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Abstract
The current gold standard for assessment of most sleep disorders is
the in-laboratory polysomnography (PSG). This approach produces high
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Rainer Brucher1costs and inconveniences for the patients. An accessible and simple
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preliminary screening method to diagnose the most common sleep
Manuel Eichenlaub3disorders and to decide whether a PSG is necessary or not is therefore

desirable. Aminimalistic type-4monitoring systemwhich utilized tracheal Wolfgang Rottbauer4
body sound and actigraphy to accurately diagnose the obstructive sleep

Dominik Scharnbeck4
apnea syndrome was previously developed. To further improve the
diagnostic ability of said system, this study aims to examine if it is pos-
sible to perform automated sleep staging utilizing body sound to extract
cardiorespiratory features and actigraphy to extract movement features.
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A linear discriminant classifier based on those features was used for
automated sleep staging using the type-4 sleep monitor. For validation
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53 subjects underwent a full-night screening at Ulm University Hospital 2 Institute of Medical Systems
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using the developed sleep monitor in addition to polysomnography. To
assess sleep stages from PSG, a trained technicianmanually evaluated
EEG, EOG, and EMG recordings.
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The classifier reached 86.9% accuracy and a Kappa of 0.69 for
sleep/wake classification, 76.3% accuracy and a Kappa of 0.42 for
Wake/REM/NREM classification, and 56.5% accuracy and a Kappa of
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0.36 for Wake/REM/light sleep/deep sleep classification. For the cal-
culation of sleep efficiency (SE), a coefficient of determination r2 of 0.78
is reached. Additionally, subjects were classified into groups of SEs
(SE≥40%, SE≥60% and SE≥80%). A Cohen’s Kappa >0.61 was reached
for all groups, which is considered as substantial agreement.
The presentedmethod provides satisfactory performance in sleep/wake
and wake/REM/NREM sleep staging while maintaining a simple setup
and offering high comfort. This minimalistic approach may address the
need for a simple yet reliable preliminary sleep screening in an ambu-
latory setting.
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Zusammenfassung
Der aktuelle Goldstandard für die Beurteilung dermeisten Schlafstörun-
gen ist die Polysomnographie (PSG). Diese Methode der Diagnose ist
mit hohenKosten und Unannehmlichkeiten für die Patienten verbunden.
Eine einfache Methode der Diagnose der häufigsten Schlafstörungen
ist daher wünschenswert. Hierzu wurde ein minimalistischer Typ-4-
Schlafmonitor, welcher Körperschall und Aktigraphie zur Diagnose des
obstruktiven Schlafapnoe-Syndroms einsetzt, entwickelt. Um die Dia-
gnosefähigkeit dieses Systems zu erweitern, soll in dieser Studie unter-
sucht werden, ob der Schlafmonitor automatisiert Schlafstadien klassi-
fizieren kann. Hierbei wird Körperschall verwendet, um kardiorespirato-
rische Merkmale zu extrahieren, und Aktigraphie, um Bewegungsmerk-
male zu extrahieren.
Ein auf diesenMerkmalen basierender linearer Diskriminanzklassifizierer
wurde für die automatisierte Klassifizierung von Schlafstadienmit dem
vorgestellten Typ-4-Schlafmonitor verwendet. Zur Validierung wurden
53 Probanden am Universitätsklinikum Ulm zusätzlich zur PSG einem
nächtlichen Screeningmit dem entwickelten Schlafmonitor unterzogen.
Zur Beurteilung der Schlafstadien der PSG hat ein geschulter Techniker
EEG-, EOG- und EMG-Aufnahmen manuell ausgewertet.
Der Klassifikator erreichte eine Genauigkeit von 86,9% und ein Kappa
von 0,69 für Schlaf/Wach-Klassifizierung, 76,3% Genauigkeit und ein
