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Abstract: Common rust (CR) caused by Puccina sorghi is one of the destructive fungal foliar diseases
of maize and has been reported to cause moderate to high yield losses. Providing CR resistant
germplasm has the potential to increase yields. To dissect the genetic architecture of CR resistance in
maize, association mapping, in conjunction with linkage mapping, joint linkage association mapping
(JLAM), and genomic prediction (GP) was conducted on an association-mapping panel and five F3

biparental populations using genotyping-by-sequencing (GBS) single-nucleotide polymorphisms
(SNPs). Analysis of variance for the biparental populations and the association panel showed
significant genotypic and genotype x environment (GXE) interaction variances except for GXE of Pop4.
Heritability (h2) estimates were moderate with 0.37–0.45 for the individual F3 populations, 0.45 across
five populations and 0.65 for the association panel. Genome-wide association study (GWAS) analyses
revealed 14 significant marker-trait associations which individually explained 6–10% of the total
phenotypic variances. Individual population-based linkage analysis revealed 26 QTLs associated with
CR resistance and together explained 14–40% of the total phenotypic variances. Linkage mapping
revealed seven QTLs in pop1, nine QTL in pop2, four QTL in pop3, five QTL in pop4, and one QTL in
pop5, distributed on all chromosomes except chromosome 10. JLAM for the 921 F3 families from five
populations detected 18 QTLs distributed in all chromosomes except on chromosome 8. These QTLs
individually explained 0.3 to 3.1% and together explained 45% of the total phenotypic variance.
Among the 18 QTL detected through JLAM, six QTLs, qCR1-78, qCR1-227, qCR3-172, qCR3-186,
qCR4-171, and qCR7-137 were also detected in linkage mapping. GP within population revealed
low to moderate correlations with a range from 0.19 to 0.51. Prediction correlation was high with
r = 0.78 for combined analysis of the five F3 populations. Prediction of biparental populations by
using association panel as training set reveals positive correlations ranging from 0.05 to 0.22, which
encourages to develop an independent but related population as a training set which can be used
to predict diverse but related populations. The findings of this study provide valuable information
on understanding the genetic basis of CR resistance and the obtained information can be used for
developing functional molecular markers for marker-assisted selection and for implementing GP to
improve CR resistance in tropical maize.
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1. Introduction

Common rust (hereafter CR) caused by Puccina sorghi is one of the most destructive fungal foliar
diseases in maize-growing regions predominantly in humid areas and has been reported to cause 12 to
61% yield losses in a favorable environment [1,2]. These yield losses are subject to leaf area infected
and host growth stages whereby the former has been estimated to cause about 3–8% yield loss for each
10% of the total leaf area affected [3]. Quantitative resistance is due to partial resistance or adult plant
resistance [4]. Numerous studies have suggested that older and mature tissues have more resistance to
CR than younger soft tissues [4–6].

Past efforts to control CR through conventional means have been largely unsuccessful and also
affected by unpredictable weather, and the use of fungicides leads to environmental effects and
increased production costs [7]. Host-plant resistance has been identified as the most reliable and
economically viable option among several available options to alleviate plant diseases [7,8]. In the
case of CR, researchers have identified both qualitative and quantitative resistance [9,10]. Resistance
through R genes has been identified more than 25 dominant race-specific (Rp) genes in chromosomes
(chr) 3, 4, and 10 [9,11], which mediate the recognition of the pathogen and trigger a hypersensitive
reaction to prevent further spread of the pathogen [12]. However, novel P. sorghi races can overcome
the qualitative resistance in some genotypes and this requires a continuous search for sources of stable
and durable resistance (quantitative) in order to manage the disease. Identifying resistant germplasm
to CR and incorporation of resistant genes or genomic regions to elite lines and commercial hybrids
has the potential to increase yields with lower production costs [13].

Genetic mapping through linkage analyses and GWAS have been used in many studies in plant
breeding [12,14–26]. The two approaches exploit the recombination’s ability to break up the genome into
fragments that can be correlated with phenotypic variation but differ with the type of control they have
on the recombination [27]. Linkage mapping in plants utilizes biparental crosses and, thus, is a closed
controlled system. This further limits the number of recombinations that can sufficiently shuffle the
genome into small fragments and results into QTLs localized in large chromosomal regions [28]. On the
other hand, GWAS uses natural populations that mimic historical recombinations and provide a higher
resolution as compared to linkage mapping [25]. This approach, however, has no control over relatedness
and is prone to spurious associations. Accounting for population structure and kinship relatedness
in a mixed model has been the most effective method of reducing false associations in GWAS [29].
Quantitative resistance for CR, a more durable approach, has also been exploited in a few studies through
quantitative trait loci (QTL) analysis and genome-wide association studies (GWAS). A total of 41 QTLs
have been identified conferring resistance to CR across all maize chromosomes in four separate studies
utilizing different maize germplasm [7,10,13,30]. One study by Olukolu et al. [12], carried out GWAS and
identified three marker trait associations (MTAs) in chr 2, 3, and 8 using 274 diverse inbred lines and
246,497 SNPs. Another study combined linkage and association mapping on 296 tropical maize inbreds
and identified 25 QTLs on chr 1, 3, 5, 6, 8, and 10 associated with CR resistance [31]. These markers and
candidate genes were directly or indirectly involved with plant disease responses [12,31].

