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a b s t r a c t

The novel coronavirus termed as covid-19 has taken the world by its crutches affecting innumerable
lives with devastating impact on the global economy and public health. One of the major ways to
control the spread of this disease is identification in the initial stage, so that isolation and treatment
could be initiated. Due to the lack of automated auxiliary diagnostic medical tools, availability of lesser
sensitivity testing kits, and limited availability of healthcare professionals, the pandemic has spread
like wildfire across the world. Certain recent findings state that chest X-ray scans contain salient
information regarding the onset of the virus, the information can be analyzed so that the diagnosis and
treatment can be initiated at an earlier stage. This is where artificial intelligence meets the diagnostic
capabilities of experienced clinicians. The objective of the proposed research is to contribute towards
fighting the global pandemic by developing an automated image analysis module for identifying covid-
19 affected chest X-ray scans by employing an optimized Convolution Neural Network (CNN) model.
The aforementioned objective is achieved in the following manner by developing three classification
models, (i) ensemble of ResNet 50-Error Correcting Output Code (ECOC) model, (ii) CNN optimized
using Grey Wolf Optimizer (GWO) and, (iii) CNN optimized using Whale Optimization + BAT algorithm.
The novelty of the proposed method lies in the automatic tuning of hyper parameters considering
a hierarchy of MultiLayer Perceptron (MLP), feature extraction, and optimization ensemble. A 100%
classification accuracy was obtained in classifying covid-19 images. Classification accuracy of 98.8%
and 96% were obtained for dataset 1 and dataset 2 respectively for classification into covid-19, normal,
and viral pneumonia cases. The proposed method can be adopted in a clinical setting for assisting
radiologists and it can also be employed in remote areas to facilitate the faster screening of affected
patients.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Covid-19, the most talked-about on-going pandemic that has
esulted in a major global crisis, and has significantly impacted
everal lives around the globe. The first case of the lethal virus is
eported to have originated from Wuhan, a province in China in
ecember 2019 [1]. In a short period, the virus turned out to be a
lobal pandemic affecting several countries in the world. One of
he most common techniques that is currently used in the diag-
osis of covid-19 is reverse transcription-polymerase (RT_PCR).
adiological imaging modalities such as Computed Tomography
CT) and X-ray have played vital roles in the early diagnosis of this
isease [2]. Since the diagnosing sensitivity of PCR is 60%–70%, X-
ay scans have been adopted in the screening of covid-19 cases.

∗ Corresponding author.
E-mail address: tanweer.ali@manipal.edu (T. Ali).
ttps://doi.org/10.1016/j.asoc.2021.107238
568-4946/© 2021 Elsevier B.V. All rights reserved.
Fig. 1, illustrates the three classes of chest x-ray scans namely,
normal, viral pneumonia, and covid-19.

Few recent studies have reported changes in X-ray and CT
image scans in patients at the onset of covid-19 symptoms [4].
For instance, Zhao et al. [5] observed dilation and consolidation
in addition to ground-glass opacities in covid affected patients. A
rapid rise in the number of positive covid-19 cases has aggravated
the need for researchers to integrate Artificial Intelligence (AI)
along with expert opinion to ease the task of the clinicians. In
this regard, deep learning models, have started garnering recog-
nition. Due to the shortage in the number of radiologists in
hospitals, AI-based diagnostic models can be helpful to provide
timely assistance to the patients. Based on these techniques,
numerous studies have been reported in the literature, however,
only prominent studies are highlighted here. Seven Convolu-
tional Neural Network (CNN) models, comprising of improved
VGG19 and Google MobileNet to diagnose covid-19 form X-ray

images was proposed by Hemdan et al. [6]. An accuracy of 92.4%

https://doi.org/10.1016/j.asoc.2021.107238
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107238&domain=pdf
mailto:tanweer.ali@manipal.edu
https://doi.org/10.1016/j.asoc.2021.107238
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Fig. 1. Illustration of chest X-ray images, (a) Normal, (b) Viral pneumonia (c) Covid-19 [3].
as obtained by Wang et al. [7] in classifying covid-19 im-
ges from normal and viral pneumonia cases. Similarly, Ioannis
t al. [8] used 224 covid-19 images and obtained a class ac-
uracy of 93.48%. An optimized CNN termed as optconet was
roposed in [9] using a total of 2700 images thereby yielding a
recision score of 92.8%. A mobilenet CNN model was developed
y Apostolopoulous et al. [10] using certain extricated features.
hree distinctive CNN models namely inception v3, ResNet50,
nception-ResNet V2 were used for the same purpose of classi-
ication in [11]. A transfer learning-based approach using three
odels such as ResNet18, ResNet50, SqueezeNet, and DenseNet-
21 was used in [12] for the classification of covid and non-covid
hest X-ray images.
Although all the above-reported state of art techniques are

