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Mitochondria and the endoplasmic reticulum (ER) are connected at multiple sites via what
are known as mitochondria-associated ER membranes (MAMs). These associations are
known to play an important role in maintaining cellular homeostasis. Impaired MAM
signaling has wide-ranging effects in many diseases, such as obesity, diabetes, and
neurodegenerative disorders. Accumulating evidence has suggested that MAMs influence
insulin signaling through different pathways, including those associated with Ca2+

signaling, lipid metabolism, mitochondrial function, ER stress responses, and
inflammation. Altered MAM signaling is a common feature of insulin resistance in
different tissues, including the liver, muscle, and even the brain. In the liver, MAMs are
key glucose-sensing regulators and have been proposed to be a hub for insulin signaling.
Impaired MAM integrity has been reported to disrupt hepatic responses to changes in
glucose availability during nutritional transition and to induce hepatic insulin resistance.
Meanwhile, these effects can be rescued by the reinforcement of MAM interactions. In
contrast, several studies have proposed that enhanced ER-mitochondria connections are
detrimental to hepatic insulin signaling and can lead to mitochondrial dysfunction. Thus,
given these contradictory results, the role played by the MAM in the regulation of hepatic
insulin signaling remains elusive. Similarly, in skeletal muscle, enhanced MAM formation
may be beneficial in the early stage of diabetes, whereas continuous MAM enhancement
aggravates insulin resistance. Furthermore, recent studies have suggested that ER stress
may be the primary pathway through which MAMs induce brain insulin resistance,
especially in the hypothalamus. This review will discuss the possible mechanisms
underlying MAM-associated insulin resistance as well as the therapeutic potential of
targeting the MAM in the treatment of type 2 diabetes.
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n.org November 2020 | Volume 11 | Article 5921291

https://www.frontiersin.org/articles/10.3389/fendo.2020.592129/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.592129/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.592129/full
https://www.frontiersin.org/articles/10.3389/fendo.2020.592129/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:gwang168@jlu.edu.cn
mailto:jldxzhaoxue@163.com
https://doi.org/10.3389/fendo.2020.592129
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.592129
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.592129&domain=pdf&date_stamp=2020-11-23


Cheng et al. MAM Regulates Insulin Resistance
INTRODUCTION

Type 2 diabetesmellitus (T2DM) is ametabolic disease characterized
by hyperglycemia. High levels of circulating glucose can result from
defective insulin secretion, insulin resistance, or both. In the early
stages of T2DM, most patients exhibit insulin resistance. Beta-cells
increase insulin output as a compensatory response to maintain
normal glucose tolerance. With the progression of the disease,
dysfunctional b-cells do not release sufficient insulin to compensate
for peripheral insulin resistance, leading to the development of overt
T2DM (1). The incidence of T2DMhas greatly increased worldwide
in recent years, and no cure is yet available for this disorder (2).
Therefore, it is essential to better understand the mechanisms
underlying this pathophysiology so that novel therapeutic
approaches can be developed.

Mitochondria and the endoplasmic reticulum (ER) are two
essential organelles that share structural and functional
communication to maintain cellular homeostasis (3). The regions
of close contact between these two organelles are known as
mitochondria-associated ER membranes (MAMs). MAMs play
an important role in various cellular processes ranging from cell
signaling and metabolite transport to cell death and survival (4).
These cellular processes are also partially involved in the insulin
signaling pathway, and several proteins in this pathway, such as
protein kinase B (PKB/AKT), mammalian target of rapamycin
complex 2 (mTORC2) (5), and phosphatase and tensin homolog
(PTEN) (6), can localize toMAMsand interactwithMAM-resident
proteins. This suggests that theMAMmight serve as a key regulator
of insulin signaling.Moreover, accumulating evidence has revealed
that dysregulated communication between the ER and
mitochondria is associated with diverse pathophysiological
conditions, including metabolic diseases such as T2DM, obesity,
and neurodegenerative diseases (7). However, the mechanisms
underlying MAM-induced insulin resistance remain elusive and
the results of studies to date are contradictory. In this review, we
mainly discuss how the MAM regulates insulin signaling and the
possible pathway through which altered MAM signaling leads to
insulin resistance in different tissues. Finally, we hypothesize that
theMAMmight be a promising therapeutic target for the treatment
of T2DM.
THE STRUCTURAL COMPOSITION OF
THE MAM

To date, more than a thousand proteins have been identified in
isolated MAMs (8–10). These proteins have been classified into
the following three groups: 1) MAM-resident proteins that only
localize to the MAM; 2) MAM-enriched proteins that can also be
found in other regions of the cell; and 3) MAM-associated
proteins that are transiently found in the MAM in a condition-
dependent manner (9). Owing to the highly dynamic nature of
the MAM, the detailed characterization of its components has
remained elusive.

Some of the candidate proteins are important tethers that bridge
the gap between the ER andmitochondria, and nearly all these linker
Frontiers in Endocrinology | www.frontiersin.org 2
proteins also have other functions. In mammalian cells, these tethers
can be singular, bipartite, or multipartite. Mitochondria-localized
ATPase family AAA domain-containing protein 3A (ATAD3A) is
known to interact with the ER membrane through its N-terminus,
and is the only single-protein linker between the ER and
mitochondria. Besides its role as a physical linker, ATAD3A can
also regulate the import of phosphatidylserine (PS) into
mitochondria from the ER and modulate mitochondrial
morphology (11). ER-localized mitofusin 2 (MFN2) homodimers
or heterodimers formed between MFN2 and MFN1 on the
mitochondrion were the first proposed bipartite tethers (12).
However, their structural role in the MAM remains unclear. Some
studies have suggested that MFN2 promotes ER–mitochondria
contacts (12–14), whereas others have reported that it acts as a
tethering antagonist (15, 16). Meanwhile, its interaction with the
familial Alzheimer’s disease-related protein presenilin-2, initially
proposed to negatively affect MAM functions (17), was also
challenged by other studies. These studies demonstrated that
presenilin 2 can block the inhibitory effects of MFN2 and positively
modulate ER–mitochondria coupling (18). Tethering interactions
that may compensate for MFN2 loss under specific conditions have
also been identified. One of these tethers is formed by ER-localized
vesicle-associated membrane protein-associated protein B and C
(VAPB) and the mitochondrial protein tyrosine phosphatase-
interacting protein 51 (PTPIP51). The loss of either impairs Ca2+

