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Abstract

Open source analytical software for the analysis of electrophysiological cardiomyocyte data

offers a variety of new functionalities to complement closed-source, proprietary tools. Here,

we present the Cardio PyMEA application, a free, modifiable, and open source program for

the analysis of microelectrode array (MEA) data obtained from cardiomyocyte cultures.

Major software capabilities include: beat detection; pacemaker origin estimation; beat ampli-

tude and interval; local activation time, upstroke velocity, and conduction velocity; analysis

of cardiomyocyte property-distance relationships; and robust power law analysis of pace-

maker spatiotemporal instability. Cardio PyMEA was written entirely in Python 3 to provide

an accessible, integrated workflow that possesses a user-friendly graphical user interface

(GUI) written in PyQt5 to allow for performant, cross-platform utilization. This application

makes use of object-oriented programming (OOP) principles to facilitate the relatively

straightforward incorporation of custom functionalities, e.g. power law analysis, that suit the

needs of the user. Cardio PyMEA is available as an open source application under the

terms of the GNU General Public License (GPL). The source code for Cardio PyMEA can

be downloaded from Github at the following repository: https://github.com/csdunhamUC/

cardio_pymea.

Introduction

Cardiomyocyte cell cultures, particularly human embryonic and induced pluripotent stem

cell-derived cardiomyocytes (hESC-CM and hiPSC-CM, respectively), are of significant
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interest for their potential to serve as model systems for studying a wide range of phenomena

[1, 2]. Potential applications of hESC-CMs and hiPSC-CMs in scientific and industrial envi-

ronments include: pharmacological drug screening, disease modeling, cardiac development

and maturation, and regenerative medicine [3–11]. However, the utility of these cultures is

often limited by their immature nature [12]. Currently, insufficient knowledge exists to enable

these cells to fully achieve adult phenotype maturity in vitro [8, 10, 13]. This maturity defi-

ciency limits our capacity to study disease states, including cardiomyopathy and late myocar-

dial dysfunction, which may be linked to defective cardiomyocyte development in humans [9,

14–16]. The inability to induce maturation of stem cell-derived cardiomyocytes beyond the

late fetal stage imposes limitations to their applications to disease modeling, drug screening,

and regenerative medicine initiatives [4, 7–10].

In recent years, microelectrode arrays (MEAs) became a popular tool for use in the study of

cardiomyocyte cultures [13, 17, 18]. Microelectrode arrays enable spatiotemporal analysis of

cardiomyocyte field potentials, which are extracellular electrical potentials generated by the

cells in the culture. Microelectrode arrays also confer the ability to perform controlled stimula-

tion and pacing experiments of cardiomyocyte cultures using a variety of input waveforms [19,

20]. Concurrent with the increase in MEA-oriented cardiomyocyte analysis was the academic

development of purpose-built MEA software with graphical user interfaces (GUIs) [17, 18, 21,

22]. These software applications enabled a wider audience to analyze electrophysiological car-

diomyocyte data with open-access tools offering enhanced functionality beyond that offered

by proprietary software released by the MEA system manufacturers. Each program offers a

unique feature that provides value to electrophysiological cardiomyocyte analysis, e.g. new

methods for determining the T-wave endpoints and for calculating conduction velocity.

Although powerful and incredibly helpful for cardiomyocyte analysis, there is one signifi-

cant hurdle that merits consideration. Most, if not all, previously released open source cardio-

myocyte analysis tools were written in MATLAB, a licensed programming language developed

by MathWorks (Natick, MA) for engineers and scientists [23]. Despite its relative maturity,

MATLAB’s licensing can impose both financial barriers and accessibility constraints on con-

tinued application development. Such costs and constraints can pose significant challenges to

research communities [24]. The Python programming language overcomes these hindrances

thanks to its free and open source nature. Thus, the financial barrier inherent to developing

MATLAB-based cardiomyocyte tools can be overcome by developing Python-based tools

instead. This perspective motivated the development of a new MEA analysis application: Car-

dio PyMEA.

Cardio PyMEA is a free and open source software application (FOSS) written in Python for

the analysis of MEA recordings of cardiomyocyte cell cultures. It was designed with a user-

friendly GUI to allow scientific programmers and non-programmers alike to engage in robust

electrophysiological analysis of MEA data. Because Cardio PyMEA allows the end user to read-

ily adjust analysis parameters, the software is capable of analyzing noisy data sets that demon-

strate incompatibility with automated algorithms and applications. In addition to calculating

common cardiomyocyte parameters (e.g. pacemaker origin, local activation time, conduction

velocity, etc.), Cardio PyMEA offers unique features such as property-distance relationship

analysis and power law analysis. The latter is particularly useful for its applications in under-

standing cardiomyocyte culture system dynamics [25].

Unlike most commercial systems, which are fixed in capabilities, Cardio PyMEA was devel-

oped to facilitate relatively easy extensibility thanks to its utilization of object oriented pro-

gramming principles. This makes the addition of new GUI elements (e.g. additional plotting

windows) and new calculations (e.g. machine learning techniques) comparatively straightfor-

ward to achieve. Here, Cardio PyMEA is presented using real data acquired from MEA
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recordings of hESC-CM and hIPSC-CM cell cultures to demonstrate its utility in cardiomyo-

cyte characterization and analysis, and its potential for continued development.