esigned using CNN, the methods do not take into account the
patial relationships between the image pixels for training the
odels. Thus, when the images are subjected to the rotation,
ertain resize operations, and data augmentation due to the avail-
bility of smaller dataset size, the developed CNN models fail to
ccurately identify the covid-19 cases, form viral pneumonia and
ormal chest X-ray scans. Although, a certain degree of misclas-
ification in identifying viral pneumonia cases is acceptable, but
isclassification of covid-19 cases as normal or viral pneumonia
an mislead the treatment performed by clinicians. The proposed
ork aims to address the aforementioned limitations by devel-
ping an automated diagnostic tool for screening of covid-19
atients using chest X-ray scans. The proposed method employs
n optimized robust CNN architecture for the classification of
hest X-ray images into three classes.

.1. Novelty and contributions

The novelty of the proposed work is two-fold. The methodol-
gy adopted for optimizing the CNN hyper parameters is unique.
he major hyper parameters of CNN are tuned using (i) Multilayer
erceptron (MLP) and Grey Wolf Optimizer (GWO), and (ii) MLP
nd Whale optimization + BAT algorithm. The hyper parameter
uning was performed using dataset 1 and the same parameters
ere used for training and testing of dataset 2. In both cases, good
erformance metrics were obtained.
The main contributions of this paper are summarized as given

elow:

a. An ensemble of ResNet and Error Correcting Output Code
(ECOC) classifier is designed for the classification of X-ray
images into three classes.

b. Two optimization algorithms namely GWO and WOA-BAT
were used for tuning the hyper parameters of CNN. In con-
trast to the method in [9], the proposed method determines
the values of the hyper parameters by optimizing an MLP
2

trained on the features extracted from the ResNet-50. The
best values obtained were used as hyper parameters (Initial
Learning Rate, L2 regularization, gradient decay factor, and
Maximum epochs).

c. A thorough comparative analysis is performed between
the optimized and un-optimized CNN to prove the efficacy
of the proposed method. The optimization parameters are
computed using dataset 1, and the same parameters are
used for dataset 2. For both the datasets good performance
is observed, thereby proving the suitability of the system
to be adopted in a clinical setting for initial screening of
covid-19 patients.

2. Materials and methods

2.1. Dataset

The study is carried out using two datasets. The first dataset
henceforth is referred to as dataset 1, consists of 2905 chest
X-ray images. There are 3 classes of image data belonging to
covid-19, normal and viral pneumonia images, of which 219 are
covid-19 images, 1341 are normal images and 1345 belong to
viral pneumonia. The covid-19 images were obtained from the
Italian Society of medical and interventional radiology, Joseph
Paul Cohen and Morrison Covid-19 dataset and, various publi-
cations [13]. The second dataset [3], henceforth referred to as
dataset 2, consists of 6432 images, of which 576 belong to covid-
19, 4273 belong to viral pneumonia and 1583 belong to normal.
All the images of dataset 2 are in jpeg format.

2.2. Optimization and classification

The proposed classification and optimization methodology
consist of three different design models as given below:

1. The first model is designed using an ensemble of ResNet-50
and ECOC classifier.

2. The second classification model is built by optimizing CNN
layer parameters using GWO optimization.

3. The third classification model is built by optimizing CNN
layer parameters using WOA and BAT algorithm.

2.2.1. Ensemble of ResNet-50 and ECOC classifier
The ResNet models developed by He et al. [14] are promi-

nently known for good convergence with great classification per-
formance. The proposed model-1 in this paper employs a pre-
trained ResNet-50 residual network architecture that has 177
layers in total. The dataset is divided into a 30:70 ratio with 30%
of data used for training and 70% used for testing. The block dia-
gram of the proposed ensemble of ResNet-50 and ECOC classifier
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able 1
oding scheme of ECOC.
Class SVM1 SVM2 SVM3

Covid-19(C1) 1 1 0
Viral Pneumonia (C2) −1 0 1
Normal (C3) 0 −1 −1

is given in Fig. 2. For the first convolution layer, a patch size of
112 × 112 is used. As the structure evolves deeper, the patch size
reduces to 56 × 56. The minimum batch size is 32. The ResNet-
0-ECOC ensemble has 64 filters of size 7 × 7 × 3 with stride [2
] and padding [3 3 3 3]. The fully connected layer before the
oftmax layer has 1000 neurons with weights 1000 × 2048 and a
ias of 1000 × 1. The deep residual features were extracted from
he fully connected layer consisting of 1000 nodes. The extracted
eatures are further used to train ECOC classifier model built using
hree Support Vector Machines (SVM) binary learners. The ECOC
odel consists of a coding and decoding scheme as illustrated in
able 1.
The ECOC model consists of a coding and decoding scheme.

