-means clustering was done using the standardization normalization technique.
For identifying the potential miRNA targeting sites, the nucleotide sequences of the identified sunflower
MPKs and MKKs were subjected to a plant small RNA (psRNATarget) target analysis server [71] against
seven published H. annuus microRNAs, selecting Schema V2 (2017 release) as a scoring option.

2.6. Tajima’s Relative Rate and Neutrality Test

Tajima’s relative rate test [72] was conducted to study the statistical significance of variations in
molecular evolution in a different group of plants. The same MEGA files used in phylogenetic tree
construction were used in the program MEGA7. In this test, three random sequences of either MPKs
or MKKs of different plant species were selected, considering one of the sequences as the outgroup,
and the χ2 test statistic was applied. A p-value of less than 0.05 was used to reject the null hypothesis of
equal rates of evolution between selected sequences of different plant groups. All positions containing
gaps and missing data were eliminated. Tajima’s test of neutrality [73] was performed to understand
and distinguish the evolutionary pattern of randomly evolved MPKs or MKKs with non-randomly
evolving MPKs or MKKs. During the neutrality test, all positions with less than 95% site coverage
were eliminated. Therefore, fewer than 5% alignment gaps, missing data, and ambiguous bases were
allowed at any position. The groupings of A, B, and C represent the statistical groups, which should
not be confused with MPK or MKK clades.

3. Results

3.1. The Diversity of MPK and MKK Genes in Sunflower Relative to Other Species

After a careful examination of the signature motifs of the 2,419 sequences resulting from the
HMM profiling using reference sequences of A. thaliana and G. max against 52,243 protein sequences of
sunflower, we identified 28 MPKs (filtered from 244 possible MPKs) and eight MKKs (filtered from
100 possible MKKs) (Tables 1 and 2). We also used protein sequences of A. coerulea, A. trichopoda,
C. reinhardtii, D. carota, S. fallax, and S. lycopersicum and identified their MPKs and MKKs, which are
shown in Tables S1 and S2. The protein sequences identified, including reference sequences used in
this study and their identity in percentage, are presented in Supplementary File S2. The abundance of
MPK and MKK genes in the genomes of A. coerulea (306.5 Mb), A. trichopoda (706 Mb), C. reinhardtii
(111 Mb), D. carota (421 Mb), H. annuus (3600 Mb), S. lycopersicum (900 Mb), and S. fallax (395 Mb)
shares no apparent correlation with genome size (Table 1).

Table 1. Abundance of MPK and MKK genes in the genomes of 11 species used in this study.

Plant Species Ploidy Size of Genome (Mbs) γ No. of loci γ MPK MKK

Amborella trichopoda ‡ Diploid 706 26846 8 7
Aquilegia coerulea ‡ Diploid 302 24823 11 5
Arabidopsis thaliana Diploid 135 27416 20 a 10 a

Chlamydomonas reinhardtii ‡ Haploid 111.1 17741 6 1
Daucus carota ‡ Diploid 421 32,113 17 5

Glycine max Tetraploid 975 56044 38 b 11 b

Helianthus annuus ‡ Diploid 3600 52243 28 8
Oryza sativa Diploid 372 39049 16 c 8 c

Solanum lycopersicum ‡ Diploid 900 34727 15 5
Sphagnum fallax ‡ Haploid/Diploid 395 26939 11 6

Vitis vinifera Diploid 487 26346 14 d 5 d

‡ = Plant species with MPKs and MKKs identified or revisited in this study; γ = References on the size of genome and
number of loci Amborella trichopoda [44], Arabidopsis thaliana [74], Aquilegia coerulea [45], Chlamydomonas reinhardtii
[47], Daucus carota [41], Glycine max [75], Helianthus annuus [42], Oryza sativa [76], Solanum lycopersicum [43],
and Sphagnum fallax [46], and Vitis vinifera [77]; a = [10], b = [26], c = [4], d = [37]

http://bioinformatics.sdstate.edu/idep/
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Table 2. Sunflower MPK and MKK genes with their proposed name, GeneID, chromosomal location (Chr), strand direction (Str), start and end position of the genes on
chromosome, protein length (PL), number of exon (Exo) and intron (Int), subcellular localization [Sl; M = Mitochondria and C = Chloroplast, - = Subcellular locations
other than mitochondria or the chloroplast), isoelectric points (pI) and molecular weight (Mw)].

Name Gene ID Chr Str Start End PL Exo Int Sl pI Mw

MPK
HaMPK6-1 HanXRQChr01g0023391 Ha1 - 130301686 130292965 359 6 5 - 5.85 41581.61
HaMPK16-1 HanXRQChr03g0071491 Ha3 - 77378137 77372246 564 10 9 - 9.17 64059.43
HaMPK7 HanXRQChr03g0074811 Ha3 + 102410161 102406169 353 3 2 - 7.62 40274.83

HaMPK23-1 HanXRQChr03g0081221 Ha3 + 129978443 129973452 453 15 14 - 9.65 50392.28
HaMPK23-3 HanXRQChr03g0081391 Ha3 + 130506162 130500013 423 16 15 - 8.91 47648.79
HaMPK22 HanXRQChr04g0108301 Ha4 - 77321727 77315970 432 18 17 - 5.46 49633.87
HaMPK11-1 HanXRQChr04g0121371 Ha4 + 158781451 158778221 358 6 5 M 6.42 41228.21
HaMPK3-1 HanXRQChr05g0133161 Ha5 + 21064225 21061089 358 6 5 - 5.68 41323.35
HaMPK8 HanXRQChr05g0143371 Ha5 - 116774638 116767923 505 11 10 - 6.8 57051.89
HaMPK2 HanXRQChr05g0151241 Ha5 - 169574750 169571609 349 3 2 - 6.54 40295.67

HaMPK11-2 HanXRQChr06g0167011 Ha6 - 7104659 7099870 359 6 5 M 6.25 41336.17
HaMPK4 HanXRQChr06g0170261 Ha6 + 16894292 16893100 157 2 1 M 8.36 17702.54