transfer from the ER tomitochondria (19) and stimulates autophagy.
However, autophagosome formationmay involve factors other than
the lossofVAPBorPTPIP51becauseoverexpressinganartificialER–
mitochondrion tether rescues this autophagy-related effect. Thus, it
might be the loosened ER–mitochondria contacts and the ensuing
dysregulated Ca2+ transport that mediate autophagy (20). An
interaction formed by ER-localized B-cell receptor-associated
protein 31 (Bap31) and the mitochondrial fission protein fission 1
homolog (Fis1) has also been identified. The Fis1/Bap31 platform is
required for theactivationofprocaspase-8, resulting in thecleavageof
Bap31 into the proapoptotic p20Bap31 fragment (21) and the rapid
transfer of Ca2+ from the ER to the mitochondria via the inositol
1,4,5-triphosphate receptor (IP3R) complex (22). In mitochondria,
this Ca2+ influx promotes cristae remodeling followed by the release
of cytochrome c, which eventually leads to apoptosis (23). The
tripartite IP3R complex, comprising the ER-resident IP3R, the
mitochondria-localized voltage-dependent anion channel 1
(VDAC1), and the cytosolic chaperone glucose-regulated protein
75 (GRP75), forms a tether between the ER andmitochondria and is
involved in Ca2+ transfer between the two organelles. However, ER–
mitochondria associations are unaffected in IP3R-knockout cells (8),
indicating that the IP3R complex ismore likely to provide a platform
for Ca2+ transfer rather than being a structural tether. Recently,
etoposide-induced protein 2.4 (EI24), which regulates autophagic
flux, was reported to interact with VDAC1 and possibly form a
quaternary complex with IP3R, GRP75, andVDAC1 (24). However,
after DNAdamage, EI24was found to interact withVDAC2 and not
VDAC1 (25), suggesting that MAM composition might vary under
different conditions.

In addition to the above-mentioned proteins, others have also
been found to be involved in MAM formation, including
November 2020 | Volume 11 | Article 592129
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phosphofurin acidic cluster sorting protein 2 (PACS2) (26), PDZ
domain-containing protein 8 (PDZD8) (27), and sigma 1 receptor
(Sig-1R) (28), amongothers (29) (Figure 1). The functionof eachof
these proteins under specific conditions is discussed below.
THE MAM-MEDIATED REGULATION OF
CELLULAR HOMEOSTASIS AND ITS
RELATIONSHIP WITH INSULIN
RESISTANCE

MAMs are now known to be specialized lipid raft-like regions.
These lipid microdomains are a dynamic assemblage of
sphingolipids and cholesterol that can move within the fluid lipid
bilayer and function as platforms for the attachment of proteins
during signal transduction (30). These proteins can be enzymes,
transporters, kinases, ion channels, or phosphatases (9), indicating
Frontiers in Endocrinology | www.frontiersin.org 3
thatMAMsparticipate invarious cellular processes, suchas calcium
homeostasis, lipid metabolism, mitochondrial physiology, ER
stress, and inflammation. Almost all of the above processes have
been reported to interactwith insulin signaling, and their disruption
is closely associatedwith the loss ofboth insulinactionand secretion
in T2DM.

Calcium Homeostasis
MAMsare importanthubs forCa2+ signaling.Whencells areexposed
to stimuli, such as the firing of action potentials in neurons or
following cell injury, a large amount of Ca2+ is released from the
ER through IP3Rs and ryanodine receptors (RyRs). Given their
minuscule size, even a small Ca2+ flux into the MAMmicrodomain
would be greatly amplified. These high-Ca2+ microdomains are
required for the induction of mitochondrial Ca2+ uptake through
the low-affinity mitochondrial Ca2+ uniporter (MCU) (31).
Moreover, Ca2+ transfer between the ER and mitochondria is
dependent on the cooperation of ER–mitochondria tethering
FIGURE 1 | Structural composition of the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM). The structure of the MAM is maintained by
interactions among various MAM-resident proteins. ATAD3A is the only single-protein linker at the MAM. Bipartite complexes are formed between MFN2 and MFN1/
2, VAPB and PTPIP51, and Bap31 and Fis1. The tripartite tether comprises IP3R, GRP75, and VDAC. Besides their role in maintaining ER–mitochondria contacts,
these proteins can also regulate the transfer of some metabolites between the two organelles.
November 2020 | Volume 11 | Article 592129
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proteins. These proteins can keep the ER–mitochondria contact at a
proper distance. Deficiencies in tethering proteins, such as PDZD8,
were recently reported to significantly reduce mitochondrial Ca2+

import and impair cytosolic Ca2+ dynamics (30). On the one hand,
mitochondrial Ca2+ uptake protects cells from significant Ca2+

fluctuations and maintains Ca2+ signaling. On the other hand, Ca2+

is required for mitochondrial ATP production as Ca2+ regulates the
activity of the tricarboxylic acid cycle, as well as that of several
mitochondrial enzymes involved in ATP synthesis (32). If ER–
mitochondria tethering is enhanced, excessive Ca2+ transfer from
the ER tomitochondriawill lead tomitochondrial Ca2+ overload and
oxidative stress. If the ER–mitochondria contact is weakened,
excessive Ca2+ release to the cytoplasm will lead to a cytosolic Ca2+

wave. Additionally, inadequate mitochondrial Ca2+ influx leads to
impaired mitochondrial respiration and decreased ATP production.

