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Single-cell analysis reveals new evolutionary
complexity in uveal melanoma
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Uveal melanoma (UM) is a highly metastatic cancer that, in contrast to cutaneous melanoma,

is largely unresponsive to checkpoint immunotherapy. Here, we interrogate the tumor

microenvironment at single-cell resolution using scRNA-seq of 59,915 tumor and non-

neoplastic cells from 8 primary and 3 metastatic samples. Tumor cells reveal novel subclonal

genomic complexity and transcriptional states. Tumor-infiltrating immune cells comprise a

previously unrecognized diversity of cell types, including CD8+ T cells predominantly

expressing the checkpoint marker LAG3, rather than PD1 or CTLA4. V(D)J analysis shows

clonally expanded T cells, indicating that they are capable of mounting an immune response.

An indolent liver metastasis from a class 1B UM is infiltrated with clonally expanded plasma

cells, indicative of antibody-mediated immunity. This complex ecosystem of tumor and

immune cells provides new insights into UM biology, and LAG3 is identified as a potential

candidate for immune checkpoint blockade in patients with high risk UM.

https://doi.org/10.1038/s41467-019-14256-1 OPEN

1 Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA. 2 Sylvester Comprehensive Cancer Center, University of Miami
Miller School of Medicine, Miami, FL, USA. 3 Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA. 4 Cell IDx
Inc., San Diego, CA, USA. 5Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA. *email: harbour@miami.edu

NATURE COMMUNICATIONS |          (2020) 11:496 | https://doi.org/10.1038/s41467-019-14256-1 | www.nature.com/naturecommunications 1

http://orcid.org/0000-0003-3137-6847
http://orcid.org/0000-0003-3137-6847
http://orcid.org/0000-0003-3137-6847
http://orcid.org/0000-0003-3137-6847
http://orcid.org/0000-0003-3137-6847
http://orcid.org/0000-0001-7682-6106
http://orcid.org/0000-0001-7682-6106
http://orcid.org/0000-0001-7682-6106
http://orcid.org/0000-0001-7682-6106
http://orcid.org/0000-0001-7682-6106
http://orcid.org/0000-0001-9125-1718
http://orcid.org/0000-0001-9125-1718
http://orcid.org/0000-0001-9125-1718
http://orcid.org/0000-0001-9125-1718
http://orcid.org/0000-0001-9125-1718
http://orcid.org/0000-0002-1104-9809
http://orcid.org/0000-0002-1104-9809
http://orcid.org/0000-0002-1104-9809
http://orcid.org/0000-0002-1104-9809
http://orcid.org/0000-0002-1104-9809
mailto:harbour@miami.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Uveal melanoma (UM) is a highly metastatic cancer that, in
contrast to cutaneous melanoma, is largely unresponsive
to checkpoint immunotherapy1–3. Here, we interrogate

the tumor microenvironment (TME) at single-cell resolution
using scRNA-seq of 59,915 tumor and non-neoplastic cells from
eight primary and three metastatic samples. Analysis of tumor
cells confirms the global genomic landscape established from bulk
analysis and reveals newly described subclonal genomic com-
plexity and transcriptional states consistent with phenotypic
plasticity4.

UM is notable for its well-characterized genomic landscape,
high metastatic death rate, and resistance to therapy, including
immune checkpoint inhibitors5. Prognostically distinct molecular
subtypes have been identified based on gene expression profile
(GEP), progression mutations, and chromosome copy number
variations (CNVs)6–10. UMs with the class 1 GEP typically harbor
mutations in EIF1AX (class 1A, low metastatic risk), SF3B1, or
other splicing factors (class 1B, intermediate metastatic risk), and
exhibit chromosomal gains of 6p and 8q. Those with class 2 GEP
(high metastatic risk) are associated with inactivating mutations
in BAP1, loss of chromosome 1p, 3, 6q and 8p, and gain of 8q.
Based on computational inference from bulk sequencing data,
UM appears to undergo an early punctuated evolutionary burst in
which a full set of canonical aberrations arises specifying a par-
ticular subtype, after which further aberrations accrue as neutral
passenger events10.