Kappa von 0,42 für Wach/REM/NREM-Klassifizierung, und 56,5% Ge-
nauigkeit und ein Kappa von 0,36 für Wach/REM/Leichtschlaf/Tief-
schlaf-Klassifizierung. Für die Berechnung der Schlafeffizienz (SE) wird
ein Bestimmtheitsmaß r2 von 0,78 erreicht. Zusätzlich wurden die Pro-
banden in Gruppen von SEs eingeteilt (SE≥40%, SE≥60% und SE≥80%).
Ein Cohen’s Kappa >0,61 wurde für alle Gruppen erreicht, was als
substantielle Übereinstimmung angesehen wird.
Die vorgestellte Methode bietet eine zufriedenstellende Leistung in der
Schlaf/Wach- und Wach/REM/NREM-Schlaf-Klassifizierung bei einfa-
chem Aufbau und hohem Patientenkomfort. Dieser minimalistische
Ansatz kann den Bedarf an einem einfachen aber zuverlässigen Vorab-
Schlaf-Screening im ambulanten Bereich abdecken.
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Introduction
The number of individuals suffering from sleep disorders
worldwide continually increases at a drastic rate. How-
ever, public awareness of the importance of sleep quality
and the implications of sleep disorders is low [1]. A good
example for this lack of awareness is obstructive sleep
apnea (OSA), the most common cardio-respiratory sleep
disorder. Here, 10% of 30- to 49-year-old men, 17% of
50- to 70-year-old men, 3% of 30- to 49-year-old women,
and 9% of 50- to 70-year-old women suffer frommoderate
to severe OSA [2]. OSA can lead to cardiovascular dis-
eases and extensive daytime sleepiness. The resulting
cognitive impairment often comes with personal and so-
cietal consequences, such as driving and workplace acci-
dents [3]. The gold reference for the diagnosis of sleep
disorders is in-laboratory polysomnography (PSG). Its
labor intensive, expensive, and time-consuming nature,
paired with the increasing prevalence of sleep disorders,
has led to a strong demand for appropriate hospital facil-
ities. Therefore, sleep centers worldwide are typically
operating at full capacity and waiting times are long,
causing economic losses due to prolonged invalidity. Pa-
tients are often reluctant to carry out a PSG since an
overnight stay in an unfamiliar sleep laboratory is re-
quired. Furthermore, during the first night the extensive
recording often worsens their already bad sleep. A pos-
sible solution for these issues would be an accessible
and simple preliminary screening method for the most
common sleep disorders. Based on the results of this
initial test, further diagnosticmeasures like the PSG could
be considered.
Several less extensive sleep diagnostic methods have
been developed. The most simple methods use 1–2 re-
cording channels and are referred to as type-4 sleep
studies. They benefit from a low price, simple setup, and
can often be used in a home setting without medical as-
sistance. In the context of OSA diagnosis, the developed
systems either use nasal airflow and/or SpO2 [4], [5].
However, these measurement channels induce several
problems and limitations. Mouth-breathing or misplace-
ment frequently lead to signal loss. Additionally, those
systems cannot perform any sleep staging, and system-
atic reviews reported poor diagnostic performance for
OSA [6], [7].
Sleep stages are of great interest for sleep screening
since they are used to evaluate total sleep time, measure
the overall level of sleep quality, and detect sleep disrup-
tions. Sleep stages can also be used to diagnose other
sleep disorders such as insomnia and circadian rhythm
disorders [8]. Human sleep can be classified into the
stages wake (W), rapid-eye movement (REM), and three
non-REM stages (N1, N2, N3) [9]. N1 and N2 are often
grouped into so-called “light sleep”, and N3 is often re-
ferred to as “deep sleep” [10]. The conventional method
for sleep staging is the manual evaluation of the electro-
encephalogram (EEG) recording carried out during PSG.
The EEG comes with several technical challenges and is
mostly not fit for use at home or without medical at-