Materials and methods

Cell cultures and microelectrode array measurements

Human ESCs were grown and differentiated in a chemically defined condition as previously

described [13, 26, 27]. Usage of all human embryonic stem cell lines is approved by the UCLA

Embryonic Stem Cell Research Oversight (ESCRO) Committee and the Institutional Review

Boards (IRB) (approval #2009-006-04). After differentiation, cardiomyocytes were plated as

two-dimensional monolayers on matrigel-coated (Corning #354277), commercially available

microelectrode arrays (MEAs) containing 120 integrated TiN electrodes. These electrodes

were 30 μm in diameter and were manufactured with an interelectrode spacing of 200 μm

(Multichannel Systems, Reutlingen, Germany). Following plating, the MEAs were placed in an

incubator set to 37˚C with a gas flow of 5% CO2. The cell cultures were given no less than 24

hours to ensure the cardiomyocytes adhered well to each MEA.

Software requirements

Cardio PyMEA is written for Python 3.8 or above and utilizes several freely available, actively

maintained Python libraries. These libraries include NumPy, SciPy, Pandas, Matplotlib, Sea-

born, and Numba, among others. The GUI was constructed using PyQt5. The complete source

code and the dependency (pip) requirements file (“requirements.txt”) for Cardio PyMEA are

available on Github at the following link: https://github.com/csdunhamUC/cardio_pymea.

Using Cardio PyMEA

The preferred way to launch Cardio PyMEA is through the terminal of your chosen operating

system. The central file used to run and operate Cardio PyMEA is ‘analysisGUI.py’. This file

contains the code for the various graphical windows, import function, MEA dictionary, and

other functions. Alternatively, for users less inclined toward operating Cardio PyMEA from a

terminal, executable files (made using PyInstaller) for Linux, MacOS, and Windows 10 can be

accessed from the DataDryad repository.

The main window of Cardio PyMEA, shown in Fig 1, consists of a traditional menu naviga-

tion system anchored around the central plotting window that, after calculations, will display

heatmaps of the time lag (pacemaker), local activation time (LAT), upstroke velocity (dV/dt),

and conduction velocity (CV). To import MEA data, the user can click on ‘File’! ‘Import

Data’ and select an appropriate MC_Data-derived �.txt file. The expected format of MEA data

is discussed in the next section. Once the data is imported, the user can run the beat detection

by selecting ‘Calculations’! ‘Find Beats’, choosing whether to apply any smoothing filters,

and then clicking the button to execute. After this step, the user can choose among the various

calculations of interest, including ‘All’ to perform the calculations for pacemaker, LAT, maxi-

mal upstroke velocity (dV/dtmax), CV, beat amplitude, and beat interval properties. This work-

flow is summarized by the flowchart in Fig 2.

Input data format and geometric configuration of MEAs

Cardio PyMEA was designed to utilize data obtained from Multichannel Systems’ MC_Rack

MEA recording software and the MC_Data conversion tool. The �.mcd files produced by

MC_Rack must be converted to ASCII (�.txt) files using MC_Data. Cardio PyMEA expects

that the resulting �.txt file should be organized column-wise, beginning with the time, t, in
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milliseconds (or fractions of milliseconds for sample frequencies > 1 KHz), followed by elec-

trode names with their measured voltages (in microvolts, μV). For example, when using a 120

electrode MEA recording with a sample frequency of 1000 Hz, the first column of the �.txt

data file is expected to correspond to the time, t, in milliseconds. The second column is

expected to correspond to the electrode F7. This electrode is designated as channel 1 (electrode

1) in the manufacturer’s MEA channel schematic. Each subsequent electrode is expected to

adhere to this schematic. As a result, Cardio PyMEA expects that the �.mcd to �.txt conversion

proceeds with ‘All’ electrodes selected in the conversion wizard window.

Cardio PyMEA’s design allows for the relatively easy expansion of other MEA geometries

due to its object-oriented nature. The ElectrodeConfig class (a template for creating an object;

in this case, an electrode configuration variable) houses information for the MEA configura-

tions that a researcher may choose to employ. Currently, Cardio PyMEA recognizes both 60

and 120 electrode MEAs from Multichannel Systems with 30 μm diameters and 200 μm inter-

electrode spacings. Other configurations can be added in a straightforward manner by creating

new class attributes (a variable that belongs to the class) for the other systems in the Electrode-

Config class. Additionally, a tutorial for supplementing Cardio PyMEA with additional MEA

geometries is provided in S1 File.

Fig 1. Main window of Cardio PyMEA graphical user interface. All of the user’s interactions with Cardio PyMEA

stem from this window. The user can utilize the various drop-down menu options to import data, perform

calculations, and perform statistical analysis.

https://doi.org/10.1371/journal.pone.0266647.g001
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All MEA data used in Cardio PyMEA requires geometric coordinates and labeling for the

electrodes in the array. The schematic used in Cardio PyMEA arbitrarily positions the coordi-

nate map origin (i.e. the coordinate (0, 0)) in the top-left corner of the array. A schematic illus-

trating the expected geometries is shown in Fig 3. Electrode coordinates are assigned manually

to each electrode and are housed in a Python dictionary for each respective MEA configuration

(i.e. each ElectrodeConfig attribute).