In cases where the phenotype is strongly correlated with relatedness, population mapping even
with the use of mixed models can be severely underpowered [27]. Joint linkage association mapping
(JLAM) has the potential to overcome the downsides of the both linkage mapping and association
mapping approaches whereby one compliments the other. Association mapping will increase the
mapping resolution power while linkage mapping will account for relatedness in cases where Q + K
explains most of the phenotypic variance. To our knowledge, no study has been reported utilizing
JLAM to identify QTLs conferring resistance to CR in maize.
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Another promising genomic tool is the genomic prediction (GP) which has been applied
successfully in many plant breeding studies [32,33]. Previous reports have indicated the potential
of GP to increase genetic gain and reduce the time taken in breeding programs significantly [33].
GP utilizes genome-wide markers to estimate the effects of all loci and computes a genomic estimated
breeding value (GEBVs) [34]. Unlike genetic mapping, GP does not identify significant MTAs first but
goes ahead to use all markers available to estimate their effects thus providing a powerful approach
to account for any effects that might have been missed by genetic mapping. However, this doesn’t
mean complete withdrawal of genetic mapping but rather the incorporation of the two in genetic
studies as complimentary approaches since each provide significant advantages. The main objectives
of this study were to: (1) assess the phenotypic variation for CR by evaluating five segregating
populations and an association panel in multiple environments; (2) detect stable and the novel genetic
loci significantly associated with CR resistance by using QTL mapping, JLAM, and GWAS; and (3) GP
within populations and Improved maize for African Soil (IMAS) panel and among the IMAS and F3
populations in order to understand the genetic architecture of maize CR resistance.

2. Results

Comparable disease pressure was observed in each environment as indicated by significant
genotypic variance at each environment for each population (Table S1). Further, significant (p < 0.05)
Pearson correlations were also observed among phenotypic values determined at different environments
for each population (Table S2). This suggested that there was enough CR disease pressure in each
environment. Cross-environment analyses revealed normal distributions of CR disease severity
(score 1–9) in the F3 populations and IMAS association panel, ranging from high resistance to moderate
susceptibility with scores ranging from 2.0 to 6.0 and with average means ranging from 3.4 to 4.1
for different populations (Table 1 and Figure 1). Analysis of variance for the biparental populations
and the association panel showed significant genotypic and genotype x environment (GXE) variances
except for GXE of Pop1 and Pop4 (Table 1). Heritability (h2) estimates were moderate with range of
0.37–0.45 for the individual F3 populations, 0.45 across the F3 populations and 0.65 for the IMAS panel.

Table 1. Means, ranges, and components of variance for Common rust in an IMAS association panel,
F3 populations and across F3 populations.

Population Mean (Range) σ2
G σ2

GxE σ2
e h2

IMAS AMP 3.80 (2.40–5.90) 0.07 * 0.03 * 0.13 0.68
CZL0618 × LaPostaSeqC7-F71-1-2-1-1B–Pop1 3.61 (2.00–5.50) 0.024 * 0.01 0.10 0.44
CZL074 × LaPostaSeqC7-F103-1-2-1-1B–Pop2 3.70 (2.50–5.30) 0.02 * 0.02 * 0.12 0.43
CZL00009 × CZL99017–Pop3 3.42 (2.32–5.00) 0.03 * 0.02 * 0.11 0.45
CML505 × CZL99017–Pop4 4.10 (2.76–5.14) 0.01 * 0.01 0.12 0.37
CZL0723 × CZL0724–Pop5 4.02 (2.51–6.02) 0.03 * 0.02 * 0.16 0.38
Across five populations 3.85 (2.02–6.00) 0.04 * 0.10 * 0.15 0.45

* Significance at p < 0.05.

An IMAS association mapping panel was earlier used to study the maize lethal necrosis
resistance [20], where the population structure was reported in detail. In the IMAS panel, a rapid
linkage disequilibrium (LD) decay across physical distance in kb was reported (Figure 2). At LD cut-off

points of r2 = 0.1, the average physical distance was 14.97 kilo base pairs. GWAS was performed using a
mixed linear model by integrating population structure (PCA) and family relatedness (kinship) within
the IMAS panel using 337,110 high quality SNPs. GWAS for CR identified 14 significant marker-trait
associations (MTA, significant threshold p < 9 × 10−6). These SNPs were found across all chromosomes
except on chr 6, 7, and 8 (Table 2 and Figure 3). The distribution of SNPs across chromosomes and
their level of significance for CR are shown in a Manhattan plot (Figure 3A). To test the ability of the
model used, a quantile-quantile plot of the observed-log p-value vs. the expected-log p-value was
plotted. As shown in Figure 3B, the population structure was controlled well by the mixed linear model
(Figure 3). In terms of the percentage of phenotypic variance explained (PVE), the SNPs identified
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from GWAS individually explained 6–10% (Table 2). SNP S5_51353429 had the largest significant MTA
while S3_21856582 explained the most phenotypic variance. Candidate genes were selected around the
significant SNPs and identify the putative function of these genes. Six candidate genes were identified
in the significant SNP sites or adjacent to these sites (Table 2). We identified two candidate genes each
on chromosomes 2, 5, and 10.
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Table 2. Chromosomal position and SNPs significantly associated with Common rust disease severity (DS) detected by SNP-based GWAS in the IMAS association
mapping panel.