Ca2+ signaling influences various aspects of glucosemetabolism,
including glucogenesis and glucose utilization. First, during fasting,
high levels of glucagon can indirectly lead to the phosphorylation
and activation of IP3R, resulting in increased cytosolic Ca2+

concentrations. Higher cytosolic Ca2+ concentrations can induce
gluconeogenesis by inducing the calcineurin-mediated
dephosphorylation of CREB coactivator (CRTC2), which can
promote the expression of peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC1a) and the subsequent
modulation of gluconeogenic gene expression (33). Excessive
gluconeogenesis is an important contributor to hyperglycemia in
insulin resistance. Furthermore, IP3R activity is increased in diabetes.
IP3R can indirectly upregulate the expression of gluconeogenic genes
and promote gluconeogenesis, leading to elevated circulating glucose
levels (34). Second, Ca2+ signaling affects glucose utilization by
regulating the insulin signaling pathway. The G protein/IP3/IP3R
pathway is involved in glucose transporter 4 (GLUT4)-plasma
membrane fusion, while pharmaceutically induced GLUT4-plasma
membrane fusion and glucose uptake are inhibited by treatment with
a Ca2+ chelator, suggesting that these processes are Ca2+-
dependent (35).

Conversely, insulin signaling may also affect Ca2+ homeostasis.
Activated AKT induces the opening of transient receptor potential
channels (TRPCs) and the subsequent Ca2+ influx. Elevated
intracellular Ca2+ levels result in the opening of Ca2+ channels in
the ER and facilitatemitochondrial Ca2+ uptake (36). Furthermore,
phosphorylated AKT can be recruited to the MAM interface in
response to insulin signaling, while an in situ proximity ligation
assay showed that both AKT and phosphorylated AKT localized in
close proximity to IP3R1 (37). AKT can directly phosphorylate and
inhibit the function of IP3R, resulting in decreased ER Ca2+ release
and attenuated cytosolic Ca2+ signaling (38) (Figure 2).

A meta-analysis identified an association between a single-
nucleotide polymorphism (SNP) in the IP3R2 locus and
alterations in the waist-to-hip ratio adjusted for body mass index
(39), suggesting that Ca2+ flux through IP3R has a role in human
metabolic disease. Combined, the above results indicate thatMAM-
resident IP3R-regulated Ca2+ signaling is an important modulator
of glucose metabolism, and that impaired Ca2+ flux is associated
with obesity and/or possibly also the development of T2DM.
Frontiers in Endocrinology | www.frontiersin.org 4
Lipid Metabolism
TheMAM is also associated with the activity of diverse enzymes that
regulate lipid metabolism. The best-studied of these are involved in
the transfer of phospholipids between the ER and mitochondria.
First, PS is synthesized at theMAMbyPS synthase 1/2 (PSS1/2). PS is
then transferred to the near apposed mitochondrion and
decarboxylated by PS decarboxylase (PSD), yielding
phosphatidylethanolamine (PE) in the inner mitochondrial
membrane. Finally, PE returns to the ER and is converted to
phosphatidylcholine (PC) by phosphatidylethanolamine N-
methyltransferase 2 (PEMT2) (40). The PC/PE ratio plays a key
role in regulating cellmembrane integrity, andalterations in this ratio
contribute to the progression of steatosis into steatohepatitis (41). In
addition, an increasedPC/PE ratio can inhibit ERCa2+ transport and
induce ER stress and hyperglycemia in models of obesity (42). That
PS synthase localizes exclusively to the MAM and the transfer of PS
from the ER tomitochondria is the rate-limiting step in PE synthesis
highlights the importance of the MAM in maintaining the PC/PE
ratio (43). Cells lacking multiple MAM components exhibit reduced
PS transfer from the ER to mitochondria (44). Furthermore, MFN2
was recently reported tomediate PS transfer tomitochondria.MFN2
binds PS and can specifically extract PS into membrane domains,
favoring its transfer to mitochondria and mitochondrial PE
synthesis (45).

The MAM is also involved in cholesterol transport and
metabolism. Recently, caveolin 1 was identified at the MAM
interface, where it was shown to regulate ER–mitochondria
cholesterol transfer (46). Moreover, MAM-localized VDAC2 and
translocator proteins are key mediators of cholesterol transport
from the cytosol to mitochondria (47). Acyl-coenzyme A (CoA):
cholesterol acyltransferase located in the MAM catalyzes the
conversion of free cholesterol to cholesteryl esters, which
maintains the balance between membrane-bound and cytoplasm-
stored cholesterol in the resting state (48). Cholesterol is the main
lipid componentof cellularmembranes andalso plays an important
role in signaling. In the brain, cholesterol can be oxidized into
oxysterols, which can impair neuronal glucose uptake through the
modulation of GLUT4 activity (49). Cholesterol depletion in
hypothalamic neurons contributes to insulin resistance and
enhanced apoptosis (50). In turn, insulin signaling also serves as a
key regulator of cellular cholesterolmetabolism. PI3K/AKT/mTOR
activation can enhance cholesterol levels (51).

The conversion of diacylglycerols (DAGs) to triglycerides (TAGs)
can be catalyzed by MAM-resident diacylglycerol acyltransferase 2
(DGAT2) (52). ImpairedMAM integrity has been reported to lead to
mitochondrial dysfunction. Dysfunctional mitochondria showed
decreased fatty acid oxidation, leading to increased fatty acyl CoA
and DAG levels. The increased concentrations of these molecules
induced Ser/Thr kinase activity, thereby enhancing the serine
phosphorylation of insulin receptor substrate 1 (IRS-1) and blocking
the tyrosine phosphorylation of IRS-1 by the insulin receptor. As a
consequence, insulin-induced glucose uptake was suppressed (53). A
different study reported that DAGs activated protein kinase C-theta
(PKCq), which promoted IRS-1 Ser1101 phosphorylation in muscle,
suppressed IRS-1 tyrosine phosphorylation, and impaired insulin
November 2020 | Volume 11 | Article 5921
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signaling. Mice overexpressing DGAT2 in the liver manifested severe
insulin resistance, which was attributed to increased DAG-induced
PKCϵ activation. Activated PKCϵ decreased the insulin-stimulated
tyrosine phosphorylation of IRS-2 and increased the pAKT/AKT ratio
(54). A reduction in the expression of DGAT2 can improve hepatic
insulin sensitivity (55).