Cardio PyMEA calculation methods and functions

One of the strengths of Cardio PyMEA is that it houses a wide variety of calculations used in

the analysis of cardiomyocyte MEA data. These functions and calculations include: automated

electrode exclusion algorithm, manual electrode silencing, pacemaker, LAT, dV/dtmax, CV,

field potential duration (FPD), beat amplitude, beat interval, and pacemaker translocations

(instances in which the spatial configuration of the pacemaker region becomes unstable and

translocates, or moves, to another area of the MEA over time) [25]. A complete description

and representative example of each calculation output follows.

Beat detection. Cardiomyocyte beats, identified in MEAs as the most prominent peak of

the field potential, are calculated by Cardio PyMEA using the findpeaks function contained in

the SciPy library. First, users enter their designed peak height (minimum signal amplitude, in

microvolts) and peak distance (minimum separation between peaks, in milliseconds) into the

appropriate fields in the GUI. Alternatively, users may proceed using the default parameters.

Next, beat detection can be performed by selecting ‘Calculations’ from Cardio PyMEA’s menu

bar and choosing ‘Find Beats’. This action opens the ‘Find Beats Results’ window, shown in

Fig 4. The user can next choose whether to filter the signal using low-pass, high-pass, or band-

pass Butterworth filters, or use the raw (unfiltered) signal. Finally, the user clicks the ‘Find

Beats’ button, which begins the calculation using the given parameters. Two plots are subse-

quently generated to show the MEA’s signal trace of voltage (μV) vs time (ms). The left-side

Fig 2. Operational flowchart for using Cardio PyMEA. This flowchart illustrates how Cardio PyMEA can be

operated in order to analyze cardiomyocyte MEA data.

https://doi.org/10.1371/journal.pone.0266647.g002
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plot shows a single beat for a single electrode. This view can be adjusted by using sliders

marked with ‘Beat’ and ‘Electrode’, respectively. The right-side plot shows a condensed view of

field potentials for all electrodes at the selected beat. These plots can be further manipulated

using the provided navigation toolbar. Finally, these plots can be saved as �.png files by clicking

the ‘Save’ (disk) icon in the navigation toolbar.

Automated electrode exclusion. Electrodes with an atypical beat count, as measured in

comparison to other electrodes, may negatively affect the calculations performed by Cardio

PyMEA (e.g. by producing vectors and matrices of different dimensions, requiring interpola-

tion or other data pre-processing to resolve). To rectify this, Cardio PyMEA utilizes an auto-

mated electrode exclusion process. After determining the number of beats in a data set using

the beat detection algorithm described previously, Cardio PyMEA calculates the beat count

Fig 3. Representative schematic of the geometric configuration used for a 120 electrode MEA. This coordinate system shown here was

devised using an interelectrode spacing of 200 μm and electrode diameter of 30 μm.

https://doi.org/10.1371/journal.pone.0266647.g003
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mode across the data set for each electrode. Following this calculation, Cardio PyMEA auto-

matically excludes those electrodes whose beat counts vary from the beat count mode.

Manual electrode silencing. It is possible for electrodes to pass the automated electrode

exclusion process yet still exhibit unusual signal characteristics, e.g. inverted field potential

peaks. These problematic electrodes can be seen qualitatively in either the ‘Find Beats Results’

plots or in property heatmaps, where they contradict the behavior of their neighbors during

certain beats. Electrodes demonstrating atypical or erratic behavior (e.g. abnormally high time

lag values) can be manually silenced by selecting the check-box labeled ‘Silence Electrodes’ in

the top right corner of the main window. Once checked, the user can choose which electrode

(s) to silence from the drop-down menu. After choosing which electrodes to silence, ‘Find

Beats’ must be executed again to complete the exclusion. Once this operation is performed,

data from the manually excluded electrodes will no longer be included for analysis. Electrode

exclusion can be reversed by simply de-selecting the silenced electrode(s) and executing ‘Find

Beats’ again.

Time lag (pacemaker) calculation and origin estimation. For each electrode in the

MEA, Cardio PyMEA records the time at which the field potential peak of an individual beat is

detected. Cardio PyMEA then compares these values to determine the point of origin of the

pacemaker signal. The lowest time value (i.e. earliest electrode to detect a signal during a beat)

is determined to correspond to the pacemaker region. To normalize the data, Cardio PyMEA

subtracts the field potential peak time recorded across all other electrodes from the earliest

time recorded at the pacemaker, as shown in Fig 5A. This means that the pacemaker electrode

is the one with the lowest time lag value, and in the normalized data, corresponds to the elec-

trode with a time lag value of 0 ms. This method is repeated for each beat and yields the time

lag (pacemaker) value: the time elapsed between the earliest signal detected and the time signal

is detected at another electrode in the array. Cardio PyMEA uses the normalized time lags to

Fig 4. ‘Find Beats Results’ window. The left plot shows an individual beat for the electrode specified by the window slider. The

sliders below the plot control which beat and/or electrode is plotted. The right plot shows the full MEA for a specified beat and is

controlled by the same ‘Beat’ slider as the left plot.

https://doi.org/10.1371/journal.pone.0266647.g004
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render a color-coded heat map which is spatially defined by the geometry of the MEA. Elec-

trodes colored dark blue indicate the location of the pacemaker (minimum time lag), while

dark red indicates electrodes with the highest time lag farthest from the pacemaker (maximum

time lag).