tendance. For ambulatory sleep staging, several auto-
matedmethods have been developed. Thesemainly focus
on evaluating the variation in heart rate and breathing
rate as well as movements. This so-called cardiorespira-
tory sleep stage classification has extensively been
studied in recent years [11], [12], [13] and provides
promising results. Here, cardiac features are extracted
using electrocardiography (ECG), and respiratory features
are extracted using respiratory inductance plethysmo-
graphy (RIP). Furthermore, studies solely relying on res-
piratory features to assess sleep stages also showed
good correlation (>70%) with sleep stage classification
[14], [15], [16]. However, these methods also come with
a complex setup and cannot be used without assistance
or in a home setting. Thus, amethod which preserves the
simplicity of a type-4 sleep study while performing reliable
OSA diagnosis and sleep staging for a preliminary
screening is desirable.
A novel type-4 monitoring system has previously been
developed by Kalkbrenner et al. [17], [18]. This monitor
utilizes tracheal body sound and actigraphy to screen for
OSA [19], [20]. This allows simple setup and high comfort,
minimizing the effect on sleep quality while outperforming
similar existing ambulatory diagnostic. The assessment
of sleep stages could improve the diagnostic ability for a
preliminary screening even further, but was not part of
previous research. Therefore, this study aims to examine
if it is possible to use the presented type-4 monitor to
perform automated sleep staging utilizing body sound to
extract cardiorespiratory features, and utilizing an inertial
measurement unit (IMU) to extract movement features.
This minimalistic approach may address the need for
simple yet reliable preliminary screening including sleep
staging and OSA diagnosis in an ambulatory setting.

Method

Subjects

60 adult subjects were included in the present study. All
subjects were referred to the sleep center at Ulm Univer-
sity Hospital with suspicion of OSA. During their overnight
stay, all subjects underwent full-night diagnostic PSG
screening. Simultaneously a recording using the new
monitoring system was carried out. Recordings only in-
clude so-called diagnostic nights without the presence of
any therapeutic measures. Data recorded here was also
used in another study to validate the ability of the new
monitoring device to screen for OSA [19]. The study was
approved by the ethics committee of Ulm University, and
all subjects gave written informed consent.
In total, seven recordings were excluded due to faulty
body sound (n=1) and faulty ECG (n=6) recordings. These
faulty recordings included subjects suffering from central
sleep apnea or mixed forms, and subjects suffering from
Cheyne-Stokes respiration. There were no data sets with
faulty submental channel recordings. The remaining 53
data sets were considered for sleep staging. Since all
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Table 1: Anthropometric information of the subjects

subjects were recruited with a suspicion of OSA, 14 pa-
tients suffered frommild, 12 frommoderate, and 16 from
severe OSA. The remaining 11 patients were not
diagnosed with OSA. No other sleep disorders were
diagnosed in the subjects considered. Detailed anthropo-
metric information of the subjects is shown in Table 1.

Data acquisition

Trained medical staff set up the PSG and the new
monitoring system. Recordings were monitored during
the night. The recording for the diagnosis started between
9 pm and 11 pm and ended between 5 am and 7 am.
PSG was carried out using the SOMNOlab PSG system
(Co. Weinmann Geräte für Medizin GmbH + Co. KG,
Kronsaalsweg 40, 22525 Hamburg, Germany). EEG in-
cluded channels C3-A2 and C4-A1 with a sampling rate
of 256 Hz. Furthermore, submental EMG, unilateral an-
terior tibial EMG, and bilateral EOG were included and
sampled with 256 Hz. The PSG system also included
video recording during the night. To assess sleep stages,
a trained technician manually evaluated EEG, EOG, and
EMG recordings according to the AASM criteria [21]. Each
30-second epoch is assigned to one sleep stage (WAKE,
REM, N1, N2, or N3). The oronasal airflow was recorded
by using a thermistor and was sampled with 32 Hz. Addi-
tionally, thoracic and abdominal respiratory movements
were measured using respiratory inductance plethysmo-
graphy, sampled with 32 Hz. Oxygen saturation was recor-
ded by using finger pulse oximetry, sampled with 16 Hz.
The newmonitoring systemhas previously been described
in [17], [18]. This previous research presents the de-
velopedmonitoring system as a new, reliable, and simpli-
fied ambulant sleep monitor, only utilizing tracheal body
sound and movement data to automatically diagnose
OSA. The main criteria to indicate the severity of OSA is
the apnea-hypopnea index (AHI), which the proposed
sleep monitor estimates precisely to reliably diagnose
sleep apnea and its severity. Figure 1 shows an abstract
illustration of the setup of this monitor. A commercially
available body sound microphone was used to record
body sound. It was attached to the subject’s neck and
sampled with 5 kHz. The microphone was designed for