The enzymes sphingomyelin phosphodiesterase and ceramide
synthase have also been identified in MAMs, indicating that this
contact site can generate a certain amount of ceramide (56, 57).
Under normal conditions, ceramides can be transferred to
mitochondria and converted to sphingosine-1-phosphate and
hexadecenal (58). When ER–mitochondria contacts are
disrupted, ceramides are not transferred to mitochondria,
leading to increased cytoplasmic ceramide levels. Elevated
ceramide concentrations are usually associated with insulin
resistance. Ceramides activate protein phosphatase 2 alpha
(PP2A), which dephosphorylates AKT and subsequently
suppresses its activation (59). Ceramides also stimulate PKCz,
preventing the association of AKT with the membrane and
thereby inhibiting AKT activity and insulin signaling (60)
(Figure 3). In obese rats, attenuating increased ceramide levels
can ameliorate insulin sensitivity in the hypothalamus and
prevent central insulin resistance (61). Equally, impaired
insulin signaling may further lead to elevated ceramide levels
and ceramide-induced activation of atypical PKC, which
aggravates insulin resistance (62). In summary, the MAM may
Frontiers in Endocrinology | www.frontiersin.org 5
help maintain proper insulin signaling by sustaining
lipid homeostasis.

Mitochondrial Physiology
In addition to its role in regulating mitochondrial Ca2+ transport,
MAM activity also affects mitochondrial physiology, including
mitochondrial bioenergetics, dynamics, and mitophagy.

The MAM can control mitochondrial oxidative metabolism
mainly by regulating Ca2+ transfer. Inositol-requiring protein 1
alpha (IRE1a) is a key mediator of ER stress. It also localizes to the
MAM where it physically interacts with IP3R and regulates
mitochondrial Ca2+ uptake. IRE1a deficiency can impair the
tricarboxylic acid cycle, whereas overexpression of IP3R can
rescue this effect and increase mitochondrial ATP production
(63). Furthermore, the mitochondria-resident protein translocase
of outer mitochondrial membrane 70 (TOMM70) can also sustain
mitochondrial respiration by associating with IP3R and promoting
Ca2+ shuttling between the ER and mitochondria (64). Moreover,
another ER membrane-associated protein, Bap31, was reported to
form an ER–mitochondria bridging complex with mitochondrial-
resident proteins such as TOMM40. These complexes are
important for the activation of the mitochondrial respiratory
chain through the regulation of complex I activity (65). In the
liver, a high glucose concentration can disrupt MAM integrity and
reduce mitochondrial respiration through the PP2A pathway (66).
These results indicate that MAM-mediated mitochondrial
FIGURE 2 | The mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) regulates cellular calcium homeostasis and insulin signaling. The complex
comprising PI3R, GRP75, and VDAC is the key mediator of Ca2+ transport from the ER to mitochondria. Ca2+ is an important second messenger that regulates
various cellular processes. First, Ca2+ is required for mitochondrial ATP production. Second, during fasting, elevated Ca2+ release from the ER through IP3R and RyR
can induce gluconeogenic gene expression via the CRCT2/PGC1a pathway. Third, the G protein/IP3/IP3R pathway can regulate GLUT4–plasma membrane fusion
by modulating Ca2+ levels. Conversely, insulin signaling can also promote cellular Ca2+ influx by activating transient receptor potential channels (TRPCs).
November 2020 | Volume 11 | Article 592129
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bioenergetics not only regulate insulin secretion but are in turn also
regulated by insulin signaling.

Mitochondrial dynamics include mitochondrial fission, fusion,
and motility. During fission, dynamin-related protein 1 (DRP1) is
recruited to the outer mitochondrial membrane, forming a helix
around mitochondria that constricts and divides the
mitochondrion into two parts (67). However, mitochondrial
constriction can occur at or near sites of contact with the ER even
in the absence of DRP1, suggesting that ER tubules may precede
mitochondrial fission and define the position of mitochondrial
division sites (68). Other proteins that regulate mitochondrial
fission, such as inverted formin 2 (INF2) (69), syntaxin 17
(STX17), and Rab32 (70), are subsequently also detected at the
MAM. Decreased MAM formation was proposed to cause
mitochondrial elongation and dysfunction, effects that are
associated with decreased mitochondrial fission. Mechanistically,
decreased MAM formation can lower both mitochondrial and
cytosolic Ca2+ concentrations. Reduced intracellular Ca2+ levels
can inhibit the binding of cAMP response element binding protein
(CREB) to the Fis1 promoter, thereby suppressing Fis1 expression
and mitochondrial fission (71).

Mitochondrial fusion is mainly mediated by MFN proteins on
the outermitochondrialmembrane and optic atrophy 1 (OPA1) on
the inner mitochondrial membrane. MFN2 forms either
homodimers or heterodimers with MFN1 to promote
mitochondrial tethering and, subsequently, mitochondrial fusion.
Frontiers in Endocrinology | www.frontiersin.org 6
Mitochondrial fusion allows for the exchange of contents between
mitochondria, aswell as the rescue ofdefectivemitochondria for the
recoveryof essential components (72).A recent studyproposed that
the fission and fusion machineries assemble at the same ER–
mitochondria contact site to modulate mitochondrial
morphology in response to external insults and metabolic cues,
such as the nutrient status (73), while MFNs also accumulate at the
MAMs where fusion occurs. However, it remains unclear how the
positions of mitochondrial fusion sites are determined. The
specialized lipid environment of the MAM is thought to promote
membrane curvature and favor bothmembrane fission and fusion.
Furthermore, the high-Ca2+ MAM microdomain is an important
stimulator of fission and fusion (74). Moreover, it is still
controversial whether disrupted ER–mitochondria contacts lead
to mitochondrial elongation or mitochondrial fragmentation. Wu
et al. proposed that decreased MAM formation lowered both
mitochondrial and cytosolic Ca2+ levels. The reduced intracellular
Ca2+ concentration inhibited Fis1 expression and mitochondrial
fission, resulting inmitochondrial elongation (71). In contrast, Puri
et al. found that impaired ER–mitochondria contact increased
cytosolic Ca2+ levels, which indirectly activated DRP1 through the
activation of calcineurin phosphatase and led to mitochondrial
fragmentation (75). Although the reason for this contradiction
remains unknown, we speculate that it may be associated with the
degree of MAM integrity impairment. Consequently, we suggest
that future experiments should focus on measuring the distance
FIGURE 3 | The mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) regulates cellular lipid metabolism and insulin signaling. The MAM is an
important site for lipid metabolism, including phosphatidylcholine (PC) and ceramide synthesis, cholesterol transport, and diacylglycerol (DAGs)-to-triglyceride (TAG)
conversion. Excessive ceramide and DAG generation can inhibit insulin signaling by activating PKCq/ϵ and PP2A, respectively.
November 2020 | Volume 11 | Article 592129
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between the ER and mitochondria to better understand the
relationship between changes in mitochondrial morphology and
ER–mitochondria contact.

