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LAY ABSTRACT
In our study, we wanted to know how the brain changes 
after intensive attention training. Two young adults with 
traumatic brain injury (car accident and fall from height) 
were administered intensive attention training for 20 h. 
To measure the intervention effect, the patients under-
went a brain scan in an MRI-camera, while performing 
a test of vigilance. The vigilance test requires that you 
use your attention. The brain imaging showed that the 
brain activity was more stable and with less variabi-
lity after the attention training. These findings suggest 
the potential benefit of attention training in regulating 
neural networks. More studies are needed to better 
illustrate the linkage between changes in the brain and 
intervention effect.
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Attention deficit is common after traumatic brain 
injury (TBI). Since attention supports other cognitive 

functions, remediation of impaired attention should have 
a high priority early in the rehabilitation process (1). To 
better understand the recovery process, studies concer-
ning brain mechanisms underlying different remediation 
techniques are also highlighted (2). A series of neuroima-
ging studies has shown that different aspects of attention 
including monitoring skills are dependent on functional 
connectivity networks of the prefrontal cortex, anterior 
cingulate cortex, and parietal cortex (3–8).

Attention training in patients with TBI has resulted 
in reduced frontoparietal activity suggesting a redu-
ced demand for attentional processes post-training (9). 
Attention Process Training-II (APT-II) (10–13) is recom-
mended as a standard practice for attention dysfunctions 

Objective: To explore functional connectivity after 
intensive attention training in the chronic phase after 
traumatic brain injury as clinical evidence indicates 
that intensive attention training improves attention 
dysfunction in persons with traumatic brain injury.
Design and subjects: A case series study. Two 
young adults, 13- and 18-months post traumatic 
brain injury, with traumatic brain injury induced 
attention deficits were assigned to 20 h of inten-
sive attention training and neuroimaging.
Methods: Functional magnetic resonance imaging 
during a psychomotor vigilance test was conducted 
pre- and post-intervention.
Results: The neuroimaging indicated both increased 
and decreased connectivity density in frontal, 
posterior and subcortical brain regions, for some 
regions with separate change patterns for left 
and right hemisphere respectively, and an overall 
reduction in variability in functional connectivity.
Conclusion: The changed and decreased variability 
of functional connectivity in various brain regions, 
captured by fMRI during a psychomotor vigilance 
test after direct attention training in a small sample 
of persons with traumatic brain injury, suggests 
further studies of functional connectivity changes 
in neural networks.
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post TBI (14–16). The APT-II is a direct, process-based 
attention training (10), promoting awareness and genera-
lization through metacognitive strategy training. It is psy-
chometrically validated (1, 17–20) with emerging radio-
logical evidence suggesting reorganization of attention 
networks post training (21). Our objective is to explore 
functional connectivity after intensive attention training 
in the chronic phase after TBI exploring the potential 
impact of attention training on the frontoparietal attention 
network.

METHOD
The current pilot study is exploratory with a pre- and post-
design of APT-II in 2 patients with TBI in the chronic phase. 
Twenty hours of APT-II was administered (1-h sessions, 3–5 
times weekly). The inclusion criteria derive from a larger study 
(20): 18–40 years, > 12 months post TBI, > 7 scaled score (SS) 
in Matrices (logical reasoning) in Wechsler Adult Intelligence 
Scale-IV (WAIS-IV) (22), mild to moderate attention deficit 
as indicated by the APT-test (indicative test for severity and 
nature of attention deficit within the APT-II) defined as < 70% 
accuracy on 2 out of 5 sublevels of attention in the APT-test (10). 
Exclusion criteria: signs of dementia (history or CT-scan) (22); 
contraindications for functional magnetic resonance imaging 
(fMRI). Written information about the study was delivered and 
consent was obtained. The Glasgow Outcome Scale – Extended 
(GOSE) (23) was used to evaluate functional outcome and over-
all recovery. Pre- and post fMRI including inclusion assessment 
was conducted within a week adjacent to the treatment period.

Neuroimaging protocol

Magnetic resonance imaging (MRI) data were acquired in 
a whole-body 3T clinical MRI scanner (Magnetom Prisma, 
Siemens Medical Solutions) equipped with a 64-channel 
phased-array receiving head coil. The protocol included: (i) 
Conventional clinical 3D MRI scans of T1-weighted MPRAGE, 
T2 and FLAIR; (ii) Diffusion tensor imaging of the whole brain; 
(iii) Perfusion mapping with PCASL; (iv) The longer session of 
20 min of BOLD fMRI during a continuous psychomotor vigi-
lance task (PVT) that requires sustained attention (24, 25) was 
used to avoid a learning effect in PVT (26). The main acquisition 
parameters for the BOLD fMRI included: TE/TR = 33.1/720 ms, 
flip angle = 52°, 72 slices of 2 mm thick, FOV = 208×180 mm, 
matrix size = 104×90. The data acquisition was accelerated twice 
with in-plane GRAPPA parallel imaging and further accelerated 
with a multiple band factor of 8 in the slice direction. A total of 
1655 dynamic timeframes were acquired.