Results
Single-cell RNA sequencing analysis. To probe the TME at
single-cell resolution, we performed droplet-based single-cell
RNA sequencing (scRNA-seq) on 59,915 single cells from eight
primary and three metastatic tumors, representing all GEP
prognostic subtypes and BSE mutation categories (Fig. 1a, Sup-
plementary Figs. 1, 2, and Supplementary Tables 1, 2). Dimen-
sional reduction analysis using t-distributed stochastic neighbor
embedding (t-SNE) reveals a diversity of tumor and non-
neoplastic cell types (Fig. 1b and Supplementary Data 1). As
expected, tumor cells cluster most strongly according to the GEP-
based clinical prognostic classifier, with the primary division
occurring between class 1 (BAP1 wild-type) and class 2 (BAP1
mutant) tumors (Fig. 1c). Individual tumors varied greatly in
their composition, with cellular complexity increasing from pri-
mary class 1 to metastatic class 2 tumors (Fig. 1d). Interestingly,
among the 12 genes comprising the validated GEP clinical
prognostic test11, five are expressed predominantly in tumor cells
as expected (EIF1B, HTR2B, ECM1, CDH1, and ROBO1), but one
is expressed predominantly in T cells (SATB1), and the remaining
six are expressed in both tumor and immune cells (Supplemen-
tary Fig. 3 and Supplementary Data 1). These findings suggest
that the accuracy of the GEP test may be due, at least in part, to
its sampling of a transcriptional cross-section of this complex
TME.

Single-cell CNV analysis. Next, we used CNVs as a means to
probe the clonal structure of each tumor. The CNV content of
individual cells was ascertained from scRNA-seq data using
inferCNV, which was orthogonally validated against scDNA-seq
(Supplementary Fig. 4a). Hidden Markov and Bayesian latent
mixture modeling were performed to determine subclonal CNV
events and remove low confidence CNV calls. This analysis
reveals previously unappreciated complexity in both canonical
and non-canonical CNVs (Fig. 2a–c and Supplementary Fig. 4b).
While canonical CNVs dominate the chromosomal landscape as
expected, there are multiple subclonal canonical and non-
canonical CNVs across the samples. Surprisingly, class 1

tumors contain subclones of canonical class 2 CNVs (e.g. loss of
1p, 3, and 8p), and class 2 tumors contain subclones of canonical
class 1 CNVs (e.g. gain of 6p and 6q). Further, we find evidence
that canonical CNVs do not always occur in a single event
but can arise from ongoing genomic evolution. For example,
five cases (BSSR0022, UMM062, UMM063, UMM065, and
UMM067L) show evidence for initial gain of 8q followed later by
gain of 8p. In UMM065, loss of 3q in a 23% subclone is followed
later by loss of 3p in a 6% subclone, resulting in LOH3. Despite
harboring LOH3 cells, the GEP of this tumor is class 1, most
likely because LOH3 is in a small subclone and a BAP1 mutation
has not occurred, consistent with the notion that the class 2 GEP
requires LOH3 and mutation of BAP1 on the other copy of
chromosome 3 (ref. 12). Previous studies showed that canonical
genomic aberrations arise early in UM and give rise to one of
three principal evolutionary trajectories associated with signature
driver mutations—EIF1AX in class 1 A, SF3B1 and other splicing
mutations in class 1B, and BAP1 in class 2 tumors9,10, yet
the single-cell resolution of our current findings reveal that these
tumors continue to evolve with the development of heretofore
unrecognized non-canonical CNV subclones that may contribute
to tumor progression, as suggested by recent work13.