he coding scheme determines the classes for which the SVM
rains on, and the decoding scheme determines the aggregation of
redictions determined by the SVM classifiers. Since the proposed
odel consists of three classes, there are three SVM learners
sed to build the design. The SVM 1 trains on the observations
elonging to Class 1 (C1) and Class 2 (C2). SVM 2 trains on the
bservations belonging to C1 and Class 3 (C3). Similarly, SVM 3
rains on observations belonging to C2 and C3. During the testing
tage, the majority voting scheme decides the class of the test
mage. The ResNet-50 architecture is applied to the testing data
o extract the test features. Further, the extracted test features are
lassified using the ECOC model. The results of different kernels
polynomial, sigmoid, RBF (Gaussian)) was computed. However,
he performance using linear SVM kernel with quadratic function
s the binary loss was found to be maximum. The observation is
ssigned to the class that yields the smallest average binary loss.
he procedure for the selection of design parameters is described
n detail in [15]. The ECOC models have proved to improve the
lassification accuracy in multiclass mechanisms.
.2.2. Optimization process using Grey Wolf optimizer
The proposed architecture is divided into two parts. The first

art consists of the extraction of features from 80% of the data,
hile the second part consists of optimizing CNN hyper pa-
ameters using the GWO optimizer. 80% of the training data is
ed to the ResNet-50 architecture wherein the last three layers
omprise of fully connected, softmax and classification layers. The
eatures are extracted from the fully connected layer comprising
f 1000 nodes. Rather, than optimizing the parameters of deep
eural network architecture as in [9], we propose a novel strat-
gy by introducing a Multilayer Perceptron (MLP) based GWO
ptimization.
One of the greatest milestones in the era of computational

ntelligence is the introduction of neural network with the ca-
ability to mimic the human nervous system. One among type of
eural network is the Feed Forward Neural Network (FNN), which
as a unidirectional connection between the neurons. One of the
lasses of FNN is a MLP. It consists of at least one hidden layer.
he output of the MLPs for a given set of inputs mainly relies on
he biases and weights. For instance, consider Xi as ith input. The
eighted sum of inputs is as given in (1).

i =

n∑(
WijXi

)
− θj, j = 1, 2 . . . h (1)
i=1

3

here Wij is the connection weight from the ith node to the jth
ode and θj is the bias of the jth layer.
The main goal of effectively training a MLP mainly relies on the

xact choice of the weights and bias to achieve good performance
or a particular set of input feature vectors. Thus, our goal is to op-
imize the parameters of MLP for tuning CNN hyper parameters.
any optimization algorithms based on swarm intelligence have
een proposed in recent years [16–18]. One such optimization
lgorithm proposed by Mirajalili et al. [19] is the GWO. The GWO
lgorithm follows the hunting pattern of the grey wolves. There
re four groups of population termed as alpha, beta, delta and
mega denoted as ∝, β, δ, ω respectively. Here ∝, β and δ are
onsidered as the fittest wolves in the preceding order, and ω act
s subordinates. The hunting nature of the wolves is described in
circular pattern as given in (2)–(3).

=
⏐⏐CXp (t) − X (t)

⏐⏐ (2)

X (t + 1) = Xp − AD (3)

Here, D denotes the distance, A and C are the coefficients, and Xp

denotes the prey’s position, t denotes the iteration, X denotes the
wolf location. The A and C coefficients are computed as given in
(4).

A = 2ar1 − a, C = 2r2 (4)

r1 and r2 are random values between 0 and 1, whereas the value
of ‘a‘ changes from 2 to 0. The first three best solutions are saved
as ∝, β , and δ, and the position of ω is updated similar to the
hunting behavior of the wolves as given in (5)–(8).

−→
Dα =

⏐⏐⏐−→C1
−→
Xα − X⃗

⏐⏐⏐ (5)
−→
Dβ =

⏐⏐⏐−→C2
−→
Xβ − X⃗

⏐⏐⏐ (6)
−→
Dδ =

⏐⏐⏐−→C3
−→
Xδ − X⃗

⏐⏐⏐ (7)

X⃗ (t + 1) =
−→
X1 +

−→
X2 +

−→
X3 /3 (8)

Here,
−→
X1 ,

−→
X2 and

−→
X3 are approximate distances as given in [19].