HaMPK13-1 HanXRQChr06g0175501 Ha6 - 34635251 34631528 363 7 6 - 5.22 41353.31
HaMPK9-1 HanXRQChr06g0183531 Ha6 + 90706107 90699312 478 11 10 - 6.53 54442.91
HaMPK23-4 HanXRQChr08g0226701 Ha8 + 84318787 84308381 442 18 17 - 9.52 49480.06
HaMPK15 HanXRQChr08g0227231 Ha8 + 87599490 87591577 501 11 10 - 8.53 57073.07
HaMPK3-2 HanXRQChr08g0229941 Ha8 - 101013127 101009864 358 6 5 - 5.58 41298.31
HaMPK13-2 HanXRQChr08g0230171 Ha8 - 102808229 102804252 362 6 5 - 5.85 41552.83
HaMPK14 HanXRQChr09g0243011 Ha9 + 34673154 34669292 362 3 2 - 5.57 41423.42
HaMPK16-2 HanXRQChr09g0248301 Ha9 + 76212398 76202758 559 10 9 - 9.07 63370.4
HaMPK1 HanXRQChr09g0269211 Ha9 - 185086347 185083825 361 3 2 - 6.64 41831.44

HaMPK19-2 HanXRQChr11g0330461 Ha11 + 43791321 43784989 574 9 8 - 9.33 65344.85
HaMPK6-2 HanXRQChr11g0343001 Ha11 - 125967866 125963374 359 6 5 - 5.8 41553.72
HaMPK19-1 HanXRQChr13g0389781 Ha13 - 19048315 19044532 588 10 9 - 9.06 66613.36
HaMPK23-2 HanXRQChr13g0411961 Ha13 - 142634442 142625511 459 18 17 - 9.63 50984.95
HaMPK9-2 HanXRQChr14g0432771 Ha14 - 49683290 49679650 484 10 9 - 6.57 55530.13
HaMPK17 HanXRQChr15g0484561 Ha15 - 84424855 84420653 429 11 10 - 6.24 49909.6
HaMPK18 HanXRQChr15g0495321 Ha15 - 160155012 160149273 563 9 8 - 9.47 64374.62

MKK
HaMKK9 HanXRQChr03g0087071 Ha3 - 148424902 148425825 308 1 0 M 6.75 34332.34
HaMKK4 HanXRQChr04g0094171 Ha4 + 471743 472816 351 1 0 C 9.04 38917.18

HaMKK6-1 HanXRQChr09g0238861 Ha9 + 9311933 9322916 357 8 7 - 6.76 39934.36
HaMKK5 HanXRQChr10g0311571 Ha10 + 219604899 219606004 355 1 0 C 9.25 39840.46

HaMKK6-2 HanXRQChr10g0318871 Ha10 + 244056044 244064185 355 8 7 - 7.13 39751.09
HaMKK2 HanXRQChr10g0319531 Ha10 - 245318274 245324118 371 9 8 - 5.43 40967.01
HaMKK1 HanXRQChr12g0354521 Ha12 - 1236278 1243005 358 10 9 - 5.77 39199.81
HaMKK3 HanXRQChr14g0450561 Ha14 - 141579116 141587170 520 12 11 M 5.79 68568.6
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3.2. Gene Location, Subcellular Localization and Structural Variation of MPKs and MKKs in H. annuus

The MPK and MKK genes were distributed on all chromosomes of sunflower, with the highest of
five genes in chromosome 3. The MPK genes were absent in chromosomes 2, 7, 10, 12, 10, 16, and 17;
whereas, MKK genes were absent in chromosomes 1, 2, 5, 6, 7, 8, 11, 13, 15, 16, and 17. Both MPK and
MKK genes are completely absent in chromosomes 2, 7, 16, and 17. One HaMPK gene each was found
in chromosome 1 and 14; two HaMPKs each in chromosome 4, 11, 13, and 15; three HaMPKs each
in chromosome 5 and 9, and four HaMPKs each in chromosome 3, 6 and 8 (Figure 2). Eight paralog
pairs HaMPK3-1/3-2, HaMPK6-1/6-2, HaMPK9-1/9-2, HaMPK11-1/11-2, HaMPK13-1/13-2, HaMPK
16-1/16-2, HaMPK19-1/19-2, and HaMPK23-2/23-4 were located on different chromosomes. Only one
paralog pair (HaMPK23-1/23-3) was present in the same chromosome (i.e., chromosome 3). Likewise,
only one MKK gene was present in chromosomes 3, 4, 9, 12, and 14, while three MKKs were present in
chromosome 10. The only paralog pair, HaMKK6-1/6-2 was present in different chromosomes. TargetP
analysis showed that the proteins encoded by three MPKs (HaMPK11-1/11-2 and HaMPK4) and two
MKKs (HaMKK9 and HaMKK3) were predicted to localize in mitochondria, two MKKs (HaMKK4
and HaMKK5) in the chloroplast, and the rest in subcellular locations other than mitochondria or
the chloroplast (Table 2). Regarding the structural variation due to exons and introns, the number of
exons in MPKs ranged from two (HaMPK4) to 18 (HaMPK22, HaMPK23-4/23-2) with an average of
8.9 exons per gene (Table 2, Figure S2). The number of exons in MKKs ranged from one (HaMKK9,
HaMKK4, and HaMKK5) to 12 (HaMKK3), with an average of 6.25 exons per gene (Table 2, Figure S3).

Figure 2. Chromosomal distribution of MPK and MKK genes in sunflower (n = 17). Color-coded
arrows represent MAP Kinase gene types and their orientation on the chromosome indicated by the
black line.

3.3. Phylogenetic Analyses

Full-length amino acid sequences of MPKs and MKKs of sunflower, Arabidopsis and soybean were
employed for evaluating evolutionary relationships, as well as for nomenclature of the MPKs and
MKKs of species under study. These sequences were subjected to multiple sequence alignment and
subsequent phylogenetic analyses. Phylogenetic analyses included MPK and MKK gene sequences
from, A. coerulea, A. thaliana, A. trichopoda, C. reinhardtii, D. carota, G. max, H. annuus, O. sativa,
S. lycopersicum, and V. vinifera.
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3.3.1. MPKs