SNP a Chr MLM-P Value R2 (%) MAF Allele Putative Candidate Genes Predicted Function of Candidate Gene

S1_12663024 1 4.86 × 10−6 7.00 0.14 A/G GRMZM2G480386 uncharacterized
S1_41433126 1 4.69 × 10−6 7.88 0.05 G/A GRMZM5G886521 uncharacterized
S1_220067760 1 5.86 × 10−7 7.80 0.46 C/T GRMZM2G564469 uncharacterized

S2_16361185 2 5.23 × 10−6 7.70 0.08 C/T GRMZM2G086484 Pleckstrin homology (PH) domain
superfamily protein

S2_222274747 2 7.65 × 10−6 7.10 0.05 C/T GRMZM2G009188 11-beta-hydroxysteroid dehydrogenase 1B
S3_21856582 3 3.84 × 10−6 9.54 0.42 A/C GRMZM2G395983 uncharacterized
S3_34683394 3 4.83 × 10−6 9.02 0.35 A/G GRMZM5G881063 uncharacterized
S3_147013779 3 3.89 × 10−6 7.70 0.17 G/C GRMZM2G060540 uncharacterized
S4_130478096 4 6.72 × 10−6 6.93 0.12 A/T GRMZM5G833902 uncharacterized
S5_10087070 5 8.02 × 10−6 6.25 0.06 A/G GRMZM2G181002 Phosphotransferases, Serine or

threonine-specific kinase subfamilyS5_10089138 5 4.39 × 10−6 6.56 0.07 T/C GRMZM2G181002
S5_51353429 5 9.05 × 10−6 7.40 0.19 G/A GRMZM2G457211 uncharacterized
S10_134585613 10 3.68 × 10−6 6.65 0.12 C/T GRMZM2G322582 ATP binding protein

S10_134831452 10 4.78 × 10−7 8.22 0.14 A/G GRMZM2G181030

MYB-related transcription factor family that
regulates hypocotyl growth by regulating
free auxin levels in a time-of-day specific
manner (RVE1)

MAF—Minor allele frequency; the underlined SNP allele is minor allele; R2—proportion of phenotypic variance explained by SNP; a The exact physical position of the SNP can be inferred
from marker’s name, for example, S5_51353429: chromosome 5; 51,353,429 bp (Ref. Gen_v2 of B73).
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Linkage map for each of the five populations was constructed. For each population, the number
of progenies or families, markers, map lengths, and average genetic distances between the markers are
presented in Table S3. Detection of QTL in the F3 populations revealed seven QTLs in pop1, nine QTL
in pop2, four QTL in pop3, five QTL in pop4 and one QTL in pop5, distributed on all chromosomes
except chromosome 10 (Table 3). In pop1, QTLs individually explained 3–7% of phenotypic variance,
in pop2, individual QTL explained 2–11% of total variation. In pop3, each QTL explained 5–9% of
variation, whereas the range was 3–20% in pop4 and 17% in pop5. The total variance explained by each
population ranged from 14 to 40%. Comparison of QTL detected among five populations revealed
that QTL qCR1-78 was detected in both pop1 and pop5 on chromosome 1. Another QTL qCR3-151
detected in pop2 was within the confidence interval of the QTL qCR3-113 detected in pop1 (Table 3).
QTL qCR9-117 detected in pop3 overlapped with QTL qCR9-118 observed in pop2.

All five F3 populations and IMAS panel was plotted by using first three principal components,
which together contributed for 27.5% of the variation. PCA plot showed clear clustering of the five
F3 populations and IMAS panel into five clusters as shown in Figure 4. PCA distribution suggests
pop 1 and pop 2 are more related to the IMAS panel compared to pop 3, 4, and 5. Joint linkage
association mapping across five F3 populations constituted 921 families, identified eighteen QTLs
distributed in all chromosomes except on chromosome 8 (Table 4). These QTLs individually explained
0.3 to 3.1% and together explained 45% of the total phenotypic variance. Among the 18 QTL detected
through JLAM, six QTLs, qCR1-78, qCR1-227, qCR3-172, qCR3-186, qCR4-171, and qCR7-137 were also
detected in individual population-based linkage mapping (Table 3). Out of these 18 QTLs, one QTL on
chromosome 7 (qCR7-10) followed by QTL on chromosome 1 (qCR1-78) were strongly associated with
CR disease severity in terms of p values.
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Table 3. Detection of QTL associated with resistance to Common rust, their physical positions and genetic effects in five F3 populations.

