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ACIDOSIS AND PROTON
HOMEOSTASIS IN CELLS AND TISSUES
Acidosis in the brain may severely impair
a variety of functions, including synap-
tic transmission, metabolic energy supply,
membrane transport and other processes
(Ruusuvuori and Kaila, 2014).

Transport of acid–base equivalents
across the cell membrane of neurons and
glial cells also results in pH changes in
the extracellular spaces. Cytosolic and
extracellular buffer capacity and the activ-
ity of carbonic anhydrases contribute to
shape pH changes, which can be elicited
by neuronal activity, neurotransmitters
and neuromodulators, metabolic pro-
cesses, active cellular pH regulation, and
secondary transporters carrying acid–
base equivalents, and in turn these pH
changes can affect neuronal functions
(Deitmer and Rose, 1996; Chesler, 2003).
The free H+ concentration in cells is in
the nanomolar range, and the high buffer
capacity of cells provides a reservoir of
acid equivalents in the millimolar range.
In other words, there is a pool of protons
in rapid exchange between buffer sites and
free solution, with 105 or more protons
being buffered for each proton in solution.
At a blood pH of 7.4, and 7.2–7.3 in the
extracellular spaces of brain tissue (Cragg
et al., 1977; Ruusuvuori and Kaila, 2014),
and with a negative membrane potential of
between −50 and −90 mV in mammalian
brain cells, H+ has to be continuously
extruded to maintain a physiological
cytosolic pH of 7.0–7.3. Nevertheless, pH
changes may peak well outside this range,
at least for short time periods, and may be

considered as H+ signals, sometimes even
with neurotransmitter function (Deitmer
and Rose, 1996; Du et al., 2014). The net
extrusion of acid from neurons and glial
cells is accomplished by secondary active
transport, wherein the efflux of H+ or
the influx of HCO−

3 is coupled to Na+
influx, utilizing energy stored in the trans-
membrane Na+ gradient. pH regulation in
these cells involves a variety of membrane
acid–base carriers, including sodium–
hydrogen exchange, sodium–bicarbonate
cotransport, and sodium-dependent
and sodium-independent chloride–
bicarbonate exchange. In addition, there
are a number of acid/base-coupled car-
riers, which are linked to the transport
of metabolites, such as lactate and amino
acids. The lactate transport via mono-
carboxylate transporters (MCTs) has
been suggested to play a major role for
the supply of energy to neurons, and
led to the “Astrocyte-to-Neuron Lactate
Shuttle Hypothesis” (ANLSH; Pellerin and
Magistretti, 1994).

LACTATE SHUTTLE AND ACID/BASE
TRANSPORT METABOLON
Lactate, pyruvate, and ketone bodies are
transported into and out of cells via MCTs
(SLC16), of which 14 isoforms have been
described. The first four of these 14 iso-
forms (MCT1-4) have been shown to
transport monocarboxylates together with
H+ in a 1:1 stoichiometry. MCT1 is the
ubiquitous isoform that is found in nearly
all tissues, where it could either oper-
ate as a lactate importer or exporter, and
has an intermediate Km value of 3–5 mM

for L-lactate (Bröer et al., 1998). MCT2,
the high-affinity carrier, is mainly found
in neurons, and MCT4, the low-affinity,
high-capacity carrier, has been reported
for glial cells in the brain.