Sunflower MPK (HaMPK) protein sequence length ranged from 349 to 588 amino acid (aa),
except for HaMPK4, which was only 157 aa. The average length of MPKs was 425 aa, with isoelectric
points ranging from 5.22 (HaMPK13-1) to 9.65 (HaMPK23-1) and a predicted average molecular mass
of 48523.772 Da (Table 1). Twenty-eight HaMPKs identified in this study were nested into four clades
(A–D; each with bootstrap support > 70%) (Figure S4), which corresponded to their homologs in
A. thaliana and G. max, except for the Clade C MPK members (Table S3). The Clade A members in this
study include the previously identified group A and B members of A. thaliana MPKs [3,4]. Likewise,
Clade B consists of previously identified group C members of A. thaliana MPKs. In addition, Clade C
includes the members identified in group E of soybean MPKs [26]. The number of HaMPKs in Clades A,
B, C, and D were nine, four, five, and ten, respectively. Sunflower MPK Clade C included five members
with HaMPK22 (a homolog to GmMPK22-1 and GmMPK22-2) and HaMPK23-1/23-2/23-3/23-4
(homologs to the corresponding GmMPK23-1/23-2/23-4/23-4). Clade A and B consisted of members
with phosphorylation motif TEY (except for HaMPK23-1 and HaMPK23-2 that are nested within Clade
C), while those with the TDY motif were found in Clade C and D. The sunflower MPK orthologs are
shown in Table S4. The phosphate-binding P-loop, the catalytic C-loop, D(L/I/V)K, and the activation-
or T-loop, TxY, in MPKs were defined as (I/V/L)GxGx(S/F/G)GxV, HRD(L/I)KPxN and T(D/E)Y
in sunflower, respectively. The protein sequence of HaMAPK23-3 had a variation in catalytic C-loop,
D(L/I/V)K motif, as it possessed ‘Phenylalanine (F)’ instead of ‘Leucine/ Isoleucine/Valine (L/I/V)’.
Other additional motifs, such as VAIKKIxxxF, were defined as VA(I/V/M)KK(I/M)xxx(F/Y) in the
protein sequences of MPKs. The MPKs that belonged to Clade C possessed VA(I/V/M)KKMxxxY.
The motifs ‘DFGLAR’ and ‘TRWYRAPE’ were found conserved in all of the MPKs of sunflower.
HaMPK4 was the only member that lacked phosphate binding P-loop and VAIKKIxxxF motif.
The structural analyses mapped onto phylogeny provided important insights into the duplication
events. In the HaMPK gene family, the number of introns ranged from one (HaMPK4) to 17 [three
members from Clade C (HaMPK22, HaMPK23-4/23-2)]. The gene members showed a similar pattern
of exon/intron structure within the clades. The majority of the HaMPKs (seven) in Clade A consist of
six exons, and members, HaMPK13-1 and HaMPK4 had seven and two exons, respectively. In Clade B,
all three members consisted of three exons. Three of the five members in Clade C possessed 18 exons,
and HaMPK23-1 and HaMPK23-3 possessed 15 and 16 exons, respectively. Likewise, half of the gene
members in Clade D (five) possessed ten exons, two (HaMPK19-2 and HaMPK18) possessed nine
exons, and three genes (HaMPK8, HaMPK15, and HaMPK9-1) possessed 11 exons (Figure S1).

Phylogenetic analysis of full-length protein sequences was conducted to study evolutionary
patterns of the MPKs in ten plant species with sequences of C. reinhardtii (Figure 3). The MPKs were
nested in four clades (Clade A–D; Table S3). Clade A is the second largest clade, consisting of 64
MPKs of MPK3/6/4/11/5/13/10 of all species under the study. Clade B consists of 29 MPKs of
MPK1/2/7 and 14. In the cases of S. lycopersicum and V. vinifera, these two species contain MPK1
and MPK7 in Clade B. Thus, MPK2 and MPK14 are absent in two species, but not only MPK2.
In addition, A. trichopoda only has AmtMPK14 in Figure 3. Therefore, MPK1/2/7 of A. trichopoda is
absent. The MPK14 of V. vinifera and D. carota, MPK2 of S. lycopersicum and V. vinifera, and MPK7 of
A. trichopoda are absent. The smallest clade, Clade C, consists of 18 members of MPK22 and MPK23
from H. annuus, G. max, S. lycopersicum, V. vinifera, S. fallax, and C. reinhardtii. All the members of
Clade A and B consist of the TEY motif, whereas some members of Clade C (HaMPK23-1/23-4,
GmMAPK23-1/23-2/23-3/23-4, and VvMPK22) consist of the TEY motif. The largest clade, Clade D,
consists of 70 MPKs of MPK16/18/19/20/21/17/9/8/15, and MPK13 of C. reinhardtii. All clades had
moderate to strong support (bootstrap values ranging from 80 to 100%). Figure 4a and Supplementary
File S3 show the motifs related to the P-loop, catalytic C-loop, and activation or T-loop, representing
variations in clades A–D, including other predicted conserved domains of MPK group proteins.
In addition, the clade divergence was also based on the common docking site, which is important for
downstream target proteins. Clade A consisted of K-M-L-V-F-D-P-N-K-R-I-V-E-E-A-L, Clade B consisted
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of K-M-L-V-F-D-P-S-K-R-I-S-V-T-E-A-L, Clade C consisted of S-L-C-S-W-D-P-C-K-R-P-T-A-E-E-A-L,
and Clade D consisted of R-L-L-A-F-D-P-K-D-R-P-T-A-E-E-A-L consensus common docking sites (Table 3).

Table 3. Consensus common docking sites in the MPK proteins belonging to clades A–D.

Clades Consensus Common Docking Sites

Clade A K-M-L-V-F-D-P-N-K-R-I-V-E-E-A-L
Clade B K-M-L-V-F-D-P-S-K-R-I-S-V-T-E-A-L
Clade C S-L-C-S-W-D-P-C-K-R-P-T-A-E-E-A-L
Clade D R-L-L-A-F-D-P-K-D-R-P-T-A-E-E-A-L

Plants 2018, 7, x FOR PEER REVIEW  9 of 24 

 

Table 3. Consensus common docking sites in the MPK proteins belonging to clades A–D. 

Clades Consensus common docking sites 
Clade A K-M-L-V-F-D-P-N-K-R-I-V-E-E-A-L 
Clade B K-M-L-V-F-D-P-S-K-R-I-S-V-T-E-A-L 
Clade C S-L-C-S-W-D-P-C-K-R-P-T-A-E-E-A-L 
Clade D R-L-L-A-F-D-P-K-D-R-P-T-A-E-E-A-L 