QTL Name Chr Position (cM) LOD PVE (%) Add Dom Total PVE (%) Left Marker Right Marker

CZL0618 × LaPostaSeqC7-F71-1-2-1-1B–Pop1

qCR1-78 1 551 4.41 3.32 −0.20 −0.08

14.95

S1_77801418 S1_80167797
qCR1-290 1 799 2.82 3.59 0.18 −0.13 S1_290957469 S1_285979058
qCR2-198 2 187 3.17 6.70 −0.34 −0.53 S2_198394488 S2_230388748
qCR3-113 3 307 2.85 6.50 0.26 −0.24 S3_224567900 S3_113425715
qCR6-38 6 194 2.79 3.62 0.21 −0.01 S6_37902339 S6_63537451
qCR6-63 6 197 4.51 3.27 −0.21 −0.02 S6_63537451 S6_65299800
qCR6-146 6 446 3.09 7.03 0.30 −0.42 S6_147225115 S6_146382028

CZL074 × LaPostaSeqC7-F103-1-2-1-1B–Pop2

qCR2-137 2 414 2.54 2.38 0.00 0.18

39.5

S2_158674609 S2_136562142
qCR3-8 3 262 3.33 2.97 0.63 0.52 S3_8300745 S3_8888914
qCR3-151 3 405 6.56 6.28 0.17 −0.14 S3_150831482 S3_166811360
qCR4-198 4 351 2.58 5.64 −0.19 −0.05 S4_197820294 S4_200964285
qCR4-198 4 354 5.77 8.85 0.24 −0.01 S4_200964285 S4_198430250
qCR5-51 5 374 2.93 3.7 −0.17 0.27 S5_186678634 S5_51355494
qCR8-123 8 165 4.69 6.23 0.20 0.00 S8_130213071 S8_123469991
qCR9-118 9 291 2.55 8.46 −0.23 0.03 S9_120748383 S9_118065757
qCR9-12 9 359 5.63 10.95 −0.28 −0.03 S9_12599819 S9_11929364

CZL00009 × CZL99017–Pop3

qCR1-18 1 394 3 5.21 −0.13 −0.08

12.99

S1_19328973 S1_17679542
qCR1-172 1 501 2.81 6.09 0.67 −0.6 S1_196052894 S1_171534815
qCR2-16 2 93 3.61 5.84 0.7 −0.47 S2_16401968 S2_181538947
qCR9-117 9 300 4.31 8.35 −0.18 −0.04 S9_122035011 S9_116948078

CML505 × CZL99017–Pop4

qCR1-139 1 182 3.87 20.16 0.32 0.67

23.89

S1_139463362 S1_227241027
qCR4-171 4 239 4.83 5.55 −0.23 0.01 S4_171215058 S4_173802342
qCR7-137 7 87 9.79 11.01 −0.34 0.22 S7_140894965 S7_137169719
qCR9-47 9 410 3.03 2.79 0.11 −0.24 S9_47064183 S9_58143264
qCR9-90 9 432 3.18 3 −0.13 −0.2 S9_90366846 S9_97737243

CZL0723 × CZL0724–Pop5

qCR1-77 1 89 6.52 17.39 0.29 −0.09 14.28 S1_73375502 S1_77145631

Chr—Chromosome; LOD—logarithm of odds; Add—additive effect; Dom—dominance effect; PVE—phenotypic variance explained; Markers with bold letters are the QTL consistent in at
least two across populations.
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Table 4. Analysis of trait-associated markers, allele substitution (α) effects, and the total phenotypic
variance (R2) of the joint linkage association mapping based on combined 8 F3 populations.

Marker QTL_Name a Chrom Pos α-effect p Value PVE (%) PG

S1_77801418 qCR1_78 1 77.80 0.16 1.34 × 10−12 2.9 7.2
S1_227241027 qCR1_227 1 227.24 0.17 3.75 × 10−7 1.5 3.8
S2_20589802 qCR2_20 2 205.90 0.11 1.51 × 10−3 0.6 1.5
S3_172332492 qCR3_172 3 172.33 −0.06 1.50 × 10−2 0.3 0.7
S3_186725598 qCR3_186 3 186.73 0.10 9.88 × 10−3 0.4 1
S4_828312 qCR4_1 4 0.83 −0.19 6.02 × 10−10 2.2 5.5
S4_5238963 qCR4_5 4 5.24 0.12 7.45 × 10−8 1.6 4
S4_171215058 qCR4_171 4 171.22 −0.05 3.79 × 10−2 0.2 0.5
S5_2363546 qCR5_2 5 2.36 −0.06 2.03 × 10−2 0.3 0.7
S6_32969273 qCR6_32 6 32.97 0.10 4.49 × 10−5 0.9 2.2
S6_144280146 qCR6_144 6 144.28 0.06 2.57 × 10−2 0.3 0.7
S6_154981658 qCR6_155 6 154.98 −0.19 8.37 × 10−4 0.6 1.5
S7_10651847 qCR7_10 7 10.65 −0.28 1.78 × 10−13 3.1 7.8
S7_13389227 qCR7_13 7 133.89 0.20 3.25 × 10−11 2.5 6.2
S7_137335046 qCR7_137 7 137.34 −0.14 3.26 × 10−9 2 5
S9_134919722 qCR9_135 9 134.92 −0.14 5.08 × 10−5 0.9 2.2
S10_132612571 qCR10_132 10 132.61 −0.15 2.76 × 10−9 2 5
S10_133744261 qCR10_133 10 133.74 −0.09 1.79 × 10−3 0.5 1.2

a QTL name composed by the trait code followed by the chromosome number in which the QTL was mapped
and a physical position of the QTL, Chr—Chromosome, PVE—phenotypic variance explained, PG—genotypic
variance explained, The marker name indicates chromosome number followed by its physical position, for example
S6_68207704 represents marker is in chromosome 6 at a position of 68,207,704bp (Ref. Gen_v2 of B73). Markers with
bold letters are the QTL consistent with JLAM and linkage mapping.