Transcriptional trajectory analysis. In cutaneous melanoma,
there is growing evidence that tumor cells undergo reversible
switching between transcriptional states and that this plasticity
drives metastasis and therapy resistance4,14. To elucidate tran-
scriptional states across UM cells, we first analyzed scRNA-seq
data using SCENIC15 to identify potential co-expression modules
and their associated cis-regulatory elements. The most over-
represented motifs include those for oncoproteins MYC and JUN,
as well as the bHLH-PAS hypoxia-associated transcription factor
ARNT, all of which are enriched in cells of class 2 tumors
(Fig. 3a). Then, we analyzed scRNA-seq data using Monocle 2
(ref. 16), which reconstructs putative branching transcriptional
trajectories to identify potential relationships across calculated
states (Fig. 3b–d and Supplementary Figs. 5, 6). Pseudotime
ordering of all tumor cells yields a total of 16 states organized
into two main branches that self-assort according to GEP class 1
and class 2 (Fig. 3b, c). At the level of individual samples, cells
from class 1 tumors are enriched in states 1-4,14-16 and those
from class 2 tumors in states 5-13 (Fig. 3d), confirming the class
1/class 2 partition as a fundamental feature of the global mole-
cular landscape of UM. We then analyzed the trajectories of each
sample individually with Monocle 2 using branched expression
analysis modeling (BEAM) and hierarchical clustering to identify
genes enriched across states (Fig. 3e, Supplementary Fig. 6, and
Supplementary Data 2). Transcriptional states are identified that
are enriched for cells expressing HLA class I genes, consistent
with previous work17, as well as states associated with melanocyte
differentiation (PMEL) and TNF-alpha/NF-kB signaling (FOS,
FOSB, JUN, JUNB, EGR1). Within individual samples, these states
are distributed across subclones and cell cycle phases (Supple-
mentary Fig. 6), suggesting in vivo phenotypic plasticity that may
be analogous to that described in melanoma cell lines4.

Immune cell and V(D)J immune repertoire analysis. Adaptive
plasticity of tumor cells among transcriptional states is driven by
signals from the TME4,14, which we investigated by generating a
t-SNE plot of immune cells (Fig. 4a and Supplementary Fig. 7a)
and performing hierarchical clustering of the average gene
expression per cluster across tumor samples (Fig. 4b and Sup-
plementary Fig. 7b–d). T cells are present in all samples,
including CD8+ cytotoxic T cells (mean, 0.2% class 1 versus 17%
class 2 and metastatic) and CD8+ T effector memory cells (mean,
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Fig. 1 Aggregate analysis of 59,915 single cells from eight primary and three metastatic uveal melanomas. a Summary of study design. b t-SNE plot of
59,915 single cells distributed by annotated unsupervised clustering. c t-SNE plot of 59,915 single cells highlighted by gene expression profile (GEP) class.
d Pie charts of each of the eight primary and three metastatic tumors showing percentages of annotated cell types.
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Fig. 2 Single cell copy-number variation analysis of primary and metastatic uveal melanomas. a Representative CNV heatmaps with hierarchical
clustering from inferCNV analysis from each GEP class. b Summary plot of the CNV profiles from each of the 11 patients inferred from their scRNA-seq
data. CNVs were annotated by the chromosome arm in which the CNV event calculated by inferCNV occurred. Canonical CNV events in UM are shown at
the top as annotated (red, class 2; blue, class 1; green, class 1 and 2). Source data are provided as a Source Data file. c Clonality trees of each of the 11
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*indicates mutations that were found to occur in a subclone by bulk DNA sequencing and thus could not be assigned to a specific branch of the tree.
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2% class 1 versus 12% class 2 and metastatic) (Fig. 4c and Sup-
plementary Fig. 8a). Most T cells are CD8+, with smaller popu-
lations of CD4+ cells, including follicular helper cells, FOXP3+

regulatory cells, and naïve lymphocytes. V(D)J recombination
analysis of T and B cell receptors from scRNA-seq data reveals
clonally expanded T cells in only three samples (Fig. 4d), all class
2 primary tumors, but they are clonally expanded with exhausted