the long-term monitoring of lung sounds to diagnose
breathing disorders like asthma and is part of a system
called LEOSound (Co. Heinen+Löwenstein GmbH & Co.
KG Arzbacher Straße 80, 56130 Bad Ems, Germany). In
addition, an inertial measurement unit (IMU) was imple-
mented as actigraph to record the movements of the
subject. The IMUmeasures acceleration and gravitational
forces using a combination of accelerometers and gyro-
scopes sampled with 250 Hz. The IMU was attached to
the existing thoracic belt of the respiratory inductance
plethysmograph of the PSG with a defined orientation.
This defined orientation is necessary to evaluate sleep
position. For subsequent data analysis, all data were
transmitted wirelessly to a laptop.

Figure 1: Abstract illustration of the setup of the new sleep
monitor system. The microphone is attached on the subject’s
neck in close vicinity to the trachea. The remaining hardware
is attached to the existing thoracic belt of the respiratory
inductance plethysmograph of the polysomnography.
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Table 2: List of all features used for automated sleep staging

Feature extraction

A vast amount of signals and their characteristics can be
used to classify sleep stages [22]. Using the new
monitoring system, breathing cycles, heart beats and
movements can be extracted. Various basic research re-
vealed that the dynamics of heart rate [23], [24], [25],
[26] and the dynamics of respiration [27], [28] relate to
sleep stages. Previous studies presented a vast collection
of appropriate cardiorespiratory features for sleep staging.
Methods presented by Khalighi et al. were used to choose
the optimal features for the proposed sleep staging [29].
Additionally, it is suggested that subject movements may
also relate to sleep stages and are therefore included
into the feature selection. Each feature and their corres-
pondent source is listed in Table 2. The methods to ex-
tract the cardiorespiratory features from the tracheal
audio signal are described in the following.

Respiratory

The tracheal body sound is utilized to extract the respir-
atory features. Figure 2 illustrates the key steps of the
developed method. The initial raw audio signal consists
of breathing, heart sounds, background noise and
movement artefacts. To obtain a pure breathing sound
signal, a FIR bandpass filter with boundaries between
200 and 2000 Hz is used. To reduce background noise
a noise template is subtracted from the signal in the fre-
quency domain using spectral subtraction [30]. Finally,
the signal is divided into short-term windows and the
envelope curve E is calculated by

where N is the number of samples in the window and xi
the i-th sample.
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Figure 2: Illustration of the signal processing steps of the
tracheal body sound for respiratory feature extraction; (A) raw
audio signal; (B) audio signal after FIR-filtering and spectral

subtraction; (C) estimation of airflow, values below the horizontal
line are considered no breathing.

This curve can now easily be used to detect breathing
cycles and estimate airflow. A broader discussion of the
challenges of relating the amount of airflow to tracheal
breathing sounds can be found in [20], [31], [32]. With
this information, the respiratory features presented in
Table 2 can be calculated. Here, most features relate to
the variation of the time interval between successive
breaths (BB interval).