 
Figure 3. Maximum Likelihood (ML) tree constructed using full length amino acid sequences from 
Amborella trichopoda (Amt), Arabidopsis thaliana (At), Aquilegia coerulea (Ac), Chlamydomonas reinhardtii 
(Cre), Daucus carota (Dc), Glycine max (Gm), Helianthus annuus (Ha), Oryza sativa (Os), Solanum 
lycopersicum (Sl), and Sphagnum fallax (Sf), and Vitis vinifera (Vv) MPK proteins. Phylogenetic analysis 
with 100 bootstrap replicates was performed in the program MEGA7. Homo sapiens, HsMAPK1 
(GenBank: NP_002736.3) was used as an outgroup. Different species are color-coded, and the MPK 
clades are labeled A–D. The Clade A members include the previously identified group A (MPK3, 
MPK6, MPK10) and B (MPK4, MPK5, MPK11, MPK12, MPK13) members of A. thaliana MPKs [3,4]. 
The Clade B members include the previously identified group C (MPK1, MPK2, MPK7, and MPK14) 
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Figure 3. Maximum Likelihood (ML) tree constructed using full length amino acid sequences
from Amborella trichopoda (Amt), Arabidopsis thaliana (At), Aquilegia coerulea (Ac), Chlamydomonas
reinhardtii (Cre), Daucus carota (Dc), Glycine max (Gm), Helianthus annuus (Ha), Oryza sativa (Os),
Solanum lycopersicum (Sl), and Sphagnum fallax (Sf), and Vitis vinifera (Vv) MPK proteins. Phylogenetic
analysis with 100 bootstrap replicates was performed in the program MEGA7. Homo sapiens, HsMAPK1
(GenBank: NP_002736.3) was used as an outgroup. Different species are color-coded, and the MPK
clades are labeled A–D. The Clade A members include the previously identified group A (MPK3,
MPK6, MPK10) and B (MPK4, MPK5, MPK11, MPK12, MPK13) members of A. thaliana MPKs [3,4].
The Clade B members include the previously identified group C (MPK1, MPK2, MPK7, and MPK14)
members of A. thaliana MPKs [3,4]. The Clade C members include the previously identified group E
(MPK22 and MPK23) members of soybean MPKs [26]. The Clade D members include the previously
identified group D (MPK8, MPK9, MPK16, MPK17, MPK18, MPK19, MPK20, and MPK21) members of
A. thaliana MPKs [3,4].
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3.3.2. MKKs

Sunflower HaMKK protein sequence length ranged from 308 to 520 aa. The average length
of proteins for MKKs was 372 aa, with isoelectric points ranging from 5.43 (HaMKK2) to 9.25
(HaMKK5) and a predicted average molecular mass of 42688.86 (Table 1). Corresponding with
their homologs in Arabidopsis and G. max, the eight identified HaMKKs are divided into four distinct
clades (Figure S5). The MKK homologs of MKK1/2/6-1/6-2/3/4/5/9 were only found in sunflower.
The clades’ divergence followed serine/threonine amino acid motif patterns in sunflower. For example,
Clade A contained SxxxxxS/TxxxxxT, Clade B with SxxxxxTxxxxxT, Clade C with SxxxxxTxxxxxS,
and D with SxxxxxSxxxxxT. The HaMKKs in Clades A, B, C, and D were four, one, two, and one,
respectively (Table S5). The orthologs of identified MKKs of sunflower in different plant species are
represented in Table S6. In the HaMKK gene family, the number of introns ranged from zero (HaMKK9,
HaMKK4, and HaMKK5) to 11 (HaMKK3) (Table 2, Figure S3). Clade A members HaMKK6-1 and
HaMKK6-2 consisted of eight exons and are paralogs to each other. The remaining Clade A members,
HaMKK2 and HaMKK1, consisted of nine and ten exons, respectively. The only member of Clade
B, HaMKK3, consisted of twelve exons. Interestingly, the members of Clade C and D (HaMKK9,
HaMKK4, and HaMKK5) had no introns.

Phylogenetic analysis of full-length MKK amino acid sequences from the plant species with
sequences of C. reinhardtii under this study revealed four distinct clades (Clades A–D, Figure 5).
Figure 4b and Supplementary File S4 show the motifs related to P-loop, catalytic C-loop, and activation
or GTxxYMSPER, representing variations in Clades A–D, including other predicted conserved domains
of MKK group proteins. The largest clade, Clade A, consisted of 26 MKKs, belonging to MKK1,
MKK2, and MKK6. While MKK3 orthologs formed Clade B, consisting 12 MKKs, MKK4 and MKK5,
with 16 members, formed Clade C. Gene MKK4 is absent in S. lycopersicum, V. vinifera, D. carota,
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and C. reinhardtii species. MKK7, MKK8, MKK9, and MKK10 formed Clade D, which consisted of 16 of
the total MKKs under study. With respect to all MKKs belonging to ten species, the phosphate-binding
P-loop, the catalytic C-loop, D(L/I/V)K, and activation- or T-loop, (S/T)xxxxx(S/T) varied across
the clades. The GTxxYMSPER motif was well conserved in all species except for the OsMAPKK6
and AmtMKK6 with GTxxYMAPER in Clade A and OsMAPKK10-1 in Clade D with GTxxYMSPEK.
The ATP binding signature in MKK of sunflower terminates with ALK except for GmMAPKK6-1
(completely absent), CrMKK3 with AVK, VvMKK4 with ANT, OsMAPKK10-1 (completely absent),
and OsMAPKK10-1 with AVK. The Timetree based on the 11 MKK3 (each MKK3 protein from all
species belonging to Clade B) sequences shows the evolutionary divergence across all species under
study. Upon use of three constraints of divergence between O. sativa and A. trichopoda (168–194 MYA),
G. max and H. annuus (110–124 MYA), and V. vinifera and A. thaliana (105–115 MYA), the approximate
divergence of these MKK3 proteins across species has been found. For instance, DcMKK3 and SlMKK3
diverged 90.70 MYA from HaMKK3 (Figure S6).
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Figure 5. Maximum Likelihood (ML) tree constructed using full-length MKK amino acid sequences
from Amborella trichopoda (Amt), Arabidopsis thaliana (At), Aquilegia coerulea (Ac), Chlamydomonas
reinhardtii (Cre), Daucus carota (Dc), Glycine max (Gm), Helianthus annuus (Ha), Oryza sativa (Os),
Solanum lycopersicum (Sl), and Sphagnum fallax (Sf), and Vitis vinifera (Vv). Phylogenetic analysis
with 100 bootstrap replicates was performed in the program MEGA7. Homo sapiens, HsMAPKK1
(GenBank: AAI37460.1) was used as an outgroup. Different species are color-coded, and the MKK
clades are labeled A–D. Clade A, B, C, and D members include the previously identified group A
(MKK1, MKK2, and MKK6), group B (MKK3), group C (MKK4, MKK5), and group D (MKK7, MKK8,
MKK9, and MKK10) members of A. thaliana MKKs, respectively [3,4].