T cells. CD8+ T cell expression of exhaustion-associated immune
checkpoint molecules is strongest for LAG3, variable for TIGIT,
and minimal for PDCD1 (PD1), CTLA4, HAVCR2 (TIM3), and
TNFRSF9 (Fig. 4e and Supplementary Fig. 7c, d). Protein
expression of LAG3, CTLA4 and PD1 were orthogonally vali-
dated using multi-color IHC in 18 samples (Fig. 4f, g and Sup-
plementary Fig. 8b). These findings, coupled with the low
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expression of PD-L1 and PD-L2 in tumor cells (Supplementary
Fig. 9a, b), may in part explain the ineffectiveness of CTLA4 and
PD1 blockade in metastatic UM1 and suggest a potential role for
LAG3 in T cell exhaustion in UM. Similar to findings in other
cancer types18, LAG3 is also expressed in some CD4+ T cells,
FOXP3+ regulatory T cells, NK cells, and macrophage/monocytes
(Supplementary Fig. 10). CD14+ monocytes/macrophages are
present in all primary and metastatic samples, with CD68+

macrophages displaying a spectrum from M1- to M2-polarization
(Fig. 4b, c and Supplementary Fig. 7b). Few NK cells are present,
and they are distributed equally across tumor samples. B cells and
plasma cells are rare in most samples. Remarkably, however, a
provocative sample (BSSR0022) obtained from a solitary slow-
growing liver metastasis arising 29 years after treatment of a
primary class 1B tumor contains clonally expanded plasma cells,
suggesting that the unusually protracted and indolent clinical
behavior was facilitated by antibody-mediated immunity.

Discussion
These findings reveal a complex ecosystem of tumor and immune
cells and suggest that they co-evolve along trajectories associated
with specific sets of genomic aberrations10,19. It is interesting to
speculate that the long latency and low metastatic rate of class 1
UMs may be due, at least in part, to immune surveillance, which
could result from neoantigens generated by EIF1AX and SF3B1
mutations20. This possibility could be of clinical significance and
warrants further investigation. By contrast, we hypothesize that
the canonical genomic aberrations and increased overall aneu-
ploidy in class 2 tumors create an immunosuppressive micro-
environment that promotes metastasis through immune escape.
Consistent with this possibility, recent work has linked aneu-
ploidy to immune suppression and immunotherapy resistance
through gene dosage effects caused by arm level CNVs like those
seen in UM21 and by activation of NF-kB via the cGAS-STING
cytosolic DNA pathway22. It is interesting to speculate that one or
both of these mechanisms explain the association between
aneuploidy, metastasis and dysfunctional immune infiltrates in
class 2 UMs.

Our scRNA-seq V(D)J analysis showing clonally expanded
T cells and/or plasma cells in UM samples indicates that tumor
infiltrating immune cells are capable of mounting a response,
suggesting that low tumor mutation is not the only explanation
for the poor response of UMs to checkpoint inhibitors. Indeed,
our discovery of LAG3 as the dominant exhaustion marker in
UM may explain, at least in part, the failure of previous check-
point blockade targeting CTLA4 and PD1 (ref. 1). LAG3 is the
third immunoinhibitory receptor to be targeted in patients,
demonstrates considerable synergy with PD1, is expressed not
only on CD8+ T cells but also on NK cells and regulatory T cells,
and has unique properties that could significantly expand the
efficacy of checkpoint inhibitor therapy18. As such, LAG3 inhi-
bitors are being evaluated in a large number of clinical trials in
multiple cancer types23.

Methods
Patients and sample collection. Human tissue samples were obtained with patient
informed consent and approval of the Institutional Review Board of the University of
Miami. Immediately following surgical eye removal or liver resection, the tissue was
dissected to isolate the tumor region for single-cell dissociation. Metastatic tumor
tissue was intentionally sampled far from the tumor-liver interface to avoid con-
taminating normal liver tissue. Additional tissue samples were taken from the tumor
for DNA and RNA profiling. These samples were subjected to DNA extraction using
the Wizard Genomic DNA Purification kit (Promega, Madison, WI) and RNA
extraction using the PicoPure RNA Isolation kit (Thermo Fisher Scientific).