To access this operation, select ‘Calculations’! ‘Pacemaker’ from the main window menu

bar. A new window will open that displays the pacemaker heat map for the first beat detected

in the data set. The x and y axes provide the 2D coordinates of each electrode. The slider at the

bottom of the window is used to toggle between heat maps for all beats detected in the given

data set.

The coordinates of the pacemaker origin can also be estimated by Cardio PyMEA. First, the

estimation employs a contour plot to determine the wave front of the pacemaker data. The

process is designed to favor the contour line that contains the most data points for model fit-

ting. Next, Cardio PyMEA uses nonlinear least squares to estimate the coordinates of the cen-

ter (h, k) and the radius (r) for a circle defined by the equation

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � hÞ2 þ ðy � kÞ2
q

The radius parameter, r, is bound within the geometry of the MEA during the fitting process.

This measure is taken to ensure that the center of the circle, (h, k), does not reside outside of

the culture region of the MEA. Ultimately, the calculated coordinate (h, k) represents the esti-

mated location of the pacemaker origin.

To access this operation, select ‘Other Plots’! ‘Estimated Pacemaker Origin’ from the

main window menu bar. A new window will open that depicts a contour map. This contour

map indicates the estimated origin of the pacemaker for a single beat. The slider at the bottom

of the window can be used to change which beat is displayed. The orange dot at the center of

the rendered circle denotes the estimated origin of the pacemaker signal, while the blue dots at

the edge of the circle represent the values from the wave front that were used during fitting.

Local activation time calculation. The LAT is calculated by finding the maximal negative

intrinsicoid deflection (the maximum negative derivative (-dV/dt) to the right of the field

potential peak in a given beat). For every electrode, Cardio PyMEA calculates the derivative

(slope) of the field potential signal, beginning from the peak and moving to the right, for each

beat in the data set, as shown in Fig 5B. The time (x) associated with the maximum negative

derivative represents the LAT. These calculated LAT values are normalized in a similar man-

ner to the time lag values for the pacemaker calculations. Using the calculated LATs, Cardio

PyMEA renders a heatmap for qualitative data analysis.

To access this operation, select ‘Calculations’! ‘Local Activation Time’ from the main

window menu bar. A new window will open that displays the LAT heatmap. This heat map

uses a color scheme that is identical to the pacemaker heat map: dark blue indicates the mini-

mum, normalized LAT, while dark red indicates the maximum, normalized LAT in the full

recording. The x and y coordinates represent the position of the specified electrode in the

MEA system. The slider at the bottom of the window can be used to change which beat is

displayed.

Maximum upstroke velocity calculation. The maximum upstroke velocity (dV/dtmax)

refers to the maximum slope to the left of the field potential peak, as shown in Fig 5B. Cardio

PyMEA calculates the derivative, using a backward finite difference method, of the time series

data to the left of the field potential peak (i.e. preceding the peak) for each electrode and each

beat. Finally, Cardio PyMEA normalizes the heatmap color gradient to the observed global

minimum and maximum dV/dtmax values.

PLOS ONE Cardio PyMEA, an open-source application for the analysis of MEA-plated cardiomyocyte cultures

PLOS ONE | https://doi.org/10.1371/journal.pone.0266647 May 26, 2022 8 / 21

https://doi.org/10.1371/journal.pone.0266647


To access this operation, select ‘Calculations’! ‘Upstroke Velocity’ from the main window

menu bar. A new window will open that displays a heat map for the dV/dtmax data of each elec-

trode for the specified beat. The legend to the right describes the color coding: dark blue corre-

sponds to the observed minimum, while dark red corresponds to the observed maximum. The

slider along the bottom enables users to toggle between data for each individual beat.

Beat amplitude and beat interval calculations. Beat amplitude refers to the voltage mag-

nitude of the primary peak (R-wave-like peak) of the field potential for a detected beat. Because

these potentials encompass both positive and negative peaks, the beat amplitude calculation in

Cardio PyMEA identifies both the positive and negative field potential signals at the location

of the R-wave-like peak when determining the overall magnitude of the beat [19]. This is indi-

cated in Fig 5B. The beat interval is calculated by identifying the time that Beat A occurred and

subtracting that value from the time that Beat B occurred. This difference reflects the interval

between the beats and is shown in Fig 5C. Beat intervals are calculated this way for all beats in

Fig 5. Diagram of cardiomyocyte field potential property calculations. A) Time lag (tlag, pacemaker) calculation. The field potential peak

for each electrode is calculated, then the peak with the minimum time is normalized to 0 ms. This process is applied to all electrodes to yield

normalized time lag values for the given beat. B) Amplitude (gray vertical line), dV/dtmax, and LAT can be calculated from the field potential

signal. Black arrows indicate derivative calculations along points prior to or after the field potential peak (red x). The maximum positive (dV/

dtmax, magenta circle) and negative (LAT, orange circle) derivatives are identified and used in calculating dV/dtmax and LAT, respectively. C)

Beat intervals are calculated by determining the time between field potential peaks.

https://doi.org/10.1371/journal.pone.0266647.g005
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the recording. Cardio PyMEA uses data from the LAT calculation to compute these differences

and generate beat intervals.