The position of the prey is estimated by ∝, β , and δ, whereas
ω updates its position randomly around the prey. The search
process initially starts with the generation of random candidate
solutions which are further updated over the course of iterations
based on the probable prey positions as estimated by ∝, β , and δ.
The divergence and convergence of the candidate solution relies
on

−→
A >1 and

−→
A <1 condition respectively. As the total number

of iterations are completed, the solution obtained by GWO at
the last iteration is considered the best solution. Algorithm I
describes sequential steps followed for obtaining the best param-
eters. One of the challenges involved in hyper parameter tuning
is the careful selection of the learning rate, since a smaller value
increases the number of epochs, resulting in the delay of the
process, and a larger value results in a suboptimal solution. In the
proposed method, the step size wherein the weights are updated
also known as the learning rate of CNN is taken as the value of
the best solution obtained by GWO. The minimization of Mean
Square Error (MSE) of the MLP is the objective function of the
aforementioned optimizer. The convergence curve for iteration
versus MSE is given in Fig. 3.
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Fig. 2. Overview of ensemble of ResNet-50 and ECOC model.
4

Fig. 3. The convergence curve for objective function versus iteration.

2.2.3. Optimization process using WOA-BAT algorithm
The WOA algorithm was proposed by Mirajalili et al. [20]

by simulating the hunting behavior of the humpback whales by
initially chasing the prey and simulating the bubble net strat-
egy. The WOA algorithm consists of two main phases, encircling
the prey and spiral updating known as the exploitation phase,
wherein the prey is randomly searched. In this research work, the
WOA algorithm initially starts with a set of random solution for
V = (W , B), weights and bias for the MLP. At each iteration, the
search agents are updated based on the randomly chosen search
agent or the best solution that is obtained at the current iteration.
The following equations (9)–(10) describe the behavior of hunting
the prey.

X⃗ (t + 1) = X⃗∗ (t) − A⃗
−→
D (9)

−→
D =

⏐⏐⏐C⃗ X⃗∗ (t) − X⃗ (t)
⏐⏐⏐ (10)

X⃗∗ (t) is the whales best earlier position and X⃗ (t + 1) is the
current position of the whale. D⃗ is the distance vector and C⃗ and
A⃗ are the co-efficient vectors computed as (11).

C⃗ = 2r, A⃗ = 2ar + a (11)

To speed up the convergence, the spiral updating mechanism of
the bats is incorporated with certain modifications. A random
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alue of p is generated considering if there is a 50% probability
to choose between either the simulating encircling mechanism
or the spiral model to update the position [21,22]. If p>0.5, then
he current iteration is updated as given in (12).

⃗ (t + 1) =
−→
D ebk cos (2πk) + X⃗ (t) (12)

e consider k = b = 1, hence (12) reduces to (13).

⃗ (t + 1) = 2.7 ∗
−→
D + X⃗ (t) (13)

f p<0.5, then the current iteration is updated as given in (14)–
16).

i = fmin + (fmax − fmin) (14)

i
t+1

= vi
t
+

(
xit − x∗

)
fi (15)

i
t+1

=
(
xit + vi

t+1) (16)

ere, xi is the bat position and vi is the bat velocity. The frequency
f the waves is the lower and upper bound taken as (−100,100).
he new position of the bats is updated depending upon the new
elocity because when the bat finds the food/prey, the loudness
ate is inversely proportional to the emission rate. The CNN hyper
arameters such as the learning rate and gradient decay factor are
hosen as the values of the best positions which minimizes the
SE objective function. Algorithm II describes sequential steps

ollowed for obtaining the best parameters using WOA-BAT.

2.2.4. CNN architecture design
The CNN architecture is built using the input layer, Convolu-

ion Layer (CL), Max Pooling Layer (MPL), Batch Normalization
ayer (BNL), Rectified Linear Unit (ReLu), fully connected layer,
nd the output layer. The structure of the CNN is illustrated in
5

Table 2
Details of CNN architecture.
Layer Type Filter size No. of filters Stride