3.4. Expression Analysis and miRNA Prediction of Sunflower MPKs and MKKs

The functional analysis of both HaMPKs and HaMKKs was studied using RNA-seq data available
in NCBI. Since the sunflower genome was recently available, the expression data for pathogen
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stress were not available in the public databases. We investigated the expression pattern of MPKs
and MKKs in leaves and roots treated with one hormone treatment (SA) and two abiotic stresses
(NaCl and Peg). We did observe expression patterns for all HaMPKs and HaMKKs except for HaMPK4
(Supplementary File S5). The k-means clustering result showed that the HaMPKs and HaMKKs were
clustered into four groups (Figure S7 and Table S7). Cluster A consisted of seven HaMPKs (from
Clades A, B, and D) and four HaMKKs (from Clades A, B, and C). Cluster B consisted of three HaMKK
genes (from Clades A and D) and two HaMPK genes (from Clade A). Cluster C consisted of three
genes belonging to both HaMPKs (from Clades A and D) and one HaMKK (from Clade C). Cluster D
consisted of 15 genes belonging to HaMPKs (belonging to clades A–D). The log2FC for each gene and
hierarchical clustering of HaMPKs and HaMKKs representing the functional divergence of these genes
are represented in Figure S8 and Figure 6, respectively. Some genes were upregulated in response to
the treatments compared to the control of their respective tissues. For instance, in leaves, HaMKK5,
HaMKK6-2, HaMPK3-2, HaMPK11-1, HaMPK14, HaMPK1, HaMPK6-2, HaMPK19-1, and HaMPK18
showed log2FC > 1 in response to Peg; HaMKK5, HaMKK6-2, HaMPK11-1, HaMPK14 showed log2FC
> 1 in response to NaCl; HaMPK11-1 showed log2FC > 1 in response to SA. In roots, HaMKK4,
HaMKK1, HaMKK2, HaMPK3-2, HaMPK13-2, HaMPK23-2, HaMPK9-2 and HaMPK11-2 showed
log2FC > 1 in response to Peg; HaMKK9, HaMPK13-2, HaMPK6-1, and HaMPK3-1 showed log2FC
in range of 0.7 to 1.45 in response to SA; HaMPK6-1, HaMPK2, HaMPK23-2, and HaMPK17 showed
log2FC > 0.9 in response to NaCl. In contrast, some genes were downregulated in response to the
treatments compared to the control of their respective tissues. For example, in leaves, HaMKK9,
HaMKK2, and HaMPK13-2 showed log2FC in a range of −0.6 to −0.8 in response to Peg; HaMKK9,
HaMPK7, HaMPK23-1 showed log2FC in a range of −0.6 to −0.8 in response to NaCl; HaMKK4,
HaMPK7, and HaMPK11-2 showed log2fold change in a range of −0.58 to −2.11 in response to SA.
Likewise, in roots, HaMPK14 showed log2FC of −0.53 in response to Peg; HaMKK6-2, HaMPK13-2,
HaMPK14, and HaMPK9-2 showed log2fold change in a range of −0.62 to −1.50 in response to NaCl;
HaMPK14, HaMPK19-1, and HaMPK9-2 showed log2FC in a range of −0.68 to −1.6 in response to
SA. In addition, the expression of HaMPKs, HaMKKs showed functional divergence in response to
stresses as the clustering of these genes in a heatmap was not in accordance with the nesting pattern
within clades in phylogenetic trees. The potential miRNA target sites in MPKs and MKKs identified
using psRNATarget server revealed five (han-miR156a/b/c, han-miR160a, han-miR3630-5p) of seven
miRNA families that may be involved in targeting sunflower MPKs only (Table S8). HaMPK16-2,
HaMPK11-1, and HaMPK23-3 were found to be targeted by both miRNAs (han-miR156a/b).
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Figure 6. Expression profile of sunflower MPK and MKK genes visualized as a heatmap, with clade
information. The heatmap was generated using log2FC values. The expression pattern is in response to
salicylic acid (SA), salt (NaCl) and polyethylene glycol (Peg) in leaves and roots. The RNA-seq data was
accessed from NCBI SRA SRP092742 [SRR4996815 (Roots Peg), SRR4996819 (Roots_NaCl), SRR4996823
(Leaves_Peg), SRR4996828 (Roots_Control), SRR4996834 (Leaves_NaCl), SRR4996836 (Leaves_Contol),
SRR4996839 (Leaves_SA), and SRR4996847 (Roots_SA)].
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3.5. Tajima’s Relative Rate and Neutrality Tests on MPKs and MKKs

Separate statistical analyses were performed selecting three random sequences from MPKs and
MKKs group. For Tajima’s relative rate test for MPKs and MKKs, the sequences were selected
from the species representing a diverse taxonomic group: monocot, a dicot, basal angiosperm,
bryophytes, and algae. For the analysis of MPK genes following a group of sequences were selected:
(a) OsMAPK4 (monocot) and HaMPK6 (dicot) with AmtMPK13-1 (basal angiosperm); (b) OsMAPK4
(monocot) and HaMPK6 (dicot) with sequence SfMPK4-1 (bryophyte); and (c) OsMAPK4 (monocot)
and HaMPK16-1 (dicot), with sequence CreMPK2 (algae) (Table S9). The plant group combination in
column 1, 2 and 3 of MPKs resulted in p-values of 0.01, 0.0053, and 0.0007, with χ2 values of 6.54, 7.78
and 11.46, respectively. For MKKs, the following group of sequences were selected: (a) OsMAPKK5
(monocot) and HaMKK6-1 (dicot) with AmtMKK6 (basal angiosperm); (b) OsMAPKK5 (monocot) and
HaMKK6-1 (dicot) with sequence SfMKK3 (bryophyte); and (c) OsMAPKK5 (monocot) and HaMKK6-1
(dicot) with CreMKK3 (algae) (Table S10). The plant group combination in columns 1, 2 and 3 of MKKs
resulted in p-values of 0, 0.04965 and 0.05687 with χ2 values of 100.55, 3.85 and 3.36, respectively.
Tajima’s Relative Rate test is commonly used to analyze variation in both DNA and amino acid
sequences [78]. This test has been applied to various genes belonging to different gene families, such as
MAPKs and WRKY transcription factors [1,78]. In this study, the p-value (less than 0.05) and χ2 statistic
showed randomly selected sequences of MPKs and MKKs of different plant groups to be statistically
significant, rejecting the null hypothesis of equal rates between selected sequences of different plant
groups. The interpretation of Tajima’s D is as follows: D = 0 (observed variation is similar to the
expected variation, which shows evidence of no selection), D < 0 (presence of excessive rare alleles,
suggesting recent selection sweep and recent population expansion), and D > 0 (lack of rare alleles,
suggesting balanced selection and sudden population contraction) [72,73]. The values in the ranges
greater than 2 or less than −2 are considered to be statistically significant [72,73]. In our study, Tajima’s
neutrality test statistics (D) were found to be 5.391062 for MPKs and 5.928839 for MKKs (Table S11).
This suggests that both MPKs and MKKs have undergone a balanced selection with contraction in
gene family size. Also, the average heterozygosity of both MAPKs and MKKs is more than those of
the segregating sites, suggesting a high frequency of polymorphism.

