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The emergence of data coming from different venues, as several “omic” approaches,

is providing already compelling evidence that the smart use of this information could

provide invaluable information to prevent, diagnose and treat human diseases. However,

the most daunting challenges remain ahead, as the explosive accumulation of data from

additional perspectives, including social graphs, biosensors, and imaging, promise to

deliver crucial information that could be exploited for the improvement of the entire human

race, both in developed, and developing countries, optimizing health expenses and

reaching also the less fortunate sections of the societies. And yet, formidable challenges

remain, that pertain for the most part to the collection of the data, their organization, and

most relevantly their integration. Here we provide few, pointed examples to the present

relevance of these big data approaches in human health as well potential road maps

toward the implementation of broader data collections and analyses.
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INTRODUCTION

As stated by the World Health Organization (WHO), health represents a “State of complete
physical, mental, and social well-being, and not merely the absence of disease or infirmity.”
Notwithstanding the challenges, it has been argued that humanity has never been so healthy,
safe, knowledgeable, prosperous and ultimately happy (1). Without necessarily endorsing a too
positivistic perspective, it appears indeed true that the technological innovations introduced
into the medical practice in the past century or so have profoundly improved the outcome for
individuals, at least, but not only, in the civilized countries. The introduction of antibiotics, but
also the ability to treat a vast array of ailments have improved not only life expectancy, but also
the quality of life. We are now entering in another era, which will be centered upon Big Data and
that has been heralded, possibly with some exaggeration, revolutionary. We posit that this new
perspective is endowed with unique opportunities, but also with menacing threats, which need to
be promptly addressed, provided also the unparalleled intrusive capacity of new technologies.

THE ALL-ENCOMPASSING GENOMIC MEDICINE?

Genomics seems destined to acquire a central role toward the widespread implementation of the
personalized medicine revolution (2, 3). This new framework posits that a Prewomb-to-tomb
Assessment is advisable and should be pursued (2). Indeed, the ENCODE initiative has
dispelled the widespread perception that most of our DNA is “junk” (4), as genes
account for only a minimal portion of its entire sequence. In fact, it now appears
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that much of the genome is close to regulatory features, as
95% of it lies within 8 kilobases (kb) of a DNA–protein
interaction site (as assayed by bound ChIP-seq motifs or DNase
I footprints), and 99% is within 1.7 kb of at least one of the
biochemical events measured by ENCODE (5). Single nucleotide
polymorphisms (SNPs) associated with disease by GWAS studies
are enriched within non-coding functional elements, with a
majority residing in or near ENCODE-defined regions that are
outside of protein-coding genes. This reliance on DNA has been
recently fostered by the development of genome-wide polygenic
scores for five common diseases, including coronary artery
disease, atrial fibrillation, type 2 diabetes, inflammatory bowel
disease, and breast cancer (6). These polygenic risk predictors
included the assessment, for each condition, of up to 7 million
variants, a far cry from the conventional monogenic approaches.
These polygenic risk scores could identify a substantially larger
fraction of the population than is found by rare monogenic
mutations, at comparable or greater disease risk. The recent
introduction of next generation sequencing capabilities allowing
the comprehensive assessment of the entire genome sequence
with few hundred dollars is feeding upon this perspective.

And yet, the assessment of the DNA is most likely not enough
to obtain a really comprehensive perspective of the individual,
to be exploited to improve health and well-being (2, 7). Other
realms ought to be explored, including the transcriptome, the
metabolome, the proteome, the microbiome, and the epigenome.
There are indeed challenges in exploring these additional metrics,
when compared with the assessment of the DNA. They are often
less developed from a technological standpoint, in general less
stable and often more difficult to measure. Moreover, the most
daunting challenge, as yet to be properly addressed, is their
integration (see below).