Conduction velocity calculation. Conduction velocity is defined as the speed and direc-

tion of the propagation of an electrochemical signal or impulse along a pathway in a network

of cells. Conduction velocity is calculated in a straightforward manner by determining the dis-

tance between any two electrodes and dividing this distance by the change in local activation

time (ΔLAT) recorded at the electrodes, i.e.: (electrode distance)/ΔLAT. This is Cardio

PyMEA’s default CV calculation method for 2 reasons: 1) it is a simple, computationally effi-

cient calculation and 2) the precise geometry of the MEAs provides a uniform map that

ensures consistent, reasonable results across cultures. This method is similar to one used in a

previous study [13].

Field potential duration calculation. Cardio PyMEA uses previously described methods

to calculate the FPD [28]. Here, the R-wave is analogous to the field potential peak and the T-

wave endpoint is determined using the method from Vázquez-Seisdedos et al. [28]. A brief

summary of this method follows. First, the T-wave is identified using a peak finding algorithm

akin to the R-wave. Second, the maximum first derivative of the field potential signal between

the T-wave peak and baseline is identified. Using the location (i.e. time or x-value) of the maxi-

mum derivative as a fixed point, along with an arbitrary location 50–200 ms past the T-wave

peak, the algorithm fits a trapezoid with a mobile point to the two fixed points. Optimizing the

maximum area of the trapezoid yields the T-wave endpoint [28]. The length of time (in milli-

seconds) between the R-wave and T-wave endpoint constitutes the FPD. In addition to calcu-

lating the FPD, Cardio PyMEA will generate a plot that can be cycled through each beat and

each electrode using the slider at the bottom of the window. This window also facilitates visual

confirmation of the T-wave endpoint in the user’s data.

Pacemaker translocation detection algorithm. Pacemaker translocations were identi-

fied through monitoring the movement of the pacemaker region across subsequent beats.

Provided that this movement (translocation) exceeds a distance threshold (500 μm), a

timer is engaged to count the number of beats, along with the time interval, that the pace-

maker region is stable in the new location. This period of stability is referred to as a “quies-

cent period” (i.e. the pacemaker is stable, or tranquil, and does not move during this time).

If the location of the pacemaker region changes again in a manner that exceeds the dis-

tance threshold, the timer is stopped, the quiescent period (in beats and recording time) is

stored in a list, and the timer is reset for the new position. The process repeats for each

detected pacemaker region of each beat over the full MEA recording. Once the calculation

concludes, the first recorded quiescent period is excluded from the list. This is done to

remove potential artifacts induced by the uncertainty surrounding the true duration of the

quiescent period of the pacemaker region. Similarly, the end of the recording does not

contribute to a translocation (“event”) designation or quiescent period. The algorithm was

verified manually through visual inspection and computationally in Python in order to

ensure agreement of results.

Statistical analyses unique to Cardio PyMEA

Statistical analysis of cardiomyocyte culture data can take a variety of forms. Cardio PyMEA

output data can be saved as a spreadsheet file (�.xlsx format) via the save data function

(described in an upcoming section) for further analysis by the user. Additionally, Cardio

PyMEA provides two types of statistical assessment that are unique to the software in the

realm of cardiomyocyte analysis: 1) analysis of property-distance relationships and 2) analysis

of power law behavior in pacemaker translocations.
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Property-distance relationship analysis. Property-distance relationships (also referred to

here as ‘Property vs Distance’) can be evaluated to assess whether pacemaker time lag, LAT,

upstroke velocity, and/or CV exhibit correlations with the distance from the estimated pace-

maker origin. The user can perform a simple elimination of outliers by designating a number

of standard deviations (‘Sigma’) from the mean. Any values outside of the range specified by

the (number of standard deviations � Sigma) operation are excluded from the analysis.

To access this operation, select ‘Statistics’! ‘Property vs Distance’. Using this function,

plots for each property versus distance from the pacemaker region are produced. Either linear

(pacemaker, LAT, dV/dtmax) or nonlinear (CV) regression is applied to obtain a goodness-of-

fit metric, R2. The top 10 R2 values for each property, and their associated beats, are shown in a

text box on the right side of the window.

Power law analysis and distribution comparisons. Power laws are heavy-tailed probabil-

ity distributions of the form P(X)/ x-α. Demonstration of power law relationships between

measurable properties in the system of interest, along with the calculated value of the power

law exponent, , can provide unique information regarding the underlying properties of a com-

plex system. These properties may include scale-free dynamics, fractal geometries, and long-

range spatiotemporal correlations, among others [29–31]. The analysis of power laws is partic-

ularly important in the study of cardiac systems because power law exponents could also pro-

vide diagnostic value. Previous studies in patients with myocardial infarction, coronary heart

disease, and heart transplants showed that the value of measured for heart rate variability

(small variations in the beat interval between heart beats) differed significantly from healthy

patients [32–36]. Therefore, analysis of power laws in cardiomyocyte cultures could provide

unique and invaluable insight into the underlying culture conditions and system dynamics.