4. Discussion

MAPK signaling in plants plays important roles in multifaceted biological processes such as
growth, development, and regulation of various environmental stresses [4,34,36,79–90]. The MPK and
MKK genes have been strong candidates for studying the evolution of gene families in plant species
as well [27,28,39,91]. In this study, the HMM analysis of protein sequences and examination of the
signature motifs resulted in the identification of 96 MPK and 37 MKK genes in A. coerulea, A. trichopoda,
C. reinhardtii, D. carota, H. annuus, S. fallax, and S. lycopersicum.

4.1. Nomenclature of MPKs and MKKs

A recent study on various Triticeae species (wheat, barley, rye, and triticale) by Goyal et al.
2018 [35] reported numerous discrepancies in MAPK nomenclature of wheat and barley and suggested
a new name based on sequence homology. A consistent nomenclature of proteins belonging to the same
gene family across species based on orthology facilitates easy prediction and understanding of the
function of a particular protein [92]. Cakir and Kılıçkaya 2015 [37] reported MAP kinase cascade genes
in V. vinifera and confirmed the orthology of VvMPK14, VvMPK12, VvMPK11, VvMPK13, VvMPK7,
VvMPK3, VvMKK5, VvMKK3, and VvMKK2 to Arabidopsis AtMPK6, AtMPK3, AtMPK13, AtMPK12,
AtMPK16, AtMPK9, AtMKK3, AtMKK6, and AtMKK2, respectively. Likewise, MAP Kinase cascade
genes analyses in Ziziphus jujuba [30] provided nomenclature of MAP kinase cascade genes based
on the order of appearance in different groups in the phylogenetic tree, and not based on orthology
(or sequence homology) to Arabidopsis MAP Kinase cascade genes. The proper nomenclature of these
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MAP Kinase cascade genes should be used following an orthology or sequence homology-based
MAPK gene nomenclature guidelines to maintain consistency across the plant kingdom.

4.2. Diversity and the Phylogenetic Relationship of MPKs

Our identification of MPKs yielded a slight variation in the number of genes from the previous
studies; for example, we identified 15 MPKs in S. lycopersicum, which is different from Kong et al.
2012 [93], who reported 16 MPKs, and Mohanta et al. 2015 [1], who found 17 MPKs in the tomato
genome. The number of AcMPKs in this study was 11, whereas Mohanta et al. 2015 [1] reported only
10 AcMPKs. In C. reinhardtii, six CreMPKs identified in this study were consistent with Mohanta et al.
2015 [1], whereas Dóczi et al. 2012 [39] reported only five CreMPKs. The variation in several genes
within the same species in different studies might come as a result of different statistical and stringency
parameters employed during HMM profiling and further downstream motif analysis. The detailed
study of MPKs of D. carota, A. trichopoda, S. fallax, and H. annuus has never been reported in previous
studies. The number of MPK genes in sunflower is higher than that previously identified in numerous
other plant species, such as Arabidopsis (119Mb) [3] and rice (420Mb) [94], and lower than in soybean
(1100Mb) [26]. Even the size of the sunflower genome, which is believed to have undergone the first
whole genome triplication approximately 38–50 MYA, and whole genome duplication approximately
29 MYA, is about 3.5 times larger [95] than that of the soybean genome: the number of MPKs is lower
in sunflower than soybean. Soybean has undergone two polyploidization events, approximately
59 and 13 MYA [75,96]. Thus, recent polyploidy in plants has resulted in extra copies of genes
to their genome [97,98]. The slightly lower number of MPKs in sunflower might be due to past
polyploidization events and the recent amplification of repetitive elements causing highly similar and
related sequences [99]; the sunflower genome also encodes 52,243 proteins [42], which is slightly fewer
than the soybean genome (56,044 proteins) [75].

Phylogenetic analysis of HaMPKs revealed four distinct clades, which were consistent to the
MPKs previously identified in Arabidopsis [100], poplar [101], rice [102], Brachypodium distachyon [33],
Malus domestica [32], Ziziphus jujuba [30], Triticeae species [35], Brassica rapa [28], and Fragaria vesca [103].
In Clade A, sunflower has one extra copy of MPK3, MPK6, MPK11, and MPK13 genes that might be
because of duplications after the divergence from Arabidopsis. Such extra copies of these genes have
also been observed in soybean [26]. The two copies of MPK3 and MPK6 were also found in D. carota.
The nesting pattern of sunflower and other species’ MPK genes with the characterized Arabidopsis
MPKs suggest their potential role in respective functions. AtMPK3 is involved in various signaling
pathways related to various stresses, such as wounding and hypersensitive responses elicited by Avr-R
gene interaction [8,104]. The MAP kinase genes, IbMPK3 and IbMPK6, in sweet potato (Ipomoea batatas),
and homologs of AtMPK3 and AtMPK6, provide resistance to Pseudomonas syringae pv. tabaci (Pta)
bacteria in tobacco leaves, and were induced in various abiotic stresses, as well [84]. In maize, ZmMPK3,
a homolog of AtMPK3 is induced in response to various environmental stresses [105]. Similarly,
AtMPK4 and AtMPK6 are involved in response to abiotic and biotic stress such as cold, drought,
touch and wounding, resulting in the production of reactive oxygen species in Arabidopsis [106,107].
AtMPK4 is phosphorylated and activated by the upstream components AtMEKK1 and AtMKK2
upon cold and salt stress signaling in Arabidopsis [107,108]. Clade A also consists of AtMPK5,
the homolog of which in rice, OsMPK5, is well characterized to regulate stress responses [109].
All copies of MPK1/2, MPK7/14 are retained in soybean in sunflower, soybean, and Arabidopsis.
Among them, AtMPK1, AtMPK2, AtMPK7, AtMPK14 are phosphorylated by AtMKK3 upon abscisic
acid application in A. thaliana plantlets [110]. AtMPK1 is induced upon salt stress, whereas some
MPKs in rice and alfalfa such as BWMK1 and TDY1, respectively, are activated upon wounding by
pathogens [111–113]. G. max MAP kinase 1 (GMK1), a homolog of AtMAPK1, is activated in response
to salt stress in soybean [114]. Likewise, a homolog of AtMPK7 in maize, ZmMPK7 is involved in
the removal of reactive oxygen species upon induction by abscisic acid and hydrogen peroxide in
maize [115]. Another homolog of AtMPK1 in Hordeum vulgare (HvMPK4) showed enhanced resistance
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to Magnaporthe grisea and enhanced tolerance to salt stress [85]. Clade C members include the homologs
of G. max GmMAPK22-1/22-2 and GmMAPK23-1/23-2/23-3/23-4 [26] with no MPKs in Arabidopsis.
A single copy of GmMAPK22-1/GmMAPK22-2 ortholog is retained in sunflower, and hence it is
named HaMPK22. Meanwhile, all copies of GmMAPK23-1/23-2/23-3/23-4 are retained in sunflower
and are hence named HaMPK23-1/23-2/23-2/23-3/23-4. All the members of Clade D consist of the
TDY motif in the T-loop and are homologs to various Arabidopsis and soybean MPKs belonging to
MPK16/19/18/8/15/17/9.