BEYOND THE GENOME

Beside the collection and the analysis of biological data,
other data sets are entering into the arena of personalized
medicine. Up to this point, they have not provided robust
metrics to discern the feature of individuals within populations,
nor to cater reliable predictive markers, and yet there is a
widespread enthusiasm and thrust, that their implementation
would significantly improve the management of patients and
more broadly of the individual health status. A case in point is
represented by the exposome, whose goal is to collect a vast array
of data, deemed crucial for the well-being, which include diet,
pollution, and stress, among others (8). While the collection of
these data may appear (and still is) ephemeral, the introduction
of new technologies, including applications in smart phones and
portable devices, is promising a more standardized, robust mean
to record, organize and track the various information included in
this realm.

Another approach that holds great promise is the integration
of imaging with other data, including genetic information. In
the context of the UK Biobank (9), to determine the “genetic
architecture” of brain structure and function, Elliott et al. (10)
have completed genome-wide association studies of thousands

functional and structural brain imaging phenotypes from UK
Biobank, from close to more than 8,000 patients. Strikingly,
they have found that several of these phenotypes were heritable.
Notably, they also detected clusters of associations between
single nucleotide polymorphisms and imaging phenotypes.
Moreover, an association between these imaging patterns
and the future development of neurological syndromes
was found.

Collecting cognitive information, albeit sensitive from the
protection of the personal data perspective, remains a largely
untapped, and yet promising resource. As an example, again UK
biobank has been prospectively collecting these data, through
battery of tests, designed to be administered in a short time frame
(roughly 15min), without the need of an examiner, since digitals
are used to collect the data. Five cognitive abilities are assessed,
namely reasoning (ability to solve verbal and numeric reasoning
problems), reaction time (response time to visual stimuli),
numeric, visuo-spatial and prospective memory (11). Indeed,
from a clinical perspective, cognitive abilities are an important
component in epidemiologic research, as cognitive impairment
is a risk factor for a broad range of health-related conditions,
including cardiovascular diseases and earlier mortality. From
a methodological standpoint, the measurements to provide a
score of cognitive ability is complex, since the different cognitive
scores are inter-correlated. For this reason methodologies based
on Principal Components Analysis (PCA) are used to highlight
the major sources of variance in a “general factor of cognitive
ability” (11).

CHALLENGES OF DATA INTEGRATION

Despite the need has existed for a long time, and the realization
that effective translation from research to cure will require
systematic access and integration of research and health care at a
large scale and possibly across institutions and countries, reliable
tools to integrate data sets remains one of the most daunting
challenges faced by the field. Even the combination in a unique
model of omic data is fraught with controversies, and lacks a
consensual, robust methodology.

Approaches such as Non-negative Matrix Factorization
(NMF) and more recently Multi Omics Factor Analysis
(MOFA) have gained traction, and appear to provide at
last inroads toward this goal. NMF was first proposed as a
method to decompose images, for example, faces into parts
reminiscent of features such as eyes, nose, mouth, cheeks,
and chin. It has been then applied to microarray data, where
it was able to reduce the dimension of expression data
from thousands of genes to few metagenes (12). We then
applied NMF for the first time to the analysis of DNA copy
number variation data (13). Lately, NMF has been used to
integrate data from different sources, e.g., single cell RNA
and single cell ATAC-seq data (14). Another promising tool
to integrate data is Multi-Omics Factor Analysis (MOFA),
which aims to infer hidden factors underlying biological and
technical sources of variability. To this end, MOFA defines
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axes of heterogeneity, either shared or specific across data
modalities (15).

On more general terms, one of the main obstacles toward data
integration is their comparability and consistency. Biomedical
data are oftentimes heterogeneous, incomplete and imprecise by
nature. Even the task of obtaining and integrating Electronic
Health Records (EHRs) across hospitals, within a country,
has proven much more complex than anticipated, even in
the most advanced health care systems (16). Indeed, even in
the US where more than 90% of the hospitals have adopted
EHRs tools, these are obtained from various companies, and
their ability to communicate remain limited. In Europe as
well, initiatives are ongoing to establish robust platforms for
collecting and sharing standardized data, such as DIFUTURE
in Germany (17) and other similar initiatives in single EU
states, as Alleanza contro il Cancro in Italy (18). When
compared with the US, one advantage in Europe seems to
be the possibility to generate networks like Data Integration
Centers that could collect and process data at the national and
supranational level.