Mitochondrial motility is defined as mitochondrial movement
along microtubules throughout the cell. The connection between
mitochondria and microtubules is mainly mediated by
mitochondrial Rho GTPase 1 (MIRO1) and MIRO2 (76). There
is evidence to support that the role of the MAM in mitochondrial
motility is tightly associatedwithMIRO1/2. First, the yeast ortholog
of MIRO1 is reported to localize to sites of ER–mitochondrial
contact (77), while the loss of MIRO1/2 alters mitochondria–ER
communication (78). Second, the ER stays attached to the
mitochondrion as it is being transported throughout the cell.
Third, MAM-localized MFN2, which interacts with MIRO1/2, is
necessary for axonal mitochondrial transport (79). Fourth, the
docking of a mitochondrion at a specific position relies on the
binding of Ca2+ to the EF-hand motifs in MIRO1/2, which
disconnects the organelle from the microtubule (80). However,
such binding needs a high Ca2+ concentration given the low affinity
of MIRO1/2 for Ca2+. Therefore, the MAM may serve as a Ca2+

source thatdetermines the sites ofmitochondria redistribution (81).
Increased ER–mitochondria contact and Ca2+ transfer may lead to
defects in axonal mitochondrial transport (82).

Mitophagy represents a selective autophagic process for the
elimination of damaged mitochondria. Mitophagy can be classified
into six steps: induction of autophagy, nucleation of the isolation
membrane (also known as the phagophore), expansion of the
isolation membrane, formation of the autophagosome, fusion of
the autophagosome with a lysosome to form an autolysosome, and
degradation and recycling. PTEN-induced putative kinase 1
(PINK1), a key regulator of mitophagy, and Beclin1 both relocalize
to the MAM, enhancing ER–mitochondria contact and promoting
autophagosome formation following autophagy induction (83).
Beclin1 is also a key component of the class III PI3K complex that
produces PI3P, a contributor to autophagosome formation (84).
Another mitophagy-associated protein, FUN14 domain-containing
protein 1 (FUNDC1), was also shown to accumulate at the ER–
mitochondria interface duringmitophagy by binding to ER-resident
IP3R2 (71, 85). A different study revealed thatMAM-resident STX17
can bind the autophagosome marker ATG14 and recruit it to the
MAM until the completion of autophagosome formation. This
supports that the autophagosome forms at MAMs (86) (Figure 4).

Mitochondrial fission, fusion, and mitophagy together
constitute the mitochondrial quality control system that serves to
maintain mitochondrial homeostasis. The mitochondrion plays an
important role in regulating insulin signaling (36). Consequently,
the impairment of the mitochondrial quality control system, which
leads to mitochondrial dysfunction, is closely associated with
T2DM. In the hippocampus of db/db mice, activated glycogen
synthase kinase 3 beta (GSK3b) can upregulate DRP1 expression,
thereby inducing mitochondrial defects and synaptic injury (87).
Consistent with this, disrupting mitochondrial fission can prevent
high-fat diet (HFD)-inducedobesity (88).Moreover, the expression
of the mitophagy-associated protein, PINK1, is decreased in HFD-
fed mice, while PINK1 overexpression can improve glucose uptake
and downregulate the levels of gluconeogenic enzymes (89). Mice
Frontiers in Endocrinology | www.frontiersin.org 7
lacking FUNDC1 also develop more severe obesity and insulin
insensitivity (90). However, one study proposed the opposite
conclusion, namely, that the levels of FUNDC1, IP3R2, and
MAM formation were all significantly increased in cardiac tissues
from both diabetic patients and diabetic mice. Moreover, Fundc1
deletion could ameliorate diabetes-induced MAM formation, as
well as mitochondrial fragmentation and function (91). That the
MAM has an essential role in regulating mitochondrial dynamics
and mitophagy suggests that MAM disruption may lead to insulin
resistance by inducing mitochondrial dysfunction.

ER Stress
The ER is the primary site for protein synthesis, folding, processing,
and quality control. An imbalance between protein folding
requirements and the protein folding capacity of the ER due to
physiological demands or disease states will lead to ER stress. To
restore proteostasis, cells activate a prosurvival response called the
unfoldedprotein response (UPR). The adaptiveUPRactivates three
parallel signaling branches: the protein kinase R-like ER kinase
(PERK) –eukaryotic translation initiation factor 2 alpha (eIF2a)
pathway; the IRE1a–X-box binding protein 1 (XBP1) pathway; and
the activating transcription factor 6 alpha (ATF6a) pathway.Under
resting conditions, the ER-luminal domains of PERK, IRE1a, and
ATF6a bind to binding immunoglobulin protein (BiP) and are
sequestered as inactive forms. Under stress, however, unfolded
proteins bind to BiP, leading to the release of PERK, IRE1a, and
ATF6a from BiP, which triggers the UPR (24). The UPR signal
limits the protein folding load on the ER, allowing the ER to clear
misfolded proteins by transcriptionally expanding its protein
folding capacity. However, when the capacity of the UPR is
overwhelmed, cells will shift from survival to cell death mode.