Tissue processing for single-cell suspension. Tissue samples were placed
immediately in gentleMACS C tubes (Miltenyi Biotec) containing 5 mL of DMEM
or RPMI1640 Media with 10% FBS and 400 U/mL of collagenase IV for digestion24.
The “Dissociation of soft tumors” protocol from the Miltenyi Tumor Dissociation
Kit was used with a slight modification. Briefly, samples were processed using a
gentleMACS dissociator (Miltenyi Biotec) using program “h_tumor_01” and
incubating at 37 °C for 1 h. Samples were processed again using program
“h_tumor_03” and passed through a 70 μm cell strainer (Miltenyi Biotec). After the
initial incubation step cells were kept on ice for the remainder of the protocol.
Wide Orifice 1 mL Pipet Tips (VWR) were used to prevent cell shearing. The cell
suspension then underwent a Debris Removal Solution (Milteni Biotec) protocol, a
density gradient method to remove dead cells and debris. The samples were
resuspended in D-PBS containing 0.1% BSA and filtered into Falcon Tubes
(12 × 75 mm) with Cell Strainer Cap (BD). An aliquot of the singe cell suspension
was stained with the LIVE/DEAD™ Viability/Cytotoxicity Kit for mammalian cells
(Invitrogen) to ensure viability was greater than 85%. Samples were processed
within 3 h from surgical removal to loading on the Chromium (10X Genomics)
instrument. We acknowledge that dissociation-associated artefacts may exist and
developed an optimized protocol to efficiently process these UM samples
consistently25.

Single-cell RNA sequencing. Single-cell RNA sequencing was performed using
the Chromium (10X Genomics) instrument. Single cell suspensions were counted
using both the Cellometer K2 Fluorescent Viability Cell Counter (Nexcelom) and a
haemocytometer and adjusted to 1000 cells/µl. UMM061, UMM062, UMM063,
UMM064, UMM065, UMM066, UMM069, UMM067L, UMM041L, and
BSSR0022 were run using the Chromium Single Cell 5’ Library & Gel Bead Kit v2,
Chromium Single Cell V(D)J Human T Cell Enrichment Kit, and Chromium
Single Cell V(D)J Human B Cell Enrichment Kit, (10X Genomics). UMM059 was
run using the Chromium Single Cell 3′ Library & Gel Bead Kit v2 (10X Genomics)
which is not compatible with the Chromium Single Cell V(D)J product. The
manufacturer’s protocol was used with a target capture of 10,000 cells for the 5’
gene expression samples and a target capture of 5,000 cells for the 3’ gene
expression sample (UMM059). Each sample was processed on an independent
Chromium Single Cell A Chip (10X Genomics) and subsequently run on a ther-
mocycler (Eppendorf). 3’ and 5’ gene expression libraries were sequenced using the
NextSeq 500 150-cycle high-output flow cells. B- and T- cell VDJ libraries were
sequenced on a MiSeq instrument.

Single-cell DNA sequencing. Single-cell DNA sequencing was performed using
the Chromium instrument. Single cell suspensions were counted using both the
Cellometer K2 Fluorescent Viability Cell Counter and a haemocytometer and
adjusted to 1,000 cells/µl. UMM069 and UMM041L were run using the Chromium
Single Cell DNA Library & Gel Bead Kit (10X Genomics) with a target capture of
500 cells. The samples were processed on Chromium Single Cell C and D Chips
(10X Genomics) according to the manufacturer’s protocol and subsequently run on
a thermocycler. Single-cell genomic DNA libraries were sequenced using the
NextSeq 500 300-cycle high-output flow cells.

Patient tumor RNA and DNA profiling. Tumor RNA samples were subjected to
gene expression profiling using the DecisionDx®-UM test (Castle Biosciences, Inc.), as
previously described11. Tumor DNAmutations were determined using the DecisionDx-
UMseq® targeted next-generation sequencing panel (Castle Biosciences, Inc.).