Gene members HaMPK3-1/3-2, HaMPK6-1/6-2, HaMPK9-1/9-2, HaMPK11-1/11-2,
HaMPK13-1/13-2, HaMPK16-1/16-2, HaMPK19-1/19-2, and HaMPK23-2/23-4 are present on different
chromosomes, while only paralogs HaMPK23-1/23-3 are present on the same chromosome 3. Other
MPKs, such as AcMPK3-1/3-2, AcMPK2-1/2-2, DcMPK3-1/3-2, DcMPK6-1/6-2, DcMPK8-1/8-2/8-3,
DcMPK9-1/9-2, SfMPK4-1/4-2, SfMPK20-1/20-2, SfMPK23-1/23-2, SlMPK4-1/4-2, SlMPK17-1/17-2,
SlMPK9-1/9-2, AmtMPK13-1/13-2, are present on different chromosomes. The only AmtMPK11-1/11-2
pair is present in the same scaffold (AmTr_v1.0_scaffold00001) (Table S1). This suggests a potentially
crucial role of segmental duplications and transposition events in the evolution of MAPKs in
sunflower and other plant species, except for the HaMPK23-1/23-3 and AmtMPK11-1/11-2 pairs,
in which tandem duplication might have been involved. Such features of segmental and tandem
duplications in MPKs are also evidently seen in many plant species such as soybean [26], apple [32],
cotton [116]. Such duplications are the major reason for the expansion of the many gene families, such
as nucleotide-binding site-leucine-rich repeat (NBS-LRR), cytochrome P450 family, transcription factors
and many more [117].

4.3. Diversity and Phylogenetic Relationship of MKKs

Sunflower MKKs also formed four distinct clades (A–D) with previously identified MKKs of
Arabidopsis and soybean. These four clades (A–D) are consistent with the MKKs of various plant species
such as Arabidopsis [100], rice [102], poplar [101], B. distachyon [33] and apple [32]. MKK clades consist of
well-characterized MKK proteins such as AtMKK1/2/3/4/5 [118–121]. Clade A consists of HaMKKs
grouped with AtMKK1/6/2, GmMAPKK6-1/6-2, GmMAPKK1, GmMAPK2-1/2-2. Sunflower and
soybean have extra one copy of MKK6 compared to Arabidopsis and other plant species under study,
including S. fallax. This suggests that the extra one copy of MKK6 was not seen until soybean diverged
from Arabidopsis. Also, the retention of at least one copy of MKK6 in all species suggests its important
role in signaling mechanisms during various stresses. We did not find a copy of MKK2-2 in sunflower,
as is found in soybean (GmMAPKK2-2). The characterized AtMKK1 protein (orthologue of HaMPKK1)
is induced upon the application of various stresses such as wounding, drought, cold, and high
salinity in Arabidopsis seedlings [118]. AtMKK2 (ortholog of HaMKK2) is activated upon cold and
salt stress signaling in Arabidopsis and mediates the phosphorylation of downstream MPKs [107].
Clade B consists of MKKs from the MKK3 proteins across all species under study, including C.
reinhardtii. All species have a single copy of the MKK3 proteins except G. max, with two copies
(GmMAPKK3-1/3-2). Two copies of MKK3 proteins in soybean is expected, as they underwent
two duplication events to become a tetraploid. A divergence-time estimation based on Clade B
sequences (each from all species) revealed how MKK3 proteins are conserved and retained in Algae,
Bryophyte, Amborellales, Monocots, Ranunculales, Rosids, and Asterids. The divergence time analysis
of MKK3 with CreMKK3 as the outgroup showed bryophyte and Amborellales being sister to the
land plants and other extant species, which is consistent to previous studies [122,123] and follows
the evolutionary history inferred on the Angiosperm Phylogeny Website [124]. One of these MKK3s,
AtMKK3 is activated upon exposure to various stresses, such as cold, salt, hyperosmotic and ABA
treatments [120]. This suggests the potential role of HaMKK3 in such stresses. Clade C consists of
both copies of AtMKK4 and AtMKK5 only in A. trichopoda, O. sativa, and sunflower. However, V.
vinifera, S. lycopersicum, and D. carota consist copies of MKK5 (MKK4 group absent). AtMKK4 and
AtMKK5 are activated in Arabidopsis, mediating cell death and production of hydrogen peroxide [119].
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In Clade D, the orthologs for MKK9 were found in all angiosperms except in soybean and O. sativa.
Interestingly, we found three copies of MKK10 in S. fallax, as in O. sativa, and one copy of MKK10 in
basal angiosperm, A. trichopoda, and Ranunculales, A. coerulea. We did not find any copy of MKK10
in sunflower, S. lycopersicum, D. carota, or V. vinifera. We observed HaMKK4/5/9 with one exon
each that correlates to the At1g51660 (AtMKK4), At3g21220 (AtMKK5), and At1g73500 (AtMKK9),
consisting of one exon per gene (https://www.Arabidopsis.org/index.jsp). Also, members belonging
to Clade C and D in Gossypium raimondii had one exon in each [116]. This suggests that gene members
belonging to Clade C and D encode proteins that are well conserved across plant species. Altogether,
the diversity in the exon-intron structures might imply that duplication events caused the evolution
of these genes under different environmental conditions. Also, AtMKK1 and AtMKK2 are involved
in maintaining ROS homeostasis in Arabidopsis [121]. Since the paralog pairs, HaMKK6-1/6-2 and
SfMKK10-1/10-2, are present on their different respective chromosomes, we infer a possible role of
segmental duplications.