The MAM has been implicated in ER stress and the UPR.
First, disrupting ER–mitochondria communication can activate
the UPR (26). Second, some of the proteins enriched or localized
on the MAM have roles in the UPR. For instance, MFN2 can
physically interact with PERK, and is an upstream modulator of
PERK activity (92). Moreover, VAPB can directly interact with
ATF6, thereby attenuating its activity (93). Meanwhile, the P56S
mutation in VAPB can disrupt the IRE1a/XBP1 pathway (94).
Recently, the newly characterized microprotein PIGBOS, which
is localized at ER–mitochondria contact sites, was reported to
also regulate the UPR (95). Third, some UPR-associated proteins
are localized and function on the MAM. For example, PERK is
enriched at the MAM, promoting ER–mitochondria contacts as
well as ROS-triggered, mitochondria-mediated apoptosis (96). A
fraction of IRE1 can be stabilized and activated by Sig-1R at the
MAM under ER stress (97), and the presence of IRE1a on the
MAM can determine IP3R availability (93). Furthermore, Sig-1R
can also associate with BiP on the MAM, while increased Sig-1R
levels can ameliorate ER stress (28). These results suggest that the
MAM constitutes an important platform for UPR signaling and
plays an essential role in regulating ER stress.

ER stress is a common feature in obesity and diabetes, both of
which are characterized by insulin resistance. The phosphorylation
of PERK and eIF2a, an indicator of the presence of ER stress, was
reported to be significantly increased in HFD-fed and ob/ob mice
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(98). The expression levels of several ER stress-related proteins, as
well as that of XBP1 mRNA, were reported to be upregulated in the
adipose tissue of obese individuals (99). In addition, the expression of
the UPR effectors PERK, IRE1a, and ATF6 is higher in endothelial
cells of obese adults when compared with that of nonobese adults
(100). Various studies have investigated the cellular mechanisms that
link ER stress to insulin resistance. One study proposed that c-JunN-
terminal kinase (JNK) is hyperactivated in an IRE1a-dependent
manner under ER stress. Hyperactivated JNK would then promote
the serine phosphorylation of IRS-1 and the subsequent reduction in
insulin receptor signaling. Meanwhile, AKT phosphorylation is also
suppressed under ER stress (98) (Figure 5). Another study reported
that ER stress also mediates insulin resistance by impairing glucose
uptake (101).

Given that the MAM is a key regulator of ER stress and ER
stress is one of the main contributors to insulin resistance, it is
likely that ER stress represents another mechanism through
which MAM impairment can lead to insulin resistance.

Inflammation
Chronic, low-grade inflammation is a primary cause of insulin
resistance. Hypertrophied adipocytes and infiltrated immune cells
both contribute to increased blood concentrations of
proinflammatory mediators, such as tumor necrosis factor alpha
(TNF-a), interleukin 6 (IL-6), IL-1b, leptin, resistin, monocyte
Frontiers in Endocrinology | www.frontiersin.org 8
chemoattractant protein-1, plasminogen activator inhibitor-1,
visfatin, and adiponectin in obese subjects (24). These
proinflammatory mediators can directly or indirectly affect
inflammation-related pathways, such as the JNK and IKKb/NF-
kB pathways, and also disrupt insulin signaling, eventually leading
to systemic insulin resistance and the subsequent development of
T2DM (102).

The role of the MAM in inflammation-induced insulin
resistance is associated with its role in NLRP3 (nucleotide-
binding domain, leucine-rich-repeat-containing family, pyrin
domain-containing 3) inflammasome assembly and activation.
Activated NLRP3, a pattern recognition receptor, recruits adapter
apoptosis-associated speck-like protein containing a caspase-
activation recruitment domain (ASC) and subsequently activates
caspase-1. Caspase-1 catalyzes the proteolytic activation of IL-1b
and IL-18 into active cytokines and initiates pyroptosis (103). The
activity of both caspase-1 and IL-1b is increased in adipose tissue of
obese animals (104). Furthermore, hepatocytes treated with IL-1b
show impaired insulin-induced AKT activation (105).

Under normal conditions, most NLRP3 localizes to the ER;
however, following inflammatory stimulation with alum or
nigericin, NLRP3 and ASC were shown to relocate to the
perinuclear space and colocalize with the MAM (106). The
possible reasons for the observed NLRP3 relocation to the MAM
include that DNA released from the mitochondria (mtDNA)
FIGURE 4 | The mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) regulates mitochondrial physiology. (Left) Mitochondrial constriction occurs
near the sites of contacts with the ER, and the ER can define the position of mitochondrial fission. Other proteins that are localized at the MAM, such as STX17,
Rab32, and INF2, also participate in this process. Furthermore, the ER remains attached to mitochondria and moves with it along microtubules in the cell. (Right)
MAM-resident STX17 binds to ATG14 and recruits the class III PI3K complex to the MAM, which facilitates autophagosome formation.
November 2020 | Volume 11 | Article 592129

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Cheng et al. MAM Regulates Insulin Resistance
constituted a damage-associated molecular pattern (DAMP) for
NLRP3 activation (107) or that ROS were necessary for NLPR3
inflammasome activation (108). Considering that mitochondria
constitute the main source of cellular ROS, and that ROS are
short-lived and can only act as signaling messengers at short
distances (109), NLRP3 should ideally be localized close to
mitochondria. Furthermore, knockdown of VDAC can
significantly impair NLRP3 inflammasome activation (106)
(Figure 6). Combined, these results suggest that the MAM is an
important regulator of various cellular processes, and MAM
dysfunction can lead to insulin resistance through diverse pathways.
ALTERED MAM INTEGRITY
CONTRIBUTES TO INSULIN RESISTANCE
IN DIFFERENT TISSUES