Fig. 4 Immune microenvironment of uveal melanomas with V(D)J recombination repertoire sequencing of B- and T- lymphocytes. a t-SNE plot of
9441 single immune cells present in the TME. b Heatmap of averaged RNA expression of immune cell clusters. c Three-dimensional bar chart of immune
cell subtypes as a percentage of immune cell population for each tumor. d Single-cell V(D)J recombination repertoire sequencing of T cells from 10 primary
and metastatic UMs and B cells from an indolent class 1B metastasis. Red, clonotypes≥4% T cell frequency; purple, clonotypes <4% and≥2.5% T cell
frequency; blue, clonotypes <2.5% and≥1.5% T cell frequency; gray, all remaining clonotypes <1.5% T cell frequency. Source data are provided as a Source
Data file. e Ridge plot of CD8+ T cell subset demonstrating strong expression of LAG3, moderate expression of TIGIT, and minimal expression of PD1,
CTLA4, TIM3, and TNFRSF9. f Quantification of multi-color IHC for CD8, LAG3, PD1, CTLA4, and DAPI. 18 total samples were analyzed by IHC including
7 that were analyzed by scRNA-seq and an additional 11 samples. Metastatic samples include BSSR0022 and UMM067L. Other samples represent primary
tumors. Quantitation of each sample was performed by whole-slide scanning of a single slide. Source data are provided as a Source Data file.
g Representative multi-color IHC images of a primary and a metastatic class 2 UM stained for CD8, LAG3, PD1, CTLA4, and DAPI (scale bar, 50 μm).
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Single-cell RNA sequencing analysis. Raw base call (BCL) files were analyzed
using CellRanger (version 2.1.1). The “mkfastq” command was used to generate
FASTQ files and the “count” command was used to generate raw gene-barcode
matrices aligned to the 10X Genomics GRCh38 Ensembl build 84 genome (version
1.2.0). The data from all 11 samples were combined in R (3.5.1, 3.5.2) using the
Read10X() function from the Seurat package (2.3.4) and an aggregate Seurat object
was generated26,27. Filtering was conducted by retaining cells that had unique
molecular identifiers (UMIs) greater than 400, expressed 100 and 8000 genes inclu-
sive, and had mitochondrial content less than 10 percent. No sample batch correction
was performed. This resulted in a total of 59,915 cells. Data were normalized using the
“LogNormalize” method and using a scale factor of 10,000. Using Seurat’s Scale.Data
() function and “vars.to.regress” option UMI’s and percent mitochondrial content
were used to regress out unwanted sources of variation. Cell cycle analysis was
conducted using the CellCycleScoring() with a list of cell cycle markers, from Tirosh
and colleagues28. The number of variably expressed genes were calculated using the
following criteria: normalized expression between 0.125 and 3, and a quantile-
normalized variance exceeding 0.5. To reduce dimensionality of this dataset, the
resulting 1865 variably expressed genes were summarized by principle component
analysis (PCA), and the first 20 principle components further summarized using
t-distributed stochastic neighbor embedding (tSNE) dimensionality reduction29. The
RunTSNE() wrapper function was used with the Barnes-Hut implementation of the
‘Rtsne’ package (0.15). Doublets were assessed using the DoubletFinder (2.0.2)algo-
rithm30 (Supplementary Fig. 1d) and few (<10%) doublets were observed outside of
the macrophage/monocyte population. Clustering was conducted with the
FindClusters() function using 20 PCA components and a resolution parameter set to
3. The original Louvain algorithm was utilized for modularity optimization31. The
resulting 58 louvain clusters were visualized in a two-dimensional tSNE representa-
tion and were annotated to known biological cell types using canonical marker genes
(Fig.1 and Supplementary Fig. 1). Tumor cells were identified using MLANA, MITF,
and DCT. Tumor cells were further divided into subgroups by expression of PRAME
and GEP genes (Supplementary Fig. 1). The following cell types were annotated using:
T Cells (CD3D, CD3E, CD8A), B cells (CD19, CD79A, MS4A1 [CD20]), Plasma cells
(IGHG1,MZB1, SDC1, CD79A), Monocytes and macrophages (CD68, CD163, CD14),
NK Cells (FGFBP2, FCG3RA, CX3CR1), Retinal pigment epithelium (RPE65), Pho-
toreceptor cells (RCVRN), Fibroblasts (FGF7), and Endothelial cells (PECAM1, VWF).
For the immune cell subset analysis, the SubsetData() function was used with “do.
clean” set to TRUE and the previously identified cell types (T cell, NK cell, B cell,
Plasma cell, monocyte and macrophage). This resulted in 16,740 immune cells that
were normalized using the “LogNormalize” method with a scale factor of 10,000. The
number of variably expressed genes were calculated using the following criteria:
normalized expression between 0.125 and 3, and a quantile-normalized variance
exceeding 0.5. The 4423 variably expressed genes were summarized by PCA, and the
first 20 principle components further summarized using tSNE as described above.
Clustering was conducted using 20 PCA components and a resolution parameter set
to 10. The original Louvain algorithm was utilized for modularity optimization. The
resulting 74 louvain clusters were used as input to the AverageExpression() function
to generate average RNA expression data for each cluster. Hierarchical clustering was
conducted on the RNA averaged clusters with immune cell genes aggregated from
the literature32,33 and visualized using a heatmap (Fig. 3, Supplementary Fig. 3)34.
The cell types described above clustered similarly with hierarchical clustering with the
corresponding immune cell genes. Immune cell subpopulations were identified using
genes previously reported to identify the following populations: T regulatory cells
(FOXP3, TNFRSF4, IKZF2, IL2RA), Follicular T cells (CD200, GNG4, CHN1, IGFL2,
ITM2A, CPM, NR3C1), Naive T cells (IL7R), CD8+ T effector memory cells (CD8A,
ZNF683), CD8+ resident memory cells (KLRK1, ITGAE [CD103]), Cytotoxic CD8+