Input 448 × 448 × 1

Layer 1 CL+BNL+ReLU 7 × 7 8 1 × 1
MPL 2 × 2 2 × 2

Layer 2 CL+BNL+ReLU 3 × 3 16 1 × 1
MPL 2 × 2 2 × 2

Layer 3 CL+BNL+ReLU 3 × 3 32 1 × 1
MPL 2 × 2 2 × 2

Layer 4 CL+BNL+ReLU 3 × 3 64 1 × 1
MPL 2 × 2 2 × 2

Layer 5 CL+BNL+ReLU 3 × 3 128 1 × 1
MPL 2 × 2 2 × 2

Layer 6 CL+BNL+ReLU 3 × 3 256 1 × 1
MPL 2 × 2 2 × 2

Layer 7 CL+BNL+ReLU 3 × 3 512 1 × 1
MPL 2 × 2 2 × 2

Layer 8 CL+BNL+ReLU 3 × 3 1024 1 × 1
MPL 2 × 2 2 × 2

Output Fully connected layer Output size: 3
Softmax
classification layer

Fig. 4. The convolution layer extracts features at every offset of
the input image. The hyper parameters of the layers are optimized
using the GWO and the WOA-BAT optimization techniques. Out-
put feature maps are sensitive to the location of features in the
input image. One solution to address this sensitivity and achieve
local translation variance is to perform pooling. After the non-
linearity has been applied to the feature maps obtained from the
convolutional layers, pooling is applied. The non-linear activation
function used is ReLu, it maps the extracted features into the
feature space. There are four types of pooling namely, (i) max
pooling, (ii) average pooling, (iii) global max pooling, and, (iv)
global average pooling. In our proposed study, max pooling is
used, since it retains the most prominent features of the feature
maps, thus retaining sharp features. The downsampling is per-
formed using max-pooling of filter size 2 × 2, stride of [2 2], and
padding of [1 1 1 1]. At the end of the structure, a global average
pooling is applied to convert each feature map into one value. The
batch normalization layer is responsible for normalizing the gra-
dients and activations through the network. The values generated
are further fed to the soft-max activation function to predict the
multinomial probability distribution. Table 2 describes the details
regarding the convolutional layers and filter size used in building
the CNN.

During training, the parameters of the convolutional kernels
are adjusted based on the best values obtained during the opti-
mization process. CNN usually use stochastic gradient or adam
solver to tune the hyper parameters. The choice of the param-
eters is application dependent. However, appropriate choice of
hyper parameters decide the convergence rate and accuracy of
CNN in the classification task. If the initial learning rate is too
low, then the training takes a longer time. The learning rate
hyper parameter decides the change that is required each time,
the model is updated depending on the error. Similarly, the L2
regularization parameter adds a regularization term to the cost
function, to prevent the model from overfitting. The factor by
which the learning rate changes every epoch is decided by the
gradient decay factor. These hyper parameters are decided by



S. Pathan, P.C. Siddalingaswamy and T. Ali Applied Soft Computing Journal 104 (2021) 107238

t
o
3

3

a
f
t
F
1
a
c
s

a
W
u
o
f
m
d
t
S
f
d

p
s

A

Fig. 4. The proposed classification set-up using optimization techniques.
S

F

he optimum best positions obtained by the two aforementioned
ptimization methodologies (GWO, WOA-BAT).
. Results and discussion

.1. Training and testing

The proposed set-up was implemented in MATLAB 2020a, on
64-bit operating system. The data was divided into 80:20 ratio

or training and testing respectively for optimization models. The
raining and testing image classes were randomly partitioned.
or, the first ECOC model, from the fully connected layer, a set of
000 features were obtained. The features were retained as it is
nd given as an input to the ECOC classifier to perform multiclass
lassification. The datasets consist of images of variable dimen-
ions (R × C). The minimum dimension of the image available
in the dataset was 448 × 448, thus, to maintain uniformity and
reduce the processing time, all the images have been resized to
448 × 448 × 1. For, the optimized set-ups, an eight convolution
layer architecture is designed to classify images into three cate-
gories (covid-19, normal and viral pneumonia). The adam solver
hyper parameters are chosen based on the two optimization algo-
rithms, optimized based on the training features extracted from
the ResNet-50 CNN architecture. The training hyper parameters
obtained from the optimization algorithms are given in Table 3.
The test images are initially resized to 448 × 448 × 1 and fed
s input to the trained CNN models optimized using GWO and
OA-BAT. Fig. 5(a), and (b), illustrates the training progress plot
sing WOA-BAT optimized CNN and un-optimized CNN. It can be
bserved that a decrease in the training performance is observed
or the un-optimized CNN, in comparison to the WOA-BAT opti-
ized CNN. Un-optimized CNN refers to training CNN using the
efault parameters used by the adam optimizer and then testing
he performance using the test samples of the respective datasets.
ince there are two datasets, optimization is performed using the
irst dataset and the same parameters are used for the second
ataset. For both datasets, good performance is obtained.
The performance of the proposed classification set-up is com-

uted using sensitivity, specificity, accuracy, precision, and F1
core for predicted and annotated results as given in (17)–(21).