Besides the shared cellular processes, different tissues have specific
metabolic characteristics that determine the extent to which they are
affected in T2DM. For instance, proinflammatory cytokines secreted
by adipocytes and adipose tissue-resident immune cells are the key
mediators in triggering insulin resistance. Impaired insulin signaling
leads to increased glycogenolysis and gluconeogenesis in the liver,
whereas in skeletal muscle and the brain, it leads to reduced glucose
uptake. All these effects may eventually result in elevated blood
glucose levels and the development of T2DM. The MAM plays an
important role in inducing or aggravating insulin resistance in
these tissues.
Frontiers in Endocrinology | www.frontiersin.org 9
Altered MAM Integrity Induces Insulin
Resistance in Peripheral Tissues
The liver is one of the main insulin-responsive organs. Insulin
induces hepatic glucose oxidation, promotes glycogen storage, and
inhibits gluconeogenesis, therebymaintaining the blood glucose level
within an appropriate range. Elevated blood glucose levels due to
hepatic insulin resistance and the subsequent increase in glucose
release are the main contributing factors to hyperglycemia (110). It
was recently reported that the MAM participates in the hepatic
glucose-sensing system, regulating mitochondrial function during
nutritional transition. Chronic disruption of the MAM may
contribute to the hepatic mitochondrial dysfunction associated
with insulin resistance (66). This is consistent with the results of
a previous study showing that cyclophilin D (CYPD, a newly
identified partner of the IP3R complex) knockout mice displayed
disrupted Ca2+ signaling in the liver as well as hepatic insulin
resistance. The authors suggested that disrupted Ca2+ signaling
between the ER and mitochondria linked MAM disruption to
hepatic insulin resistance (111). In addition, forced expression of
MFN2 ameliorated palmitic acid-induced hepatic insulin resistance,
which led to increased ER–mitochondria contacts (112). However,
this perspective was challenged by studies demonstrating that
enhanced ER–mitochondria interactions are detrimental to insulin
signaling. Increased MAM formation in obese animals resulted in
mitochondrial Ca2+ overload, impaired mitochondrial respiration,
and increased oxidative stress. Furthermore, the silencing of the ER–
mitochondria tethering proteins PACS2 or IP3R1 improved glucose
metabolism (113). Mice lacking PEMT, a MAM-localized PC
FIGURE 5 | The mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) regulates ER stress and insulin signaling. Some ER stress-associated
proteins may localize to the MAM and may be regulated by MAM-resident proteins. An overwhelmed unfolded protein response (UPR) can directly or indirectly inhibit
AKT phosphorylation by activating the JNK pathway.
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synthesizing protein, were protected against HFD-induced obesity
and insulin resistance (114). However, as PEMT is a functional and
not a tethering protein, it may not have been the damaged MAM
structure that promoted insulin resistance in this study, but rather the
impaired MAM function. Equally, impaired insulin signaling also
affects ER–mitochondria interactions, but here the results are also
conflicting. An animal study showed that inhibition of AKT/mTOR
signaling led to decreased ER–mitochondria contact in HFD-fed
mice (115). In contrast, a greater number of hepatic ER–
mitochondria contact sites were observed in mice with either
nutritionally (HFD) induced or genetically determined obesity
compared with their respective lean controls (113). A similar
patternand similar controversial resultswere found formuscle tissue.

The skeletal muscle is one of the major sites of insulin-
mediated glucose uptake and the primary target for alterations
in insulin-resistant states (116). The communication between
mitochondria and the ER or sarcoplasmic reticulum has been
extensively studied in skeletal muscle (117). Interrupting ER–
mitochondria contacts is sufficient for the development of
muscle insulin resistance. In skeletal muscle of mice with
obesity and T2DM, disrupted ER–mitochondria contacts were
shown to be an early event preceding mitochondrial dysfunction
and insulin resistance, indicating that the disruption of ER–
mitochondria coupling may contribute to muscle insulin
resistance. In human myotubes, palmitate-induced insulin
resistance was associated with impaired MAM integrity (118).
In contrast, extensive proteome profiling of mitochondria from
skeletal muscle of patients with T2DM illustrated that the
expression levels of most of the MAM-localized proteins were
Frontiers in Endocrinology | www.frontiersin.org 10
upregulated, including that of the MAM tethering protein MFN2
(119). Similarly, it was recently reported that increased pyruvate
dehydrogenase kinase 4 (PDK4) activity could suppress insulin
signaling by enhancing MAM formation. Pdk4−/− mice exhibited
reduced MAM formation and were protected against diet-
induced insulin resistance in skeletal muscle (120). The authors
speculated that, in the early stage, increased ER–mitochondria
contacts might be beneficial, promoting fatty acid oxidation and
ATP production; however, continued MAM formation could
lead to a constant rise in mitochondrial Ca2+ levels, ROS
production, and mitochondrial dysfunction, eventually
resulting in insulin resistance (120).

Given the contradictory results reported, it is still unclear
whether it is a decrease or an increase in MAM formation that
leads to insulin resistance. Eisner et al. suggested that the different
findings may have been due to the different species, cell culture
conditions, and timelines utilized for analysis given that MAMs
display highly dynamic responses to environmental factors and
cellular status (117). Moreover, the relationship between altered
MAM integrity and insulin resistance may be reciprocal. MAM-
resident proteins regulate insulin signaling and vice versa.Whether
altered MAM integrity leads to insulin resistance or whether
impaired insulin signaling disrupts MAM functions, and which
factor is causal, remains to be determined.

Altered MAM Integrity in Brain Insulin
Resistance
The brain is an organ with a high energy demand, while glucose
is the primary substrate for brain energy metabolism. Therefore,
FIGURE 6 | The mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) impairs glucose metabolism by activating the NLRP3 inflammasome. The
MAM is required for the activation of the NLRP3 inflammasome, which subsequently activates caspase-1. Caspase-1 catalyzes the proteolytic activation of IL-1b and
IL-18. The latter can inhibit hepatic gluconeogenesis, whereas the former induces b-cell loss, reduces insulin secretion, and suppresses insulin action in the liver,
finally leading to increased glucose release from hepatocytes and elevated blood glucose levels.
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efficient glucose uptake and utilization, which are regulated by
insulin signaling, are essential for brain functions. Unsurprisingly,
brain insulin resistance has been widely linked to various
neurodegenerative diseases (121–123). However, several studies
have demonstrated that brain glucose uptake occurs in an insulin-
independent manner. First, glucose transport across the blood–brain
barrier is mediated by GLUT1, which is expressed on endothelial
cells in brain microvessels and on glial cells (124, 125). GLUT1
activity is dependent on the large glucose concentration gradient that
exists between the brain and plasma, and is not regulated by insulin.
Moreover, most neurons in the brain express the insulin-
independent glucose transporter GLUT3 (126). Second, the
insulin-dependent glucose transporters on neurons, such as
GLUT4 and GLUT8, are restricted to specific brain regions and
some are present at low levels, indicating that insulin-dependent
glucose uptake may be brain region-specific (127). Therefore, when
mentioning brain insulin resistance, the brain region should
be specified.