T cells (PRF1, GZMA, GZMK, NKG7 with varying levels of expression of the
exhaustion markers LAG3, PD1, CTLA4, TIGIT, HAVCR2 [TIM3], and TNFRSF9 [4-
1BB]), CD8+ gamma delta T cells (TRDC, TRDG2), Mitotic CD8+ T cells (MKI67,
STMN1, HMGB2, TUBB, TUBA1B), Dendritic cells (CD1C and lack of expression of
C1QA, C1QB, and C1QC), Monocytes (S100A12, CLEC10A), M2 macrophages
(CD163, C1QA, C1QB, C1QC, IL10), M1 macrophages (C1QA, C1QB, C1QC, lack of
M2 macrophage markers). Mitotic macrophages (MKI67). B cells, plasma cells, NK
cells were identified as described above. These genes were annotated with data gen-
erated from the FindAllMarkers() Seurat differential expression analysis using the
default two-sided non-parametric Wilcoxon rank sum test with Bonferroni correction
using all genes in the dataset (Supplementary Data 1 and Supplementary Data 2) and
a literature review32,33. To generate the ridge plots (Fig. 4) and dot plots (Supple-
mentary Fig. 7), Seurat (3.0.0) was used on the CD8+ T cell subset. Seurat (3.0.0) was
only used to generate plots with data analyzed with Seurat (2.3.4). The Update-
SeuratObject(), RidgePlot(), and DotPlot() functions were utilized to generate the
plots from the Seurat 2 dataset generated above. Additional packages used for data
analysis include: ggplot2 (2.3.1,3.1.1), dplyr (0.7.8, 0.8.0.1), Rtsne (0.15), forcats (0.3.0,
0.40), bindrcpp (0.2.2), cowplot (0.9.3), Matrix (1.2-16), scales (1.0.0), jpeg (0.1-8),
colorRamps (2.3), paletter (0.0.0.9000), cellranger (1.1.0), DDRTree (0.1.5), psycho
(0.4.9), tidyverse (1.2.1), tibble (2.1.1), VGAM (1.1-1), irlba (2.3.3), stringr (1.4.0),
Biobase (2.42.0), purrr (0.3.2), readr (1.3.1), ggpubr (0.2v).

Single-cell CNV analysis. Raw BCL files for the DNA sequencing data were
processed using Cellranger DNA (version 1.0.0). The “mkfastq” command was used
to generate FASTQ files and the “cnv” command was used to generate CNV data

aligned to the 10X Genomics GRCh37 build 87 genome (version 1.0.0). Results were
visualized in the Loupe scDNA Browser (version 1.0.0). Cells filtered using subtree
depth of 4 for UMM069 and subtree depth of 6 for UMM041L by removing diploid
cells attributed to immune infiltrate and other non-tumor cell types.