We used the RR-BLUP model to predict the lines performance within each population.
The prediction correlation was highest for pop4 (r = 0.51) followed by the IMAS panel (r = 0.46)
and pop 2 (r = 0.46) and was low for pop3 with 0.19 (Figure 5A). However, the prediction through
combined analysis of the five F3 populations reported high improvement in the prediction accuracy
with 0.78 for CR (Figure 5A). Prediction of biparental populations by using IMAS panel as training
population reveals the correlations of 0.15, 0.05, −0.14, 0.22 and 0.07 for pop1, pop2, pop3, pop4,
and pop5, respectively (Figure 5B).
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3. Discussion

Over the past years, CR epidemics have mainly resulted from high levels of susceptibility among
commercial maize hybrids [3]. Past efforts to exploit genetic resistance for CR have largely been through
R genes [9,11]. A major drawback with genetic resistance through R genes is that it is overcome with
time [12]. Quantitative resistance is by far a better option compared to single gene based resistance;
however, few studies have been carried out on quantitative resistance to CR. This study therefore
aimed to detect quantitative resistance to CR through GWAS by using IMAS association mapping
panel, and QTL detection, JLAM, and GP using five F3 populations.

Phenotypic analyses revealed normal distributions in all populations varied from highly resistance
to moderate susceptibility, therefore indicating polygenic resistance in the materials used. Genotype
and GxE interaction variances were significant in most populations which showed their importance in
CR resistance. Heritability estimates were moderate in F3 populations. High heritability observed in
the IMAS association panel may be attributed to the large genetic diversity of the germplasm used.
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Previous studies on the population structure of the IMAS association panel used in the
present GWAS showed confounding structure in the panel posing a need to account for it [18,35].
The quantile–quantile plot of expected vs. observed log p values indicated that the mixed model used
in this study effectively accounted for the population structure and kinship matrix. Ideally, the p values
are expected to follow the diagonal plot of the expected vs. observed p values assuming no marker
trait associations. In real datasets, the markers are expected to deviate to the left side of the plot as a
result of true marker trait associations, however, strong deviations to the left indicate inflated false
positives while to the right indicate deflated false negatives [25].

Association mapping resolution also strongly depends on the LD of the particular population
under study since it exploits the historical recombinations that occur in natural populations [36].
Rapid LD decay as shown in the IMAS population shows the significant diversity in the panel and
its suitability for GWAS. The small mapping distance of 50kb and rapid decay at r2 = 0.1 enable the
detection of marker trait associations with small effects that might have otherwise been missed with
other mapping approaches.

In the GWAS, 14 significant SNPs were associated with P. sorghi resistance across three environments
(Table 2, Figure 3), of which some overlapped with previously reported QTL intervals [12,31,37].
Specifically, SNP S3_21856582 detected in this study is also reported earlier [12] and interestingly it is
also overlapped with two biparental based QTL studies [10,13] which suggests the possibility of potential
candidate gene/marker for CR resistance across genetic backgrounds and environments. Another two
SNPs on chromosome 5, S5_10087070 and S5_10089138 are found close to SNP S5_10,055,423 found in
the previous association mapping study in tropical maize germplasm [31]. Other SNPs detected in this
study seems to be novel and add for the new source of resistance for CR.

The candidate genes in the present study were identified as encoding transcription factors (TFs),
ATP binding and intracellular signaling. A putative candidate gene GRMZM2G181030 has been linked
with the MYB superfamily which is one of the three largest TF families in maize [38]. The important
roles of MYB superfamily are in developmental processes and defense responses in plants [39].
GRMZM2G322582 was encoded as ATP binding protein which play important roles in membrane
transport, cellular motility and regulation of various metabolic processes [40]. GRMZM2G086484 was
linked to the Pleckstrin homology (PH) domain superfamily protein which plays a role in recruiting
proteins to different membranes, thus targeting them to appropriate cellular compartments or enabling
them to interact with other components of the signal transduction pathways [41]. GRMZM2G181002
was annotated in protein kinase superfamily specifically the phosphotransferases, serine and threonine
specific kinase superfamily. Serine/threonine kinase receptors play a role in the regulation of cell
proliferation, programmed cell death (apoptosis), cell differentiation, and embryonic development [42].
Lastly, GRMZM2G009188 was encoded as 11-beta-hydroxysteroid dehydrogenase 1B whose role is
in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids
predominantly by catalyzing the reduction of cortisone to cortisol in intact cells that also express
hexose-6-phosphate dehydrogenase (H6PDH), which provides cofactor NADPH [43].