Cardiac

The tracheal body sound signal is also utilized to detect
heart beats in order to calculate the appropriate cardiac
features. To suppress breathing andmost of the artefacts
from the initial raw audio signal, a bandpass filter with
the boundaries between 5 and 30 Hz is applied. An exem-
plary raw signal is shown in Figure 3A with the correspon-
dent filtered signal shown in Figure 3B. The filtered signal
mostly consists of pairs of distinct peaks generated by
physiological heart beats. By searching the minimal dis-
tance from each peak to its adjacent peaks, we can group
two peaks into one correspondent heartbeat. The
presented method enables heart beats to be detected
even during snoring. Nevertheless, bad microphone
coupling, movements or similar artefacts can cause the
heart beat detection to fail. During those periods heart
beats are interpolated based on preceding values.
Finally, all cardiac features presented in Table 2 are cal-
culated. The extraction of cardiac featuresmostly focuses
on heart rate variability (HRV) analysis, based on evalu-
ation of successive heart beat intervals (NN interval).

Figure 3: Illustration of the signal processing steps using the
tracheal body sound for cardiac feature extraction; (A) raw

audio signal, (B) audio signal after filtering in frequency domain;
stars mark detected peaks, circles mark detected heart beat

consisting of two peaks.

Movements

The IMU is utilized to extract features considering sleeping
position and movements. Methods published by
Madgwick et al. [33] are used to process the data of ac-
celerometers and gyroscopes in order to track the orien-
tation of the IMU. Since the IMU is placed at the thoracic
belt, the sensor orientation yields information about the
movements and the position of the subject. Details of the
utilized processing techniques were previously described
by Kalkbrenner et al. [18].
Using this information, it is possible to determine the
most prominent sleeping position of the subject during
one epoch. Additionally, the changes of sleeping position
per epoch are counted. To assess the general movement
activity of the subject themean acceleration and angular
velocity over all degrees of freedom are calculated.

Classification

A linear discriminant (LD) classifier is used for automated
sleep staging. LD has been extensively and successfully
used for sleep staging based on cardiorespiratory signals
[11], [12], [15], [16], [34], [35]. Like conventional sleep
staging, the classifier assigns every 30-second epoch to
one sleep stage. For each epoch, the previously described
30 features can be calculated.
Three different classification systems are defined for
sleep staging. The 2-stage system only consists of the
stages wake (W) and sleep (combining REM and N1–4).
The 3-stage system consists of the stages wake (W), REM
(REM) and NREM (N1–3). The 4-stage system consists
of the stages wake (W), REM (REM), light sleep (N1, N2),
deep sleep (N3). The recorded PSG data was adjusted to
the appropriate system accordingly before training and
validating the classifier.
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Table 3: Evaluation of the 2-, 3-, 4-stage classifier performance for sleep staging

Validation

Since the recorded data is limited, a leave on-out cross
validation was carried out to validate the LD classifier
instead of simply splitting our data into test and training
sets. 53 data sets were created each consisting of 52 (of
53) subjects to train the classifier leaving the remaining
subject for testing. For every data set, the subject for
testing was changed until every subject has been used
for testing once. For final evaluation, the classification
accuracy for each sleep stage was computed by averaging
over the results from all data sets. The classification ac-
curacy is the percentage of the respective sleep stage
correctly classified. Additionally the un-weighted Cohen
kappa coefficient [36] was calculated. This coefficient is
more applicable to evaluate classifiers for unevenly dis-
tributed data like sleep stages. The validation was carried
out for the 2-stage, 3-stage and 4-stage system.
One of the essential parts of sleep monitoring, especially
in an ambulatory setting, is the measurement of sleep
efficiency (SE). The SE is the ratio of sleep time to total
time in bed. In this study, the SE is calculated using the
results of the 2-stage system classifier (SEest) and com-
pared to PSG SE (SEPSG) using correlation analysis. Addi-
tionally, the wake after onset time (WASO), total sleep
time (TST) and total wake time (TWT) are also calculated
and compared to the gold standard.
For expanded use without medical supervision at home,
an easy to use indicator for scoring SE is desirable.
Therefore, thresholds of SE 0%–39%, SE≥40%–59%,
SE≥60%–79% and SE≥80% were defined and subjects
were classified into the according groups based on the
calculated SE of the 2-stage system classifier. The
sensitivity, specificity, positive predictive value, negative
predictive value, and the un-weighted Cohen kappa
coefficient [36] of these classifications were calculated.
Receiver operating characteristic (ROC) curves and the
according areas under the curves (AUCs) were calculated
to evaluate the performance against the PSG results.