Functional connectivity (FC) metrics from the BOLD fMRI 
during the PVT reflect statistical associations between brain 
activity time series, like those derived from resting-state fMRI 
data (27). To remove first-order effect of task-evoked activa-
tions that can inflate FC estimates, we used a standard approach 
that flexibly fits and removes task-evoked responses. The fMRI 
datasets underwent a preprocessing pipeline (28, 29) based on 
programs from the AFNI software package (http://afni.nimh.nih.
gov/afni), followed by a quantitative data-driven analysis fram-
ework (QDA) (30, 31). A sliding window approach was used 
to estimate FC between brain regions within shorter time seg-
ments. For each time segment, we used the QDA framework to 
compute the local (a given voxel in the brain) functional connec-
tivity strength index (CSI) and connectivity density index (CDI) 

with the rest of the brain. The window length affects the tem-
poral resolution of the analysis, and different window lengths 
are typically used to capture changes over different timescales 
(32, 33). To investigate the dynamic nature of CDI and CSI met-
rics during PVT, for each metric, we computed systematically 6 
time series from each fMRI dataset by using 2 different window 
lengths (3 and 4 min) in combination with 3 different levels of 
overlapping (0.50 and 75%).

The means of the time series for CDI and CSI datasets for the 
participants underwent a paired t-test to assess the FC change 
pre- vs post-APT-II intervention. The statistical significance 
was evaluated by a voxel-wise threshold p < 0.001 (t > 4.2) to 
form initial cluster candidates, followed by a cluster-size limit 
of n ≥ 54 to warrant a family-wise error rate (FWER) p ≤ 0.01 
as determined by permutation simulations. The number of per-
mutations was set to 5 × 104. As discussed in previous studies 
(34, 35), a QDA framework can derive the connectivity metrics 
for each local voxel with the rest of the other voxels in the 
brain and can be used to assess overall how well the local voxel 
is connected with the rest of brain. As the QDA metrics do 
not provide information on where and how well specific brain 
regions are connected, a seed-based analysis using the AAL3 
atlas (36) was performed. Using the average time courses of 
the preprocessed fMRI signals for the AAL3 Region of Interest 
(ROI), the Pearson correlation coefficients (CC) between dif-
ferent pairs of ROIs defined in AAL3 were computed to form 
a symmetric cross correlation matrix. The ROI-based analysis 
of FC is typically measured using static metrics, which uses 
the entire time series for more accurate and stable estimates of 
long-term FC.

Case presentations

Case 1. A 20-year-old male (left-handed, 11.5 years of edu-
cation) suffered a TBI after a fall accident, Glasgow Coma 
Scale (GCS) = 5 (37, 38). Early MRI showed diffuse axonal 
injury (DAI) of grade III with a subdural haematoma on the 
left, contusion bleeding in the left frontal lobe and minor 
bleeding in the internal capsule. Two weeks post-injury at the 
Intensive Care Unit, he followed an extensive rehabilitation 
programme (6 weeks inpatient, 5 months home-based, and 4.5 
months outpatient rehabilitation). He then resumed studies 
with an adjusted education curriculum while being admit-
ted to the outpatient brain injury rehabilitation programme 
for young adults. He reported retrograde amnesia for 2 years 
before the incident, flat affect, difficulty finding words, dif-
ficulty concentrating during reading, and social isolation. He 
presented an average level of abstract thinking (Matrices, 
WAIS-IV: raw score [RS] = 19 points, SS = 11 points). The 
APT test indicated mild attention deficit (sustained attention: 
67% and selective attention: 63%). APT-II was administered 
18 months post-injury at the age of 21 years and 9 months. 
When discharged from the rehabilitation team at the age of 
25, GOSE was 6 (23).
Case 2. A 21-year-old female (right-handed, 12 years of edu-
cation) sustained a TBI in a car accident. Medical records 
reported a short post traumatic amnesia (˂ 24 h) and only a 
few seconds of loss of consciousness (˂ 30 min), correspon-
ding to GCS = 15. MRI showed a minor tissue loss in the left 
fronto-basal anterior area, nonspecific supratentorial bilateral 
white matter changes, and minor extra-axial bleeding residuals 
on the left side of the surgery area. When medically stable (2 
weeks post injury), she received additional inpatient care for 
4 weeks. After a planned skull reconstruction, she was refer-
red to home-based rehabilitation (4 weeks). Four months post-
injury, she started an adjusted education programme at the 
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university while being admitted to the outpatient brain injury 
rehabilitation programme for young adults. She reported redu-
ced social interaction, concentration difficulties, distractibility, 
mnemonic problems, difficulties in word-finding and theory 
of mind, headache, fatigue, tinnitus, and sensitivity to stress. 
She attained above average on abstract thinking (Matrices, 
WAIS-IV: RS = 22 points, SS = 13 points). The APT test indi-
cated moderate to severe attention deficit (complex sustai-
ned attention: 50%, selective attention: 40% and alternating 