Power law analysis in Cardio PyMEA relies upon several functions contained within the

powerlaw Python library [37]. Cardio PyMEA uses the distribution_compare method from

powerlaw (with the normalized_ratio parameter set to True) to compare how well a given data

set adheres to other, similarly heavy-tailed, probability distributions [37]. This method calcu-

lates the log-likelihood ratios (LLRs) and p-values in order to compare distributions and deter-

mine the significance of the results. If the LLR is positive, then the first distribution (power

law) is the best fit; if the LLR is negative, then the second distribution tested is a better fit. This

allows users to determine if the data robustly demonstrate power law behavior, or if another,

similarly heavy-tailed distribution serves as a superior descriptor of the data.

Cardio PyMEA also provides a qualitative assessment of the data, rendering a histogram

superimposed with probability distribution curves fit to the entered data (default: power law,

log-normal, stretched exponential). The user can specify the number of bins used in the histo-

gram or rely upon automated methods (e.g. Sturges’ Rule) to determine the number of bins for

them [38]. To access these functions, users first must detect any translocations in the data set

using ‘Tools’! ‘Detect Translocations’ and then select ‘Statistics’! ‘Power Law Distribution

Comparison’ from the menu bar. Subsequently, a new window will open that displays qualita-

tive plots and quantitative evaluations for power law, exponential, log-normal, Weibull, and

doubly truncated power law probability distributions.

Saving data

Cardio PyMEA allows the user to save their processed data for each calculated parameter set.

These data include values for: pacemaker, LAT, dV/dtmax, CV, beat amplitude, beat interval,

and property vs distance statistics. The save function writes the data to a single, multi-tab

spreadsheet (�.xlsx) file. The file can be opened in FOSS spreadsheet software, e.g. LibreOffice

Calc, or through licensed software, e.g. Microsoft Excel. To access this operation, select ‘File’
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! ‘Save Processed Data’ from the main window’s menu bar. The file name can be inputted

and saved to the user’s chosen directory. An example save file is provided in S2 File.

Batch analysis

Cardio PyMEA affords batch processing of pacemaker translocation data to simplify power

law analysis for large numbers of MEA recordings. The user simply needs to add their file

information to the batch file spreadsheet (included in the repository). Once the batch file is

ready, the user will navigate to ‘File’! ‘Batch’ and select their spreadsheet (�.xlsx) batch file.

At that point, Cardio PyMEA will detect and compile pacemaker translocations for all files in

the batch. Power law analysis can then be performed using the batched data, which Cardio

PyMEA will recognize and require no additional work on the part of the user. An example

batch file is also provided in S3 File.

Results and discussion

Cardio PyMEA grants users flexibility via parameter control during

cardiomyocyte analysis

Cardio PyMEA was tested using 30 MEA recordings across 3 distinct differentiations. Cardio-

myocytes demonstrated good adhesion to the MEAs (Fig 6A and 6B). The beat detection algo-

rithm was successful in identifying beats from the field potential signals without the need for

signal filtering (Fig 6C). The beat detection algorithm was validated manually for each MEA

and performed well under varying levels of noise, as shown in Fig 6D–6F. Faulty electrodes,

Fig 6. Beat detection results for an MEA-plated cardiomyocyte culture. An individual 120 electrode MEA (A) was plated with cardiomyocytes

(B). Field potentials were recorded (C) and analyzed to determine the R-wave-like peak, beat amplitude, T-wave endpoint, and other features.

These field potentials showed varying levels of noise, ranging from clean (D) to moderately (E) or significantly (F) noisy, as indicated by the

decreasing signal-to-noise (S/N) ratios. Beat detection was performed for all field potentials across all MEAs.

https://doi.org/10.1371/journal.pone.0266647.g006
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whether due to cell culture conditions (e.g. non-uniform spread of the culture), heterogeneous

Matrigel application causing depressed local signal detection, or electrode degradation as a

result of prolonged MEA usage, were excluded by the automated electrode exclusion algo-

rithm. The excluded electrodes were deemed appropriate upon manual review, thus validating

the algorithmic choices. The remaining electrodes demonstrated sufficient signal for all subse-

quent analyses. Successful cultures typically had only a few electrodes excluded from the analy-

sis. The average beat rate (beats per minute, bpm) across all datasets was 36.64 bpm with a

standard deviation of 14.48 bpm.

Cardio PyMEA demonstrated effective performance under noisy conditions thanks to its

utilization of user-provided parameter inputs. User-defined thresholds of beat amplitude and

distance provide flexibility in analyzing noisy datasets, even under low signal-to-noise (S/N)

conditions (Fig 6E and 6F). Successful beat detection enables the analysis of a variety of cardio-

myocyte culture properties, including: pacemaker time lag, LAT, upstroke velocity, CV, FPD,

and beat amplitude and interval. Local activation time, which is associated with the time of

maximum sodium conductance in the myocardium, is a requisite property for analyzing car-

diac conduction velocity and serves as another metric for assessing pacemaker activity. The

maximum decrease in field potential voltage is generally accepted as the activation time for a

beat [39]. Maximum upstroke velocity is associated with the peak influx of sodium and cal-

cium ions during the action potential and presents another property useful for evaluating car-

diomyocyte maturity [40]. Finally, beat amplitude and interval are widely known to serve as

indicators of cardiomyocyte maturity.