ccuracy = (TP + TN)/(TP + TN + FP + FN) (17)
6

Sensitivity = TP/(TP + FN) (18)

pecificity = TN/(TN + FP) (19)

Precision = TP/(TP + FP) (20)

1 score = 2
(

Precision ∗ Recall
Precision + Recall

)
(21)

The accurate overall predictive ability of the classifier into
the three classes is given by Accuracy (ACC). Sensitivity (SE)
gives the rate of correctly classified positive instances into three
classes. Specificity (SP) deals with the rate of correctly classified
negative instances. Precision gives the rate of correctly classified
true positives among the cumulative sum of true positives and
false positives, it is an important evaluation parameter in multi-
class problems. Similarly, the F1 score combines precision and
recall, since, in contrast to precision, recall provides an indication
of mixed positive predictions. For each class, the True Positives
(TP), False Positives (FP), False Negatives (FN), and True Negatives
(TN) are computed and summed up to determine the total TP,
TN, FP, and FN obtained for all the three classes [23]. Further
using the equations given in (17)–(21), the classifier performance
is computed. The following subsections provide the confusion
matrices and performance evaluation results.

3.2. Results of classification using ensemble of ResNet-50 and ECOC
classifier

Dataset 1 was divided into a 30:70 ratio, wherein out of 2905
images, the number of images used for testing was 2033, and
872 images were used for training. Similarly, dataset 2 was also
divided randomly into a 30:70 ratio, wherein out of 6432, the
number of images used for testing was 4502, and 1930 images
were used for training. Table 4 gives the results of classification
for the two datasets and the corresponding confusion matrices
in Fig. 6(a) and (b). In Fig. 6, c1, c2, and c3 belong to covid-19,
normal, and viral pneumonia classes respectively.

The ResNet-50 and ECOC classification set-up is performed
on 50:50 training and test ratio, for the purpose of comparison
for both the datasets. Further, five-fold cross-validation is also
performed to validate the performance of the model on multiple
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Table 3
Hyper parameters obtained from optimization.
Training
solver

Initial
learning rate

L2
regularization

Max
epochs

Gradient
decay factor

Validation
frequency

GWO 0.0004 0.0005 10 0.8 10
WOA-BAT 0.0001 0.0004 10 0.7 10
Fig. 5. Results of training progression (Blue and Red lines refer to the performance values during Training, the Black line refers to performance during Validation)
(a) optimized WOA-CNN (b) Un-optimized CNN.
7
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able 4
esults of classification using ensemble of ECOC for 30:70 set-up.
Evaluation parameter SE SP ACC F1-score Precision

Dataset 1 0.94 0.99 0.95 0.94 0.95
Dataset 2 0.98 0.99 0.95 0.96 0.95

Table 5
Results of classification using ensemble of ECOC for 50:50 set-up.
Evaluation parameter SE SP ACC F1-score Precision

Dataset 1 0.93 0.99 0.94 0.94 0.96
Dataset 2 0.95 0.97 0.97 0.96 0.95

Fig. 6. Confusion matrices for multiclass ECOC (a) Dataset 1 (b) Dataset 2.

folds. For dataset 1, each subset consists of 581 images, consisting
of images from all the three classes selected using stratified
sampling. In the case of dataset 2, there are 6432 images, three
subsets consist of 1286 images, and two subsets consist of 1287
images since 6432 is not divisible by 5. The corresponding results
of classification are given in Tables 5 and 6.
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Table 6
Results of classification using ensemble of ECOC for 5 fold cross-validation.
Evaluation parameter SE SP ACC F1-score Precision

Dataset 1 0.94 0.99 0.94 0.93 0.93
Dataset 2 0.96 0.99 0.94 0.96 0.97

Table 7
Results of classification using GWO optimization for 80:20 classification set-up.
Evaluation parameter SE SP ACC F1-score Precision

Dataset 1 1 0.99 0.98 0.99 0.98
Dataset 2 0.95 0.99 0.95 0.95 0.94

Table 8
Results of classification using WOA-BAT optimization for 80:20 classification
set-up.
Evaluation parameter SE SP ACC F1-score Precision

Dataset 1 1 0.99 0.96 0.98 0.95
Dataset 2 1 0.99 0.96 0.98 0.96

Table 9
Results of classification using un-optimized CNN.
Evaluation parameter SE SP ACC F1-score Precision

Dataset 1 0.63 0.97 0.87 0.98 0.65
Dataset 2 0.44 1 0.88 0.61 1

The main advantages of the ECOC-ResNet50 model are as
follows:

1. The proposed ResNet50-ECOC model is automated and per-
forms well in the classification of covid-19 images from
normal and viral pneumonia cases even under limited data
conditions.