attention: 37.5%). APT-II was administered 13 months post-
injury, at the age of 22 years and 7 months. When discharged 
from the rehabilitation team at the age of 25, GOSE was 8.

RESULTS
FC during the psychomotor vigilance test

Fig. 1. Summary of task-state functional connectivity (FC). (A) The average connectivity density index (CDI) metrics for case 1 and 2 pre- vs 
post-APT-II for the ROIs listed in Table I. The main anatomical areas for ROIs 1–7 are thalamus, fusiform gyrus, R-supramarginal gyrus, MCC, 
R-precentral gyrus, L-postcentral gyrus, and R-Cuneus, respectively, (B) The paired t-test results for the CDI data pre- vs post-APT II. The colour 
bar indicates the t-score scales, and the numerical annotations indicate the locations of the ROIs shown in figure 1a and Table 1, (C) Pearson CC 
matrix differences based on the entire fMRI time course of 20 min long PVT (post-APT – pre-APT-II) for AAL3 ROIs in case 2, (D) Pearson CC for 
SMG-L and SMG-R with the rest of the AAL3 ROIs in case 2. (E) Pearson CC matrix differences based on the entire fMRI time course of 20 min long 
PVT (post-APT – pre-APT-II) for AAL3 ROIs in case 1. (F) Pearson CC for SMG-L and SMG-R with the rest of the AAL3 ROIs in case 1.

https://medicaljournalssweden.se/jrm-cc
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Table I. Differences in the connectivity density index metrics post-APT-II intervention between specific brain regions, with results for case 
1 and 2, including the cluster size, centre of mass coordinates in MNI-template space (CMx, CMY, and CMz), mean t-score ± the standard 
error of the mean (SEM) for the ROIs, and their anatomical overlaps with the brain atlas CA_ML_18_MNI

Nr
Volume 

(ml)
CMx 

(mm)
CMy 

(mm)
CMz 

(mm)
t-score 
(± SEM) R/L Overlap with brain atlas template (CA_ML_18_MNI)

1 11,021 −7.1 389 −7.5 −4.37 ± 0.15 B 50.4% Thalamus, 12.3% Fusiform gyrus, 5.3% Parahippocampal Gyrus
2 6993 −9.3 60.7 −45.9 −4.39 ± 0.19 B 41.2% Fusiform gyrus, 30.6% Cerebellum, 11.1% Cerebellar Vermis
3 4644 −55.8 32.9 23.8 −4.42 ± 0.22 R 50% Supramarginal Gyrus, 42.2% R-Superior Temporal Gyrus
4 2835 −1.1 32.4 35.7 −4.38 ± 0.25 B 74.8% MCC, 19.8% PCC,
5 2349 −37.6 13.3 61.3 4.41 ± 0.28 R 80.3% Precentral Gyrus, 19.6% Superior and Middle Frontal Gyri
6 2160 46.0 18.8 52.2 4.42 ± 0.27 L 78.0% Postcentral Gyrus, 20.2% Precentral Gyrus
7 1809 −13.7 88.8 27.6 4.44 ± 0.33 R 59.1% Cuneus, 33.8% Superior Occipital Gyrus

R: right, L: left, B: Bilateral. The ROIs are numbered in descending order of the cluster size.