The lactate shuttle hypothesis suggests
that lactate is produced and exported
by glial cells, in particular astrocytes,
under normoxic conditions, and taken
up by neurons for further metaboliza-
tion (Pellerin and Magistretti, 1994). The
ANLSH infers that astrocytes help to sup-
ply energetic substrates for neurons to
meet their energy requirements, especially
during enhanced neuronal activity. There
is substantial evidence, both in vitro and
in vivo, that lactate indeed can substi-
tute for glucose to maintain neuronal
functions, such as e.g., synaptic trans-
mission and memory formation (Schurr
et al., 1988; Suzuki et al., 2011). During
energy deprivation, the addition of mono-
carboxylates has been shown to restore
synaptic function and to be neuroprotec-
tive in vivo, in acute rodent brain slices,
isolated optic nerve and neuronal cul-
tures (Izumi et al., 1997; Schurr et al.,
1997; Cater et al., 2001; Wyss et al.,
2011). The finding that glucose is pref-
erentially taken up by astrocytes and at
higher rates than by neighboring neurons
(Barros et al., 2009; Jakoby et al., 2014),
implying that some energetic substrate has
to be passed on to neurons, as they are
the main energy consumers, also supports
the ANLSH. More recently, lactate produc-
tion and supply to neuronal axons have
been suggested also for oligodendrocytes
in the mammalian central nervous system
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(Fünfschilling et al., 2012; Lee et al., 2012),
indicating that astrocytes and oligoden-
drocytes form a metabolic network with
neurons to maintain neuronal function.

A transport metabolon has been
defined as a supramolecular complex of
sequential metabolic enzymes and cellular
structural elements in which metabolites
are passed from one active site to another
without complete equilibration with the
bulk cellular fluids (Srere, 1985). First evi-
dence for a transport metabolon, formed
between carbonic anhydrase (CA) and an
acid/base transporter was found for CAII
and the Cl−/HCO−

3 exchanger AE1 (Kifor
et al., 1993; Vince and Reithmeier, 1998).
Since then, various acid/base transporters
have been reported to interact with dif-
ferent isoforms of carbonic anhydrase:
For the electrogenic Na+/HCO−

3 cotrans-
porter, NBCe1, both functional (Becker
and Deitmer, 2007; Schüler et al., 2011)
and physical (Gross et al., 2002; Alvarez
et al., 2003; Pushkin et al., 2004) interac-
tion with different CA isoforms has been
suggested. All of these interactions have in
common that CA-mediated augmentation
of transport activity requires the catalytic
activity of the different CA isoforms.

An entirely different form of transport
metabolon has first been detected, when
expressing MCT1 and CAII in Xenopus
oocytes (Becker et al., 2005). The presence
of CAII indeed more than doubled the rate
of lactate transport, and the CAII-induced
augmentation of MCT activity persisted in
the absence of CO2/HCO−

3 , and was insen-
sitive to inhibition of CAII catalytic activ-
ity with EZA, and was still present with
the catalytically inactive mutant CAII-
V143Y (Becker et al., 2005, 2011; Becker
and Deitmer, 2008), suggesting that the
augmentation of MCT activity does not
depend on the reversible conversion of
CO2 and HCO−

3 /H+ by CAII. No inter-
action between CAII and rat MCT2 could
be detected, when the enzyme was injected
into oocytes co-expressing MCT2 together
with its trafficking protein embigin (Klier
et al., 2011). Cytosolic CAII was shown
to bind to the C-terminal tail of MCT1,
which presumably positions the enzyme
close enough to the pore of the transporter
for efficient H+ shuttling (Stridh et al.,
2012). The binding of CAII to a glutamic
acid cluster within the MCT C-terminal
may also explain the isoform specificity of

the interaction between MCTs and CAII,
since rat MCT4, but not MCT2, pos-
sesses a similar cluster of three glutamate
residues.

Augmentation of MCT activity by
extracellular CAs has also been found
in the brain: By inhibition of extracel-
lular CA activity with benzolamide and
an antiserum against CAIV, respectively,
Svichar and Chesler (2003) could show
a significant reduction in lactate-induced
intracellular acidification in rat hippocam-
pal pyramidal neurons and in cultured
astrocytes.