2. Simple and avoids complex image pre-processing opera-
tions.

3.3. Results of classification using GWO and WOA optimized convo-
lutional neural network

The dataset 1 was divided into 80:20 ratio, wherein out of
2905, the number of images used for training was 2324, and 581
images were used for testing. Similarly, dataset 2 was also divided
randomly into 80:20 ratio, wherein out of 6432, the number of
images used for training were 4502, and 1930 samples were used
for testing. The Tables 7 and 8 give the results of classification for
the two datasets using the two optimization techniques followed
by un-optimized CNN classification results in Table 9.

In Fig. 7, the actual values in the bar graph refer to the number
of actual samples in the respective classes plotted against each
of the predicted sample values for the respective methods. The
resultant values are plotted as predicted by the two optimized
CNN architectures. In Fig. 7b, the x − axis corresponds to the
frequency of one class samples belonging to the other class. The
error rate on the y−axis is computed for all the designed models
as illustrated in Figs. 7b&d, 8b&d, and 9b&d. For instance, a in er-
or rate plot (Figs. 7b&d, 8b&d, and 9b&d), indicates C1ϵC2, which
orrespondingly refers to the number of samples of C1 incorrectly
lassified as C2, similarly b indicates C1ϵC3, c indicates C2ϵC1, d
ndicates C2ϵC3, e indicates C3ϵC1, and f indicates C3ϵC2. The
rror rate is reported on y − axis, and it is computed as given in
22).

rror Rate =
No.of C1 samples incorrectly classified as C2

Total no of C1 samples
(22)

It can be observed from Figs. 8, and 9, that in comparison to
un-optimized CNN architecture, the optimized CNN architectures
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Fig. 7. Illustration of performance for the optimized CNN architecture using
GWO and WOA-BAT, (a) Accuracy of correct classification in terms of the number
of samples for dataset 1, (b) Error rate computed for different class samples for
dataset 1, (c) Accuracy of correct classification in terms of the number of samples
for dataset 2, (d) Error rate computed for different class samples for dataset 2.

(GWO and WOA-BAT) resulted in a good performance. However,
when the two optimized architectures GWO and WOA-BAT are
compared, GWO performs slightly better in contrast to WOA-BAT
optimized CNN architecture as illustrated in Fig. 7.
9

Fig. 8. Illustration of performance for the GWO optimized and unoptimized CNN
architecture, (a) Accuracy of correct classification in terms of the number of
samples for dataset 1, (b) Error rate computed for different class samples for
dataset 1, (c) Accuracy of correct classification in terms of the number of samples
for dataset 2, (d) Error rate computed for different class samples for dataset 2.

Five-fold cross-validation is also performed to validate the
performance of the model on multiple folds. For dataset 1, five
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Fig. 9. Illustration of performance for the WOA-BAT optimized and unoptimized
CNN architecture, (a) Accuracy of correct classification in terms of the number
of samples for dataset 1, (b) Error rate computed for different class samples
for dataset 1, (c) Accuracy of correct classification in terms of the number of
samples for dataset 2, (d) Error rate computed for different class samples for
dataset 2.
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Table 10
Results of five-fold cross-validation using GWO based CNN.
Evaluation parameter SE SP ACC F1-score Precision

Dataset 1 0.94 0.99 0.97 0.95 0.96
Dataset 2 0.94 0.99 0.96 0.95 0.98

Table 11
Results of five-fold cross-validation using WOA-BAT based CNN.
Evaluation parameter SE SP ACC F1-score Precision

Dataset 1 0.96 0.99 0.97 0.96 0.97
Dataset 2 0.98 0.99 0.97 0.97 0.96

subsets are created, each subset consists of 581 images, consisting
of images from all three classes. For each iteration, four subsets
are used for training, and one subset is used for testing. The aver-
age is computed by determining, the performance of the classifier
at each iteration. In the case of dataset 2, there are 6432 images,
three subsets consist of 1286 images, and two subsets consist of
1287 images since 6432 is not divisible by 5. Similarly, for each
iteration, four subsets are used for training, and one subset is used
for testing. The average performance values obtained for the five
iterations for the respective datasets using the two optimization
techniques are given in Tables 10 and 11.

A slightly better performance was observed using GWO op-
timized design in comparison to the WOA optimized design for
dataset 1. However, a 100% classification accuracy can be ob-
served in identifying covid-19 images for 80:20 classification
set-up since the number of actual samples and the number of pre-
dicted samples are equal using WOA-BAT optimization algorithm
for datasets 1 and 2.