Cardio PyMEA provides effective calculation and estimation of pacemaker

regions in 2D cardiomyocyte cultures

Cardio PyMEA successfully generated per-beat, spatial heatmaps of time lag (pacemaker)

activity across the MEA culture, as shown in Fig 7A–7C. Pacemaker heatmaps were evaluated

across dozens of beats and multiple MEAs. Subsequent analysis of the time lag wave front

propagation using the pacemaker origin estimation tool revealed the most likely signal origin

for the given data (Fig 7D–7F). Identification of the pacemaker region in the culture could

have practical implications for MEA stimulation experiments, e.g. by providing information

regarding which electrode(s) to use for stimulation of a spatially-constrained system [41].

These results demonstrate Cardio PyMEA’s ability to produce spatially defined heatmaps of

pacemaker activity and determine a logical point-of-origin for the active pacemaker region

within the culture.

Cardio PyMEA provides unique statistical tools for assessing

cardiomyocyte maturation

During natural heart formation in the early embryo, all cardiomyocytes develop autonomic

contraction and possess pacemaker characteristics. During the mid-gestational stages, working

myocardium diversifies and acquires characteristic phenotypes including decreased automa-

ticity, higher CV, and higher contractility [42]. If the stem cell-derived cardiogenesis recapitu-

lates embryonic heart formation, one could hypothesize that cells distant from the pacemaking

cells on an MEA present an increase in CV and field potential magnitude. To investigate this

possible distance dependency of cardiomyocyte properties, Cardio PyMEA provides a unique

function to analyze changes in property values with distance (i.e. property-distance relation-

ships). Several plots were constructed tracking the correlations between a) pacemaker time lag,

b) LAT, c) dV/dtmax, and d) CV and distance from the pacemaker region, both on a per-beat

basis and averaged across all beats in the dataset. An example output is provided in Fig 8 and
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yields a mean R2 = 0.898 for conduction velocity versus distance, suggesting that a relationship

exists, based on good fitting between these two properties, for the given cardiomyocyte culture.

These data suggest that the electrophysiological activity of in vitro stem cell-derived

Fig 7. Pacemaker analysis output. A-C: representative pacemaker heatmap, spatially defined by the MEA coordinate system. D-F:

estimated pacemaker location for the given data based on the time lag propagation wavefront. The estimated origin is indicated by an

orange dot.

https://doi.org/10.1371/journal.pone.0266647.g007
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cardiomyocyte cultures may reflect early events during the lineage diversification and matura-

tion of cardiac conduction system and working myocardium.

Cardio PyMEA provides unique tools for and simplifies the analysis of

pacemaker translocations for power law behavior

A unique feature provided by Cardio PyMEA is the ability to investigate the quiescent period

between pacemaker translocations in two-dimensional cardiomyocyte cultures as a potential

power law-obeying phenomenon. Here, Cardio PyMEA was used in combination with the

powerlaw Python library to evaluate pacemaker translocations [25, 37]. The justifications for

these comparisons were based on their conceptual similarity to neuronal avalanche inter-burst

(also sometimes referred to as inter-event) intervals, or IBI [43, 44].

Cardio PyMEA simplifies power law analysis of cardiomyocyte cultures by effectively wrap-

ping a graphical user interface over the powerlaw Python library, allowing the user to easily

select from several input parameters [37]. Furthermore, the user can choose to evaluate power

law behavior at both the individual recording level and in large batches (e.g. 30 or more) of

recordings. The software outputs not only graphical representations of the data, as shown in

Fig 9, but also a quantitative summary (in a separate text box below the plot) of distribution

parameters and log-likelihood ratio (LLR) comparisons between each heavy-tailed distribution

considered.

Fig 8. ‘Property vs Distance with R2’ window. Representative plots of each property versus distance from the

pacemaker. Statistical quantities, such as average time lag and conduction velocity, as well as top R2 values, are

presented in the ‘Statistics Readout’ text box on the right side of the window.

https://doi.org/10.1371/journal.pone.0266647.g008
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Using Cardio PyMEA’s power law analysis integration and pacemaker translocation detec-

tion tool revealed that, while pacemaker translocations do not necessarily follow a general

power law distribution, they do convincingly obey a doubly truncated power law distribution

(i.e. a power law with an exponentially-defined maximum, or cutoff, value that captures finite-

size effects within the system) with a power law exponent of = -1.583 [25]. Several known

power law-obeying systems demonstrate a similar exponent of with = -1.5 and many are cate-

gorized as critical systems. Some suspected critical systems, e.g. neuronal cultures, exhibit opti-

mal performance (e.g. maximized information exchange between individual units within the

system) when the system is operating at or near a critical point [45–47]. The value for calcu-

lated from pacemaker translocations suggests that critical dynamics may play a role in maxi-

mizing information transfer between cardiomyocytes within the culture and facilitate the

identification of an optimal pacemaker region of the culture [25]. Thus, Cardio PyMEA facili-

tates and greatly simplifies power law analysis of cardiomyocyte cultures in order to help eluci-

date potential mechanisms governing cardiomyocyte system dynamics. Furthermore, thanks

to Cardio PyMEA’s extensible design philosophy, it would be quite feasible to further adapt

the software for power law analysis of other observable phenomena in cardiomyocyte net-

works. Such work could constitute a future development goal.

Cardio PyMEA helps democratize computational tools for cardiomyocyte

analysis

A key aim underlying Cardio PyMEA’s development was to provide both a free-to-use and

free-to-edit computational tool for cardiomyocyte MEA analysis. Most, if not all, previously

released, free-to-use cardiomyocyte MEA analysis applications are written in MATLAB.