Results
Table 3 shows detailed results of the classifier perfor-
mance of all three staging systems. For each subject the
2-stage classifier result was used to calculate SEest. These

results were compared to the SEPSG. Figure 4 shows the
corresponding correlation plot. The coefficient of determi-
nation r2 is 0.78. A standard t-test of the paired differ-
ences revealed p=0.008, 95% CI=[0.94 5.98], SD=9.14.
Furthermore, Figure 5 shows the correlation of the pa-
rameters WASO, TWT and TST.

Figure 4: Relationship between sleep efficiency of the new
sleep monitor (SEest) and the sleep efficiency of the

polysomnography (SEPSG); r2: coefficient of determination;
n: number of data points

A detailed performance evaluation of the subject classi-
fication into groups of SE≥40%, SE≥60%, and SE≥80%
is shown in Table 4. A Cohen’s Kappa >0.61 was reached
for all groups, which is considered as substantial agree-
ment [19]. The according ROC curves were created and
are shown in Figure 6.

Discussion
The application of a new type-4 sleep monitor based on
tracheal body sound and movement data for automated
sleep staging was demonstrated and its performance
was validated by comparison against standard PSG sleep
staging. The system is designed to allow a simple setup
and high comfort, minimizing its impact on sleep quality.
It facilitates ambulatory use with no need of medical su-
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Figure 5: Relationship between wake after onset (WASO), total wake time (TWT) and total sleep time (TST) of the new sleep
monitor and the polysomnography including all 53 subjects; r2: coefficient of determination

Table 4: System performance based on the evaluation of the subject classification into different groups of sleep efficiency (SE)
including all 53 subjects

pervision for a preliminary sleep screening including sleep
staging and OSA diagnosis. Three types of sleep stage
classifiers were implemented and validated.
It is important to note that current research suggests a
general performance limitation of sleep staging based
on cardiorespiratory signals caused by subject variability
[37]. Additionally, the sleep staging of the PSG was done
manually and is therefore open to the subjectivity of the
scoring technician. However, since the evaluation of the

sleep stages was carried out within the daily business of
the sleep laboratory, we were not able to evaluate the
intrarater reliability. Future studies must include this
evaluation in order to eliminate the uncertainty of the
scoring technician. As shown in Table 4, the new sleep
monitor provided a substantial agreement with the PSG
results in classifying subjects into groups of SE. Table 5
shows the results of similar approaches of sleep staging
using cardiorespiratory features. It is important to note
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Figure 6: Receiver operating characteristic (ROC) of subject classification into groups of sleep efficiency (SE>40%, >60%, >80%);
AUC: area under curve

Table 5: Overview of comparable sleep staging results found in literature

that those previously proposed methods utilize well es-
tablished approaches to record cardiorespiratory signals
(e.g. ECG, inductance plethysmography). This comparison
reveals that the 2- and 3-stage system achieved accept-
able results. The 4-stage system gets clearly outperformed
by the best results found in literature. Nevertheless, the
novel method presented in this paper only uses a type-4
monitor using tracheal body sound recorded with a single
lead andmovement data to extract all features presented
in Table 2. Furthermore, the most essential parameters
for sleep staging like SE can be calculated using the 2-
stage system. It is suggested that the 2- or 3-stage system
suffice for a preliminary screening.
Some researchers also presentmethods for sleep staging
utilizing unobtrusive and comfortable methods. Samy et
al. present a high-resolution pressure-sensitive bed sheet
to extract sleep-related biophysical and geometric fea-
tures for sleep staging [38]. An overall accuracy of 71.1%
was reached for a sleep 3-stage system while including
seven subjects in their study. Sensor foils placed into the
bedmattress are used by Kortelainen et al. [39] to extract
relevant features and parameters for sleep staging. An
overall accuracy of 79% and a Kappa of 0.44was reached
for a sleep 3-stage system while including 18 subjects in
their study. These results are similar to those presented