The linkage analysis within the individual bi-parental populations was also carried out revealing
23 QTLs associated with CR resistance in maize and were distributed on all chromosomes (Table 3).
Linkage groups conferring CR resistance have been previously reported on bin 1.05, 1,06, 2.05, 3.04,
5.02, 6.04, 8.03, 8.05, 10.1, 10.5, and 10.6 [7,10,12,13,31]. The present study’s results corroborate these
earlier studies, as most of the identified QTLs fell in those bins of linkage groups. Within the current
study we also found several QTLs overlapping across populations with linkage mapping, across
methods with linkage analyses, JLAM, and GWAS (Table 2, Table 3, Table 4). QTL qCR1-139 detected
on pop4 was co-located with QTL detected in F3 pop 3 and F3 pop 5, which suggests one of possible
potential candidate for CR resistance in chromosome 1 across different genetic back grounds.

Identification of genomic regions for CR resistance have previously been carried out in
biparental-based linkage analysis [7,10,13,30] and natural population-based association mapping [12,31].
The current study consequently sought to exploit JLAM using multiple segregating populations in
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conjunction with QTL analysis and GWAS. GWAS and JLAM increased the resolution within the
confidence intervals of QTL for CR resistance. qCR1-139, which explained >20% of the phenotypic
variance, was a locus with major effect based on genetic linkage mapping, and was likely to consist
of two QTL as revealed by GWAS and JLAM results. SNP S1_220067760 identified through GWAS
and SNP S1_227241027 identified through JLAM fall within the confidence interval of QTL qCR1-139
(Tables 2–4). The significant marker S2_16361185 detected through GWAS and marker S2_20589802
(qCR2-20) detected through JLAM fall within the confidence interval of another QTL on chromosome
2, qCR2-16 detected in pop3, which helps to increase the precision of QTL position. Fractionation
of single major QTL was also reported previously in maize [44]. Thus, the combination of linkage
mapping, JLAM and GWAS approaches helped to further refine the CR resistance loci to an extent
that it became possible to separate the effects of two co-segregating QTL (on chromosome 1 and 2).
Thus, GWAS and JLAM can serve as a great complementary tool to identify and validate the molecular
markers linked to QTL and to be used in applied breeding. Nevertheless, it is warranted to validate
through fine mapping and gene cloning coupled with functional genomics studies, in order to clarify
further on QTL intervals identified and refined in this study.

Since GS was demonstrated to be useful in plant breeding, there have been many studies that
demonstrate the utility of GP in breeding for disease resistance in crops [26,45–49]. Prediction
correlations for within association panel and biparental populations is comparable to the other disease
reported in maize [18,24,50]. As described in earlier study [51], the benefits of large populations or
combined population predictions were higher compared to individual population-based predictions.
This corroborates with the present study whereby combined population prediction was higher over
individual or smaller population-based predictions (Figure 5A).

The success of GP gains more attention when the training population is related but independent
of testing or validating populations. In the current study, since the parental lines of F3 populations are
part of the IMAS association panel, we tried to use IMAS panel as an independent training population
and predict the F3 populations for their performance for CR resistance. We observed, for four out of
five populations, prediction correlations of 0.05, 0.07, 0.15, and 0.22 (Figure 4), which is comparable to
the prediction correlations observed for maize lethal necrosis [26] under similar testing environments.
Overall, results from our study encourages to develop an independent but related diverse population as
training population to predict CR resistance. This also supports the use of GEBVs as indirect selection
criteria, at least to remove the lines with poor performance for CR resistance. Conducting separate
field trials for CR screening in the breeding pipelines always takes additional resources. The model’s
predictive ability, with cross validation, showed moderate prediction accuracies for CR in pop1 and
pop4 were comparable to the correlations observed under similar scenario of predicting biparental
populations by using association mapping panel for maize lethal necrosis and maize chlorotic mottle
virus resistance [26]. Overall, to have an effective independent training population, relatedness between
training and validation population is critical as well as the trait architecture and heritability. Compared
to abiotic stress related traits, traits like CR and many other maize diseases are relatively less complex
and our results suggests that it is possible to have an independent training population with continuous
improvement and used routinely in breeding program.

In conclusion, we used five F3 populations and one IMAS association mapping panel, together
comprising 1300 lines, to unravel the genetic architecture of CR resistance. In this study we identified
new QTLs as well as reconfirmed the QTLs reported in earlier studies for CR resistance in tropical
and subtropical maize germplasm. Linkage mapping identified 26 QTLs with four major QTLs,
which explained >10% of phenotypic variance. The detected QTLs were validated with GWAS,
and several SNPs were found overlapping with the identified QTLs through either linkage mapping or
JLAM. These genomic regions can serve as potential sources to improve resistance to CR. GP can be
used in combined populations to predict the response of the germplasm to CR resistance. Having a
common training population derived from intensively phenotyped and genotyped lines with diverse
representation from a breeding program holds promise in breeding for CR resistance.
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4. Materials and Methods