4.4. Expression Analysis and miRNA Prediction

In this study, we explored the expression pattern of MPKs and MKKs of sunflower under one
hormone treatment, SA and two simulated abiotic stresses: NaCl for salinity, and Peg for osmotic
stress in leaves and roots from the publicly available RNA-seq data. The expression of all sunflower
MPKs and MKKs was detected in both leaves and roots, except for HaMPK4. In response to hormone
SA, HaMPK11-1 was upregulated in leaves; HaMKK9, HaMPK13-2, HaMPK6-1, and HaMPK3-1
were upregulated in roots; HaMKK4, HaMPK7, and HaMPK11-2 were downregulated in leaves;
HaMPK19-1, HaMPK14, and HaMPK9-2 were downregulated in roots. It has been established that
SA is directly involved in MAPK phosphorylation [125]. SA-induced protein kinase (SIPK; AtMPK6)
and wound-induced protein kinase (WIPK; AtMPK3) are important in balancing salicylic acid or
jasmonic acid during herbivore wounding [126]. In Arabidopsis, AtMKK9 and AtMPK6 play important
role in leaf senescence, which is a complex process caused by various factors including salicylic
acid [127]. Also, ZmMPK3 in Zea mays is activated upon the application of SA hormone [128]. Thus,
HaMPK3-1, HaMKK9, and HaMPK6-1 might play an important role in leaf senescence and salicylic acid
pathways in sunflower. In response to NaCl, HaMKK5, HaMKK6-2, HaMPK11-1 were upregulated
in leaves; HaMPK14, HaMPK6-1, HaMPK2, HaMPK23-2, and HaMPK17 were upregulated in roots;
HaMKK9, HaMPK7, HaMPK23-1 were downregulated in leaves; HaMKK6-2, HaMPK13-2, HaMPK14,
and HaMPK9-2 were downregulated in roots. Among them, HaMPK17 play an important role
under salinity stress, as its ortholog in Gossypium hirsutum, GhMPK17, was induced by salt, osmosis
and abscisic acid [129]. The expression pattern of some genes depended on different parts of the
plant, for example, HaMKK6-2 was upregulated in leaves and downregulated in roots in response
to NaCl. In response to Peg, HaMKK5, HaMKK6-2, HaMPK3-2, HaMPK11-1, HaMPK14, HaMPK1,
HaMPK6-2, HaMPK19-1, and HaMPK18 were upregulated in leaves; HaMKK4, HaMKK1, HaMKK2,
HaMPK3-2, HaMPK13-2, HaMPK23-2, HaMPK9-2, and HaMPK11-2 were upregulated in roots;
HaMKK9, HaMKK2, and HaMPK13-2 were downregulated in leaves; HaMPK14 was downregulated in
roots. This reveals that at least 19 HaMPK and seven MKK genes were induced upon these treatments,
as compared to the control. Among them, some genes are induced upon multiple treatments. For
example, HaMKK4 and HaMKK6-2 were induced upon both NaCl and Peg; HaMPK6-1 was induced
upon NaCl and Peg; HaMPK16-2 was induced upon both SA and NaCl. The functional divergence
can be observed on both HaMPKs and HaMKKs, as the hierarchical clustering patterns of expression
of these genes do not follow the nesting pattern within clades in the phylogenetic trees, except for a
few genes. For example, in MPKs, HaMPK22/23-3 that belonged to Clade C, HaMPK3-1/3-2/11-2
that belonged to Clade A, and HaMPK9-2/16-2/17 that belonged to clade D showed hierarchical
clustering for expression of these genes. However, only HaMKK6-1/6-2 that belonged to Clade A
of the MKK subgroup showed hierarchical clustering for expression of these genes. This shows the
functional divergence and convergence of the HaMPK and HaMKK genes within and among the

https://www.Arabidopsis.org/index.jsp
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clades under different stress responses. Among seven published H. annuus microRNAs, five families
of miRNAs are involved in possibly targeting eight MPKs. We did not find any miRNAs targeting
HaMKK genes. Previous studies have reported the role of miRNAs in MAPK signaling pathways of
animal systems in chronic myeloid leukemia [130], papillary thyroid carcinoma [131], Caenorhabditis
elegans [132]. Not only in animals, but studies also reported the prediction of miRNAs targeting MAPK
genes of plants such as Gossypium hirsutum (ghr-miR5272a regulating MAPKK6) [133] and Oryza sativa
(miR1429_5p targeting MPK17-1 and miR531 families targeting various MKKK transcripts) [134].

5. Conclusions

This study represents the first genome-wide identification, analysis and nomenclature of MPKs
and MKKs in H. annuus, D. carota and, S. fallax, as well as reassessment of these genes in A. coerulea,
A. trichopoda, C. reinhardtii, and S. lycopersicum. We identified 28 MPKs and eight MKKs in sunflower,
and studied their genomic architecture, phylogenetic relationships, and functions in relation to nine
other plant species (including A. thaliana, G. max, O. sativa, and V. vinifera). While the 3.6 gigabase
sunflower genome is one of the largest among plants with available complete genome sequences,
more MPKs and MKKs were found in soybean, which has a genome size of 975 Mbs. Analyses of
P-loop, catalytic C-loop, and T-loop showed that HaMPKs and HaMKKs could be classified into four
clades, which are comparable to those groups identified in A. thaliana and G. max. However, clades
such as Clade A, B, and C of MPKs consisted of different group members of A. thaliana and G. max.
Among the MPK and MKK genes studied, the MKK3 proteins were well- conserved and retained in all
species included in this study, including the outgroup C. reinhardtii, which warrants further exploration
of these proteins across a wide array of species. The transcriptome data generated under hormone
and abiotic stress treatments revealed diverse expression patterns of sunflower MPKs and MKKs
exhibiting a dynamic role in adaptation to changing environmental conditions. We observed functional
divergence of the HaMPK and HaMKK genes within the gene members of the same clade. The results
of this study are important for understanding diversity and evolution of the MAPK gene family in
plants and enhancing our knowledge of MAPK signaling pathways in sunflower. These findings can
inform cultivar improvement in sunflower through stress-tolerance breeding.
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