in this paper. While offering non-contact and unobtrusive
sleep staging, the main drawback of those methods are
the excessive noise problems during body movements
preventing reliable sleep staging. Additionally, the signif-
icance of these studies may be limited by the small
number of participants.
The present study holds several advantages and limita-
tions. The setup of the PSG and developed monitor was
performed by previously trained medical staff. EEG
derivatives do not comply with the current AASM standard.
However, it can be assumed that the use of several EEG
derivatives only leads tominor changes in the distribution
of the derived sleep stages and no significant differences
in scoring reliability [40]. The PSG results are covering
the entire spectrum from healthy subjects to subjects
suffering from severe OSA. Additionally, the sex, age, and
BMI distribution cover a wide range of different individu-
als. All subjects included in the present study were re-
cruited with a suspicion of OSA. The sleep of subjects
suffering from OSA is disrupted by arousals caused by
breathing pauses. Therefore, at least 42 patients included
in the present study do not represent a healthy sleep.
This may suggest that the presented results are not ap-
plicable to the general population. However, 11 subjects
included in the presented study did not suffer from OSA.
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A relationship between OSA and sleep staging perfor-
mance could not be observed. This findingmight indicate
that the presented method performs as well for healthy
subjects as for subjects suffering from OSA. Redmond et
al. [11], [12] also suggest that OSA is no limitation for
using cardiorespiratory signals for sleep staging. However,
further studies are required to fully validate this state-
ment.
To further improve automated sleep staging, subject-
specific classifiers or subject-specific feature normaliza-
tion are utilized in various research [12], [15]. In general,
a subject-independent classifier can be set up without
calibration or any adjustment, again facilitating the use
in the homecare area without medical supervision. Nev-
ertheless, subject-specific feature normalization or clas-
sifier training can be useful in multi-night studies. Further
research should be undertaken to investigate the poten-
tial of the classifier in subject-specific classification.
Cardiorespiratory features used for classification in this
work are solely based on existing research. Tracheal body
sound might offer additional features related to sleep
phases currently not utilized. It can be assumed that it is
possible to extract snoring, wheezing, and similar breath
related sounds. Furthermore, since the new sleepmonitor
is placed at the thoracic belt of the subject, the move-
ments of the chest due to breathing are also reflected
within the IMU data. Therefore, the IMU could be utilized
to calculate features relating to thoracic or abdominal
respiratory movements.
In comparison to PSG or ECG, there is no need to apply
a vast number of additional sensors or electrodes during
the night to conduct simple sleep staging and evaluation
of SE. Additionally, it is suggested that using less sensors
leads to a better sleep quality and therefore to more reli-
able results. A previous interview of untrained volunteers
regarding ergonomics and user-friendliness of themonitor
showed a positive result [17]. The SE classification can
be used to create a simple traffic light system (e.g. green
meaning “everything is fine”, and red meaning “see a
doctor”), understandable without medical knowledge. It
can therefore be assumed that the new sleep monitor
can be used for simple sleep monitoring and preliminary
screening at home. Additionally, previous research proved
that the new sleep monitor is also able to diagnose one
of themost common sleep disorders OSA [19], [20]. Using
sleep staging, it is suggested that the monitor can now
also be used to diagnose other sleep disorders, such as
insomnia, or for a preliminary screening to decide
whether a PSG is necessary or not. However, further
studies need to be carried out to validate the ease of use
and the reliability of the new monitoring system in an
unattended setting. In summary, the presented method
provides high performance for 2- and 3-stage sleep
staging while still maintaining a simple setup and a high
comfort for the patient.
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