4.1. Plant Materials and Trial Design

A collection of 380 tropical and subtropical maize inbred lines denoted as the Improved Maize
for African Soils (IMAS) panel, representing some of the genetic diversity available in CIMMYT’s
and several national research programs from Africa and Mexico breeding programs (low N, drought,
and biotic stresses) was used in this study [26,35]. In addition five F3 populations namely Pop1
(CZL0618 × LaPostaSeqC7-F71-1-2-1-1B, n = 183), Pop2 (CZL074 × LaPostaSeqC7-F103-1-2-1-1B,
n = 174), Pop3 (CZL00009 × CZL99017, n = 187), Pop4 (CML505 × CZL99017, n = 189) and Pop5
(CZL0723 × CZL0724, n = 188) were used in this study [52]. These five F3 populations were used to
study the grain yield under optimum and drought stress conditions [52,53]. The IMAS panel was
evaluated in three location-year combinations, at Kitale (1.0191◦ N 35.0023◦ E, 1900 meters above
sea level (masl)) in 2013 and 2014 and at Kakamega (0◦17’3.19” N 34◦45’8.24” E, 1535 masl) in 2014,
and F3 pop 2 was evaluated in three locations Kakamega, Kitale, and Embu (0◦31′52′′ S 37◦27′02′′ E,
1406 masl) and the remaining four F3 populations were evaluated in two locations in Kakamega and
Embu at 2011 in Kenya (Tables S1 and S2).

All the lines from IMAS panel and five F3 populations were planted in a 4-m-long single row plots
in an alpha lattice design with two replications in each location. Two seeds were planted per hill and
thinned to a single plant per hill, three weeks after emergence to ensure uniform plant density. Standard
agronomic practices were followed. The chosen locations were natural hotspots for foliar diseases
including CR; good disease infection pressure across the trials at each location was observed. The IMAS
panel, and F3 populations were evaluated for their responses to CR in two to three environments
(Tables S1 and S2). CR disease severity data was recorded after flowering and scored plot-wise on an
ordinal scale of 1 (no rust, highly resistant, without disease symptoms) to 9 (highly susceptible, most
severe). On the IMAS panel, in addition to CR severity scoring, data were also collected for anthesis
date (AD). The populations used in this study, methods applied, and the different type of analyses
used in this study are presented as a general analyses diagram (Figure 6).
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4.2. Phenotypic and Genotypic Data Analysis

For IMAS panel and each F3 populations, each location-year combinations were treated as an
independent environment which resulted into three environments for IMAS panel, and F3 pop2,
whereas the number of environments were two for F3 pop1, F3 pop3, F3 pop4, and F3 pop5. Analysis
of variance for individual and across environments was undertaken using the ASREML-R [54] for each
bi-parental population and the IMAS panel. The following statistical model was used to estimate the
variance components (Equation (1):

CRmnop = µ + Genotypem + Envn + (Genotype x Env)mn + Rep(Env)on +

Block(Rep.Env)pno + emnop
(1)

where CRmnop is the phenotypic performance of the mth genotype at the nth environment in the oth
replication of the pth incomplete block, µ is an intercept term, Genotypem is the genetic effect of the mth
genotype, Envn is the effect of the nth environment, (Genotype x Env)mn is the interaction effect between
genotype and environment, Rep(Env)on is the effect of the oth replication at the nth environment,
Block(Rep.Env)pno is the effect of the pth incomplete block in the oth replication at the nth environment,
and emnop is the residual. The genotypic effect, genotype by environment interaction and effect of
incomplete blocks were treated as random effects in order to estimate their variances and residual error
variance. Environments and replications were treated as fixed effects. Assuming fixed genotypic effects,
a mixed linear model was fitted to obtain the best linear unbiased estimates (BLUEs). Significance of
variance components were tested by model comparison with likelihood ratio tests in which the halved
p-values were used as an approximation. Broad-sense heritability (H2) was calculated for all the traits
using the following Equation (2):

H2 =
σ2

g

σ2
g+

σ2
gl
l +

σ2
ε

lr

(2)

where σ2
g is the genotype variance; σ2

gl is the genotype × environment interaction variance; and σ2
ε

is the error variance, l represents number of environments and r for number of replications. META-R
software [55] was used to obtain best linear unbiased prediction (BLUP) for each genotype across
environments. Combined analyses of the five F3 populations were carried out in META-R.

The F3 populations lines as well as their parents, and the IMAS association panel inbred lines
were genotyped with Genotyping by Sequencing (GBS). DNA of all lines was extracted from 3–4 leaves
stage seedlings and genotyped using GBS platform at the Institute for Genomic Diversity, Cornell
University, Ithaca, USA as per the procedure described in earlier studies [56]. The~955K GBS SNP
datasets were filtered where a minor allele frequency of <0.05, heterozygosity of >5% and missing data
rates >10% were excluded from further analysis in TASSEL ver 5.2 [57].