Table II. Summary of PVT data for the subjects pre- and post-APT-II. The results are provided in raw scale unless specified. Available 
reference values for healthy controls are provided

Assessment

Case1 Case 2 Control reference 

Pre Post Pre Post Male Female

PVTa RT, ms 305 (105) 320 (131) 250 (262) 113 (40) 418 (57) 406 (65)
PVT Error, % 8.2 6.0 12.1 14.5 5.1 4.0
Time for MRIe 18 19 13 14

aPsychomotor Vigilance Test (PVT)(24, 25) was used for assessment of sustained attention during functional magnetic resonance imaging (fMRI); scoring was 
based on reaction-time (RT) and error-rate (Error). Intervals between stimuli range from 2 to 10 s, with the entire 20-min task administered in a pseudo-random 
fashion. eThe time for MRI is given in months after the traumatic incident. The reaction time for case 2 is very short compared even to results for healthy volunteers, 
which are typically above 400 ms (24, 25). This result could be due to an artefact or reduced inhibition often connected to TBI. The error rate in PVT increased 
in the same participant, probably due to the reduced reaction time. In previous studies, a high error rate is linked to reduced alertness, slower problem-solving, 
and poorer psychomotor skills (39–41). “*” denotes items with statistically significant differences in performance pre- vs post-intervention (p < 0.05 uncorrected 
for multiple comparison).

As shown in Fig. 1 and Table I, differences in the CDI 
metrics after the APT-II were significant (FWER, p ≤ 0.01) 
for both participants, with reduced variability post-inter-
vention. The CDI was significantly enhanced in the right 
frontal eye field (R-FEF), and middle R-superior frontal 
gyri, R-cuneus and superior occipital gyrus, and bilateral 
motor-sensory cortex. In contrast, a significant reduction 
was detected in the following brain regions: thalamus, 
fusiform gyrus, para-hippocampal gyrus (PHC), cere-
bellum, middle and posterior cingulate (MCC, PCC), 
R-supramarginal gyrus (SMG), R-superior temporal 
gyrus (STG). The CSI metrics showed a similar trend.

The Pearson CC matrix indicated somewhat reduced 
connectivity among the brain regions in the frontal lobe 
(AAL3 ROI indexed 1–34) for case 2 (Fig. 1C). In cont-
rast, the connectivity with posterior brain regions was 
enhanced post-APT-II. Similarly, the occipital gyri (ROI 
index 49–54) exhibited reduced connectivity with the 
frontal lobe but enhanced connectivity with other visual 
areas and the rest of the brain. Please note, the region-
specific connectivity in parietal, SMG, and angular gyri 
(ROI indexed 63–70) exhibited different change patterns 
for the left and right hemispheres (Fig. 1D and F).

The measured reaction time in PVT during fMRI 
showed mixed results post-APT-II (see Table II). 
Decreased reaction time was accompanied by relati-
vely high error rates.

DISCUSSION
A local connectivity density increase was detected in 
the right hemisphere in middle R-superior frontal gyri, 

R-cuneus and superior occipital gyrus, and also in the 
FEF, which is a vital part of the dorsal frontoparietal 
attention system that engages in an orienting process to 
prioritize visual input (7).
A local connectivity density decrease was found in thala-
mus, fusiform gyrus, PHC, MCC, PCC, SMG, R-superior 
temporal gyrus (STG). PCC plays a pivotal role in regula-
ting the focus of attention (42) and is reported to be a part 
of the default mode network (DMN), the task negative 
network (3, 4). 
The FC variability was reduced for both participants. 
Prior work (43) has shown reduced variability in psy-
chometric tests, the Paced Auditory Serial Attention 
Test (PASAT) (44) after APT-II. Our findings provide 
cautious insight in the recovery process post-training. 
The separate change patterns for the left and right 
hemispheres in parietal, SMG, and angular gyri may sup-
port findings saying that right hemisphere is connected to 
executive attention systems (7). The current results, that 
is, changed connectivity and reduced variability during 
PVT, are in line with changes in FC found after atten-
tion training (22) and are substantiated by the theory of 
balance between integrated and segregated networks for a 
healthy functioning brain (45).

This exploratory pilot study is limited by the small 
sample size. The connectivity changes might thus be 
the result of the natural course in the brain after a trau-
matic lesion since the brain is continuously changing, 
also in the chronic phase. Nevertheless, the changes 
in connectivity observed provide a result that justifies 
further investigations into how the relationship between 
connectivity and response to attention training can be 
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captured during a psychomotor vigilance test by fMRI. 
For clinical translation, it is recommended to disclose 
psychometric data as a supplement to the neuroimaging 
protocol.

In conclusion, the results showed both an increase and 
a decrease in connectivity density in frontal, posterior and 
subcortical brain regions, for some regions with separate 
change patterns for left and right hemisphere respectively, 
and an overall reduction in variability in FC (indicating 
a more robust connectivity) after intensive APT-II in 2 
patients with TBI. Whether these FC findings are rela-
ted to intervention effects cannot be concluded due to a 
small sample. In future studies, the neuroimaging proto-
col would benefit from disclosing psychometric data on 
sustained attention and inhibition.
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