CA ACTIVITY MEDIATES BETWEEN
DIFFERENT FORMS OF METABOLIC
ACIDOSIS
Carbonic anhydrases play a vital role in
acid/base kinetics and mediate between
acid production by oxidative phosphory-
lation in form of CO2 and acid produc-
tion by anaerobic glycolysis. When CO2

increases in the cell, e.g., due to oxidative
phosphorylation in mitochondria, it can
leave the cell by freely diffusing through
the cell membrane, or it can be con-
verted to H+ and HCO−

3 , with the rate of
conversion depending on catalytic activity
of cytosolic CA. Most cells express CAII,
which is the fastest isoform, and either
CAIV and/or CAXIV, which are fast extra-
cellular isoforms in the brain. CAIV has
recently been shown to display intracellu-
lar activity in addition, which would fur-
ther contribute to high intracellular CA
activity (Schneider et al., 2013). With this
enzymatic equipment, neurons and glial
cells can produce considerable amounts of
H+, which can be extruded by either NHE
or MCT. Extracellular CA activity can con-
vert part of extracellular CO2 to H+ and
HCO−

3 , the latter being substrate for NBC
to be transported into and out of the cell.
Thus, additional HCO−

3 can be delivered
to, or removed from, the cytosol, in partic-
ular in astrocytes, which can have a robust
expression of NBC, which mediates a high
bicarbonate sensitivity of the cells, to fur-
ther compensate metabolically produced
H+ (Theparambil et al., 2014).

Furthermore, both extra- and intra-
cellular CA isoforms, as e.g., CAIV,
can form transport metabolons with the
bicarbonate- and proton-coupled carri-
ers (see above). In mouse retina, CAXIV
co-localized with anion exchanger isoform

3 (AE3) in Müller and horizontal cells,
and physical and functional interaction
between the CAXIV and AE3 was shown
(Casey et al., 2009). Disruption of trans-
port metabolon function, as suggested to
occur after CAIV mutation, can interfere
with photoreceptor maintenance and pH
regulation in the retina (Yang et al., 2005;
Alvarez et al., 2007). Whether other extra-
cellular CA isoforms, which have been
detected in brain tissue, also form func-
tional metabolons with MCT and/or NBC,
is still unknown. Interestingly, cytosolic
CAI and CAIII, which are expressed by
some cells, can enhance NBC activity in
Xenopus oocytes (Schüler et al., 2011), but
not MCT transport activity (Becker and
Deitmer, 2008). In addition, by stabilizing
the H+ gradient, NBC can support lac-
tate transport via MCT, when expressed
together in oocytes (Becker et al., 2004).

From these and other results, it can
be concluded that brain cells, and quite
possibly other cell types in other tis-
sues, use a whole network of acid/base-
coupled membrane carriers and differ-
ent CA isoforms to regulate intracel-
lular pH, which links acid/base status,
H+ buffering, energy metabolism, and
H+/HCO−

3 -coupled membrane transport.
Thus, acid/base-coupled metabolite trans-
port is coupled to pH regulation, and both
are linked to CA activity and to non-
catalytic functions of CA.

CONCLUSIONS AND PERSPECTIVES
Regulation of metabolism in organisms
is not only complex, but also involves
a large number of enzymes and mem-
brane transporters, which may form net-
works to enhance their efficacy. Lactate,
as a metabolic intermediate from glu-
cose or glycogen breakdown, appears to
play a major role as energetic substrate
shuttled between cells and tissues, both
under hypoxic and normoxic conditions.
The membrane transport of lactate via
monocarboxylate transporter occurs in
cotransport with H+, which is a sub-
strate, a signal and a modulator of other
metabolic processes. Lactate transporter
form a “transport metabolon” with car-
bonic anhydrases, which not only provide
a rapid equilibrium between CO2, HCO−

3 ,
and H+, but in addition enhance lactate
transport by a non-enzymatic interaction,
which requires physical binding as found
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in frog oocytes as expression system for
the proteins involved. Carbonic anhy-
drases mediate between different states of
metabolic acidosis, induced by glycolysis
and oxidative phosphorylation, and play a
relay function in coupling pH regulation
and metabolism.
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