3.4. Comparative analysis

A comparative analysis of the proposed CNN designs is per-
formed by comparing with the state of art literature used for
the classification of covid-19 chest X-ray images as illustrated in
Table 12. Since there is a difference in the datasets used in the
literature, a thorough comparative analysis cannot be carried out.
However, a similarity exists between the image type (Chest X-
ray). The purpose of the comparative study is not only to highlight
the improvement in performance by the proposed design but also
to provide an insight regarding the datasets used in the previous
studies. The state of art methods reported in Table 12 is based on
CNN. However, the choice of parameters is mainly standard. The
optimization methodology adopted in [9], is somewhat similar to
the proposed design, however, the hyper parameter optimization
methodology of our proposed design is unique. In contrast to the
methodology reported in [9], the proposed design has resulted in
improved performance for both datasets. Further, in [9], the op-
timization was limited to a single dataset, whereas the universal
acceptability of optimized parameters is proved by our proposed
methodology since the same optimization parameters hold true
for dataset 2 resulting in good classification performance. Addi-
tionally, most of the state of art methods have used a limited
number of images and have not reported the other classification
performance parameters. A SqueezeNet architecture with fewer
parameters is investigated by providing the Chest X-ray images
as the input [24]. The results obtained for the respective datasets
are also reported in Table 12.

4. Conclusion

In this study, an optimized deep learning-based model is pro-
posed to detect and classify covid-19 cases from viral pneumonia
and normal chest X-ray images. Since hyper parameters of CNN



S. Pathan, P.C. Siddalingaswamy and T. Ali Applied Soft Computing Journal 104 (2021) 107238
Table 12
Comparative analysis of the proposed method with state of art methods.
Ref. No. of images SE SP ACC F-score Precision

Goel et al. 2020 [9] 2800 0.97 0.96 0.97 0.95 0.92
Sethy et al. 2020 [25] – – – 95.3 91.4 –
Ozturk et al. 2020 [26] 1125 – – 0.87 – –
Abbas et al. 2020 [27] 196 0.97 – 0.95 0.93 –
Ioannis et al. 2020 [8] 1428 – – 0.93 – –
Narin et al. 2020 [11] 100 – – 0.98 – –
Oh et al. 2020 [28] 502 0.80 0.94 0.84 0.79 0.78
Shervin et al. 2020 [12] 3000 0.98 0.90 – – –
Nour et al. 2020 [29] 2905 0.89 0.99 0.98 0.96 –
Iandola et al. 2020 [24] 2905 0.85 0.91 0.90 0.86 0.87

6432 0.87 0.92 0.91 0.87 0.87
Proposed 2905 1 0.99 0.98 0.99 0.98

6432 1 0.99 0.96 0.98 0.96
play an important role in classification accuracy, we have used
GWO and ensemble of WOA-BAT techniques to optimize the
parameters of CNN. One of the major challenges faced by re-
searchers in developing a computer-aided automated diagnostic
tool for detection of covid-19 using X-ray images is the limited
availability of data. Creating a large database requires efforts
from the radiologist, and also requires time to collect images
from various parts of the globe. The proposed method aims to
overcome such issues such as misclassification, poor classifier
learning capability, and underfitting arising due to limited data.
The classification results on the two datasets containing dataset
1 = 2905 images and dataset 2 = 6342 images are comparatively
better than the state of art approaches. Although the number of
covid-19 images is comparatively low (dataset 1 = 219), (dataset
2 = 576) in contrast to the normal and viral pneumonia cases,
covid-19 classification accuracy is quite good, compared to the
state of art approaches. The developed system hyper parameters
were initially obtained using dataset 1 and the same parame-
ters were kept constant for training and testing of dataset 2.
Good classification accuracy of 98% and 96% was obtained for
dataset 1 and dataset 2 respectively. Further, a 100% accuracy was
achieved for classifying covid-19 images for both the optimization
techniques. The proposed method can also be tested in big data
situations (larger image database). In the future, we plan to build
a robust dataset considering images from multiple diseases (viral
pneumonia, bacterial pneumonia, other respiratory diseases, etc.,)
and test the optimized CNN methodologies. Since, we plan to
build a robust dataset considering images from various hospi-
tals, and test the methodologies, the uncertainties in automatic
detection could be handled by increasing the learning ability of
the classifier to avoid misclassification of covid-19 cases. The
proposed system can be used in covid-19 affected countries with
a limited number of radiologists and can be deployed in remote
areas to ease the task of covid-19 front line warriors.
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