4.3. PCA and Linkage Disequilibrium

The principal components (PC) of the five F3 populations and IMAS panel were estimated using
TASSEL ver 5.2 and visualized using R software version 3.2.5 (https://www.r-project.org/) to obtain
the explained variance of each PCs. Further, the LD of the IMAS panel was calculated using Tassel
version 5.2 to obtain the rate of LD decay in the population. LD decay rate between each pair of
SNPs was analyzed with the squared Pearson correlation coefficient (r2). The rate of LD decay with
physical distance was visualized and average pairwise distances at which LD decayed at r2 = 0.1 and
0.2 were calculated in R software. The ‘nlin’ function in R was used to fit non-linear models into the
genome-wide LD data by incorporating r2 as responses (y axis) and pairwise distances (x axis) as
predictors. The average estimator for LD decay was calculated at ‘significance’ threshold of r2 = 0.1
and r2 = 0.2 cutoff points in relation to distance [58] and a representative scatter plot was drawn as LD
between adjacent markers versus chromosome distance (kb).

https://www.r-project.org/
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4.4. Genome-wide Association Analyses

The BLUP values obtained for CR were used in GWAS as phenotypes. The kinship matrix obtained
with a centered identity by state (IBS) and the first five PCs which explained maximum variation were
used to correct the population structure in a mixed linear model using TASSEL version 5.2. Genome
wide scans for marker-trait associations were conducted with mixed linear model. The amount of
phenotypic variation explained by the model was assessed using the R2 statistics, calculated by fitting
all significant SNPs simultaneously in a linear model in R. To determine the significance threshold,
multiple testing correction was conducted where the total number of tests were estimated based on
the average extent of LD at r2 = 0.1 [19]. With respect to the above, significant associations were
declared when p values in independent tests were less than 9 × 10−6. The 50 bp source sequences of
the significantly associated SNPs were used to perform BLAST searches against the B73 RefGen v2
genome set in Maize GDB (http://www.maizegdb.org). The putative candidate genes identified in
Maize GDB were within or adjacent to each associated SNP.

4.5. Detection of QTLs and Joint Linkage Association Mapping

The number of SNPs was further reduced by selecting homozygous and polymorphic markers
between the parents in each population and were further filtered based on minimum distance between
adjacent SNPs as ≥ 200 kilo base pairs (Kbps). For JLAM, markers from all five F3 populations were
combined, and markers with <1% missing value and >5% MAF and heterozygosity of <5% were
retained. Finally, a set of 5000 SNPs that are uniformly distributed across the genome were used for
JLAM analyses.

QTL IciMapping version 4.1 [59] was used to construct the linkage map based on data from all five
biparental populations. QTL IciMapping was used to remove the highly correlated SNPs that do not
provide any additional information by using an inbuilt tool BIN. This resulted in retention of 1130, 1047,
1099, 1122, and 1081 high-quality SNPs in pop1, pop2, pop3, pop4, and pop5, respectively (Table S3).
BLUP values across environments for the F3 populations were used in QTL detection analysis using
inclusive composite interval mapping (ICIM). The probability in the stepwise regression was set at 0.01
and the scanning step was 1 cM. For determination of QTL significance, the threshold LOD score was
set to >2.5 by using 1000 permutations and a p value ≤ 0.05. The phenotypic variation explained (PVE)
by each QTL and across all QTLs for each trait was estimated. The origin of the favorable allele for CR
resistance was identified based on the sign of the additive effects of each QTL.

A set of 5000 high-quality GBS SNPs derived from the genotyped F3 populations were used in
JLAM analyses. BLUPs calculated across populations and environments were used as phenotypes.
To best carry out association mapping in multiple biparental populations, a two-step biometric model
which incorporates population effect, cofactors and a marker effect across populations was used to
detect QTL [60,61]. This model was explained in detail by Liu et al. [61] and Würschum et al. [60].
The first step involved selection of cofactors based on Schwarz Bayesian Criterion (SBC) [62] by
including a population effect and cofactors carried out using PROC GLM SELECT implemented in
the statistical software SAS 9.4 [63]. In the second step, p values for the F-test were calculated using a
full model (including SNP effect) versus a reduced model (without SNP effect). Genome-wide scans
for QTLs were implemented in R version 3.2.5 (R Development Core Team, Vienna, Austria; 2015).
The Bonferroni–Holm procedure [64] was used to detect markers with significant (p < 0.05) main
effects and was controlled for multiple testing. The total proportion of PVE by the detected QTLs was
calculated by fitting all significant SNPs simultaneously in a linear model to obtain an adjusted R2 [65].

4.6. Genomic Prediction

GP was carried out with ridge regression BLUP [66] within and across the five F3 populations as
well as in the IMAS panel for CR resistance at five-fold cross-validation. BLUEs across environments
for each of the biparental populations and across five F3 populations were used for the analysis.

http://www.maizegdb.org
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For all biparental populations and IMAS panel, same set of high-quality uniformly distributed 5000
SNPs with no missing values and MAF > 0.05 were used. Prediction scenarios used for GP include:
‘within population’ where training and validation sets are derived from within individual biparental
population and IMAS panel; a ‘combined population’ prediction approach where data from five F3

populations were combined and sampled randomly to form validation and training set; and ‘across
population’ prediction in which IMAS association panel was used as a training set and each F3

population as a validation population. For each approach, 100 iterations were done for sampling of the
training and validation sets.
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