Fig 9. ‘Powerlaw Distribution Comparison’ window. The results of power law analysis, both qualitative (plots) and

quantitative (numerical output, text box below plots) are presented in this window of the application. The user can

adjust a variety of parameters, as necessary, and execute their analysis by clicking ‘Plot’. The power law plot was

adapted from [25].

https://doi.org/10.1371/journal.pone.0266647.g009
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Although these programs can be distributed freely, any efforts to edit and execute the underly-

ing source code require a MATLAB license. This presents a potentially high barrier-to-entry in

the form of operational costs, particularly at the academic tier for smaller institutions, that can

be burdensome for researchers [24]. Thus, it became clear that achieving the elimination of

these barriers to accessibility and development would require writing Cardio PyMEA in

Python.

Python is an established, mature, and robust programming language known for its accessi-

bility to those new to computer programming and its ubiquity in data science and machine

learning applications. It provides a minimal barrier to entry, requiring only a computer and an

internet connection. Python enjoys widespread community support via online resources

which provide abundant resources for fledgling and senior programmers alike [48].

Cardio PyMEA leverages the aforementioned characteristics of Python to provide a cardio-

myocyte MEA analysis tool suitable for continued development and refinement. The soft-

ware’s GUI was written using PyQt5 and adheres to a basic object-oriented programming

paradigm that, with a modest background, is simple enough for a novice programmer to grasp

and modify. In fact, Cardio PyMEA was designed in such a way that undergraduate students

with no or modest programming experience could (and, in fact, did) successfully contribute

new functionalities to the software. Therefore, Cardio PyMEA should prove suitable as an

ongoing developmental platform and help to further democratize analytical tools for cardio-

myocyte MEA data analysis.

Conclusion and outlook

Cardio PyMEA is an open-source software designed to facilitate the analysis of microelectrode

array data obtained for cardiomyocyte cultures. It provides an easy-to-use graphical user inter-

face to allow non-programmers to carry out analysis of MEA data and, because of its object

oriented nature, can be readily modified to accommodate additional MEA geometries and

configurations. Calculations for several cardiomyocyte properties were successfully executed

using Cardio PyMEA, including time lag, local activation time, upstroke and conduction

velocities, beat amplitude, and beat interval, among others. Cardio PyMEA is readily extensible

and provides users with two built-in analytical techniques for the assessment of property-dis-

tance correlations and the observance of power laws in pacemaker translocations.

Choosing to write Cardio PyMEA in Python presented clear benefits in the form of open

access, extensibility, and ease of use. However, there are some drawbacks inherent to this

choice that merit a brief discussion. Among the more significant issues inherent to Python

application development is the global interpreter lock (GIL). When executing a Python script

or program, the interpreter occupies one–and only one–computational thread on the host

machine’s CPU. This causes the GUI’s widgets (e.g. the file dialog box) to temporarily “freeze”

during the execution of a function call, such as a calculation or plotting operation, until the

operation has completed. As a consequence of this GIL, the user may experience some minor

performance issues during the operation of the program in the form of windows freezing,

accompanied by a request to wait for the program to complete its task. One way this issue

could be remedied is through extensive revisions to the code to enact multithreaded opera-

tions–a non-trivial exercise, but one which may take place at a later date.

Another opportunity for improvement, in select cases, is input/output and calculation

speed. Python is known to be a relatively slow programming language, particularly compared

to C and C++. Loading files is one of the more time-intensive operations performed by Cardio

PyMEA, particularly for �.txt files exceeding 500 megabytes in size. For example, on Linux ker-

nel 5.16, the import operation for a file of size 1.9GB (e.g. a 20 minute long, 120 electrode
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MEA recording) can take ~45 seconds. Although our development was limited to �.txt file

inputs as a result of MC_Data file outputs, it may be possible to incorporate a conversion tool

into Cardio PyMEA that yields hierarchical data format HDF5 files for subsequent loading

operations. Use of HDF5 input files has the potential to further improve data load times and

partially alleviate data storage requirements [49].

Additionally, improvements to graphing performance may be possible by exchanging func-

tion calls to the Matplotlib and Seaborn plotting libraries for equivalents in PyQtGraph. PyQt-

Graph can demonstrate superior speed compared to the aforementioned libraries [50]. Many

calculations in Cardio PyMEA were optimized through the use of libraries like NumPy and

Numba, which utilize C-based operations, to perform similarly to analogous calculations in

other, faster programming languages. Further optimization should be possible with additional

development.

Beyond performance improvements, we expect to see Cardio PyMEA acquire new features

and functionalities over time. One area that may be primed for expanded development is com-

parative analysis of MEAs. Implementation of comparative methods, in which two separate

recording files are loaded and analyzed in parallel, may provide significant workflow improve-

ments over the current paradigm. Ultimately, Cardio PyMEA’s potential is bound only by the

imagination of its contributors and evolution of the Python programming language.

Supporting information

S1 File. Tutorial. User tutorial in PDF (�.pdf) format for adding new MEA geometries to Car-

dio PyMEA.

(DOCX)

S2 File. Save file. Example save file in spreadsheet (�.xlsx) format.

(XLSX)

S3 File. Batch file. Example batch file in spreadsheet (�.xlsx) format.

(XLSX)
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