The introduction of machine learning within the frame of
Artificial Intelligence (AI) approaches appears particularly suited
to address these challenges, although even within this realm
quantity of the original data and their proper standardization
remain of paramount importance (19, 20). Also, at several levels
that go beyond the obvious privacy concerns, AI poses serious
concerns, including adversarial attacks (21), hence appropriate
ethical boundaries would need to be implemented (22).

ETHICAL CHALLENGES, THE GDPR, AND

BEYOND

The availability of “big data” is posing significant challenges
also from an ethical standpoint. The recent introduction in
the European community of the EU General Data Protection
Regulation (GDPR) is a comprehensive attempt to protect
privacy rights of the individuals, while fostering research and
more specifically free scientific data exchange (23). Despite
its considerable sanctionatory harshness (up to 4% of a
company’s yearly global revenues, in case of non-compliance),
the general philosophy underlying the GDPR revolves around
decentralization, through the delegation of responsibility to data
controllers. Additionally, the GDPR increases the role of internal
review boards (IRBs) and ethical committees, with an enhanced
role in policy making. Albeit it is too early to properly assess
the impact and the role of GDPR in the management of Big
Data, nevertheless it is certain that tensions will arise around
the management of the data and to properly regulate their use
and who could assess them. Two issues in particular that are
emerging have to do to the need to request again to patients
whether their data could be used, for research projects that
may go beyond the specific scope of the initial consent, and
whether the somehow relaxed rules imposed on academia in
handling data could be also extended to commercial players
under the provision that the data have been sought and obtained
for “scientific research.”

Along these lines, start-up genetics companies are now
offering genome sequencing at no cost. Even if individual
data will remain anonymous and under the informed consent
approval, this approach may foresee the commercialization of
genetic information. Other companies have set up platforms that
connect people and commercial entities to buy and sell DNA,
sequencing, health-related information.

As it has been claimed, the GDPR, if loosely interpreted,
may lead to the indefinite storage of personal, sensitive data,
including genetic, also by commercial research entities, for any
research purposes, and even processed without the data subject
knowledge. In fact, within the frame of this interpretation of the
GDPR, the individual may not have even the option to “opt-
out” (24). In fact, the exploitation of genealogy databases, or
more broadly consumer genomics databases, allows to identify
up to 60%, and soon nearly any US-individual of European-
descent in the near future, using demographic identifiers,
including research participants of public sequencing projects
(25). These approaches have been recently successfully used by
law enforcement agencies to identify criminals, posing significant
ethical and legal challenges (26).

THE FUTURE: PARTICIPATORY MEDICINE

As noted above, the new era of Big data in medicine provides
several new challenges, alongside great opportunities, to improve
the health for human kind, not only for wealthy nations, but
also for underdeveloped countries. To this end, it is fair to
say that a profound cultural shift ought to occur, which entails
professional figures and stakeholders that up to now have not
been engaged in previous revolutions. Patients, doctors, but
also clinical laboratory technicians and researchers would need
to acquire new knowledge, and most relevantly interact and
acquire novel frames of mind and perspectives, leading to an
entirely overhauled health eco-system (27). Clinicians would
have to engage and interact more pervasively with clinical
laboratory technicians and researchers, and researchers and
clinical laboratory technicians to work more closely together.
Also, patients would be required to acquire notions of genetics,
with the final goal being the removal of barriers that at the present
time are still preventing the delivery of the best treatments to
patients, to arrive to a form of “participatory” medicine among
patients, doctors and their community (28). Along this line, the
whole framework of data, information, knowledge, and wisdom
(DIKW) has been proposed for personalized medicine, whereby
“smart patients” may take a primary and leading role in their
healthcare, assuming higher levels of responsibility for their own
health and wellness (29).

We hope that this goal is not over-ambitious and could be
reached in a future not too far.
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