The hypothalamus is an insulin-sensitive brain region that
expresses high levels of insulin receptors and insulin-independent
glucose transporters (127, 128). Emerging evidence has shown that
the MAM is involved in the development of hypothalamic insulin
resistance. Pro-opiomelanocortin (POMC) neurons and agouti-
related protein (AgRP) neurons in the hypothalamus can respond
to insulin and leptin. JNK activation is thought to be an important
mediator of hypothalamic insulin resistance; in turn, hypothalamic
insulin resistance contributes to disrupted energy homeostasis as
well as obesity (129). The deletion ofMFN2 in anorexigenic POMC
neurons impairedER–mitochondria contacts, resulting in defective
POMCprocessing, ER stress-induced leptin resistance, and obesity.
Pharmacological relief of hypothalamic ER stress can reverse these
metabolic alterations (130). Similarly, Brenda et al. found that,
following palmitic acid treatment, ER stress was induced only after
MFN2 downregulation (30). These results indicate that ER stress
may be the key pathway through which impaired MAM integrity
leads to defects in hypothalamic insulin signaling. Conversely,
orexigenic AgRP neuron-specific MFN1 or MFN2 knockout mice
gained less weight when fed a HFD than their respective controls
(131).A recent studydemonstrated that, of the1,313nonredundant
proteins identified in MAMs isolated from the brains of diabetic
mice, 144 exhibited significantly altered expression (upregulated or
downregulated). These proteins were involved in multiple disease-
relevant signaling pathways, such as those associatedwith theUPR,
p53,hypoxia-related transcription factors, andmethylCpGbinding
protein 2 (132). Furthermore, some UPR-related proteins that can
be regulated by the MAM can also affect insulin signaling in the
brain. For instance, the constitutive expression of XBP1 in POMC
neurons was shown to protect the neurons against diet-induced
obesity and also improved insulin sensitivity (133). The loss of
IRE1a in POMC neurons accelerates ER stress and predisposes
POMC neurons to insulin resistance (134). These results again
confirm the central role of ER stress in MAM-induced brain
insulin resistance.

Ceramide-induced lipotoxicity is a key ER stress mediator in
the hypothalamus. Studies have shown that the levels of
ceramides and other lipids known to induce insulin resistance
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were increased in the hypothalamus of mice fed with a HFD
(135). These increased ceramide concentrations led to an increase
in the expression of lipotoxicity-related proinflammatory factors.
Moreover, this effect could not be reversed by ameliorating ER
stress, indicating that the lipotoxicity occurred upstream of ER
stress in the hypothalamus (136). Ceramides can also promote
hypothalamic insulin resistance via activating PKCz which inhibits
AKT phosphorylation (61). These alterations in the hypothalamus
can lead to the inhibition of sympathetic activity, resulting in
increased hepatic glucose production, decreased brown adipose
tissue thermogenesis, and the subsequent weight gain (136, 137).
Importantly, most studies investigating the role of the MAM in
brain insulin resistance have focused on the hypothalamus, and
how the MAM influences insulin signaling in other brain areas
remains to be elucidated.
THE MAM AS A POTENTIAL
THERAPEUTIC TARGET FOR T2DM
TREATMENT

The fact that the MAM plays a pivotal role in regulating insulin
signaling and that alterations inMAM integrity are responsible for
insulin resistance, suggests that the MAM represents a potential
therapeutic target for the treatment of T2DM. On the one hand,
insulin signaling can be improved by reinforcing/downregulating
ER–mitochondria contacts. For instance, the overexpressionofER–
mitochondria tethering proteins, such as MFN2 and CYPD, can
attenuate hepatic insulin resistance (112); in skeletal muscle,
meanwhile, the inhibition of PDK4, the activity of which can
increase ER–mitochondria contacts, can improve insulin
signaling by suppressing MAM formation (120). On the other
hand, the increased insulin sensitivity caused by hypoglycemic
agents is accompanied by improved ER–mitochondria contacts.
Diabetic mice treated with metformin showed increased insulin
sensitivity and MAM numbers in the liver (37). Additionally,
rosiglitazone treatment can restore VDAC1, CYPD, and PACS2
expression in mice with diet-induced diabetes. However, relatively
few studies have investigatedwhether improvedMAMintegrity can
ameliorate brain insulin resistance and whether the MAM is the
target of antidiabetic treatment in the brain. Further research is
needed to answer these questions.

Given the diversity of proteins in the MAM and its essential
role in regulating insulin signaling, the MAM may be a
promising therapeutic target for T2DM treatment.
DISCUSSION

The MAM, a scaffold between mitochondria and the ER, regulates
ER function (such as the UPR), mitochondrial physiology, and
metabolite exchange between these organelles. This renders the
MAM an important contributor to the maintenance of cellular
homeostasis. AlteredMAM integrity may lead to insulin resistance
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through the induction of ER stress, mitochondrial dysfunction, and
impaired metabolite synthesis and transport. Current evidence
suggests that the MAM is closely associated with insulin
resistance in the liver and muscle. Moreover, ER stress may be the
keymechanismunderlyingMAM-inducedbrain insulin resistance,
especially in the hypothalamus. It is also noteworthy that improved
MAM integrity may lead to increased insulin sensitivity, while
hypoglycemic treatment is associated with improved ER–
mitochondria contacts, which indicates that MAM has potential a
therapeutic target forT2DMtreatment.However, the results todate
regarding the influence of theMAMonmitochondrialmorphology
and insulin signaling are contradictory, and several questions
remain unanswered. First, the cause-and-effect roles of altered
MAM integrity and insulin resistance remain unclear, as does
whether it is enhanced or weakened ER–mitochondria contacts
that promote insulin resistance. Second, further studies are needed
to investigate how the MAM affects insulin resistance in different
brain areas.
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