inferCNV and clonality analysis. Raw gene expression data were extracted from the
Seurat object as recommended in the “Using 10x data” section (inferCNV of the
Trinity CTAT Project, https://github.com/broadinstitute/inferCNV). For each patient,
normal reference cells were selected by expression of CD3E greater than 2 standard
deviations above the mean expression and no expression of PRAME and HTR2B.
Melanoma cells were identified from the annotated Louvain clusters as determined
above. Quality control filtering was performed to select the highest quality cells by
only including melanoma cells with greater than 3000 UMIs. For the inferCNV
analysis the following parameters were used: “denoise”, default hidden markov model
(HMM) settings, and a value of 0.1 for “cutoff”. To reduce the possibility of false-
positive CNV calls the default bayesian latent mixture model was implemented to
identify the posterior probabilities of alterations in each cell. Low-probability CNVs
were filtered using the default value of “0.5” for the threshold. To determine the clonal
CNV changes in each tumor the “subcluster” method was utilized on the CNVs
generated by the HMM. GRCh38 cytoband information was used to convert each
CNV to a p- or q- arm level change for simplification based on its location. Each CNV
was annotated to be either a gain or a loss. After data conversion, subclones con-
taining identical arm level CNVs were collapsed and trees were restructured to
accurately represent subclonal CNV architecture. Mitochondrial CNVs were excluded
from this analysis. For data visualization, the UPhyloplot2

(https://github.com/harbourlab/UPhyloplot2) plotting algorithm was developed to
automate generation of intra-tumor evolutionary trees. The arm level CNV calls
curated from the inferCNV HMM subcluster CNV predictions algorithm and the
percentage of cells in each of the subclones were used as inputs. A scalable vector
graphics (.svg) file visualizing the phylogenetic tree was generated for each sample.
Arm length is proportional to percentage of cells plus a spacer (circle diameter+
5 pixels). Driver mutations and their mutant allele frequencies were determined using
the DecisionDx-UMseq® targeted next-generation sequencing UM panel (Castle
Biosciences, Inc.). Mutant allele frequencies of the BAP1, SF3B1, and EIF1AX were
corrected for normal contamination by setting the mutant allele frequencies of GNAQ
or GNA11 to 50%. Mutations in UM driver genes were attributed to the CNV clones
of like percentages and were marked when a specific clone could not be determined.

SCENIC analysis. The pySCENIC (0.9.9+ 2.gcaded79) algorithm was run on a
normalized expression matrix of the 8,598 high-quality UM cells15. The
GRNboost2 (arboreto 0.1.5) method was utilized for gene regulatory network
reconstruction35. The cisTarget Human motif database v9 (https://resources.
aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-o0.0.tbl) of 24,453 motifs
were used for enrichment of gene signatures and pruned for targets from this
signature based on cis-regulatory cues with default settings. The “aucell” positional
argument was utilized to find enrichment of regulons across single cells. The
resulting matrix was z-scored using the standardize() function from the psycho
(0.4.9) R package and the results were visualized using a heatmap with hierarchical
clustering34.

Monocle 2 analysis. UM-specific cells were identified from the annotated Louvain
clusters as determined above and filtered for cells expressing any of the following
immune cell markers (IGHG1, CD3E, CD68, CD163, LYZ, MS4A1, CD79A, CD14,
C1QA). Only 5′ gene expression data were considered to prevent chemistry-related
artefacts. This resulted in 7,947 high-quality UM cells to use for this analysis. Single-
cell pseudotime trajectories were constructed with Monocle 2 (2.10.1)16,36. For the
individual trajectory analyses, we utilized the normalized expression data from each
sample. Genes for trajectory inference were selected using the dispersionTable()
function to calculate a smooth function describing how variance in each gene’s
expression across cells varies according to the mean. Only genes with mean expres-
sion greater than or equal to 0.1 were used for the analysis. The reduceDimension()
function was utilized with the DDRTree16 reduction method and the following
parameters modified: max_components= 3, and num_dim= 20. Results were
visualized using the plot_cell_trajectory() and plot_complex_cell_trajectory() func-
tions and annotated with cell cycle, subclones less than or equal to 20%, and calcu-
lated cell states. To identify genes that separate cells into the calculated states we used
the BEAM() function to perform BEAM. Genes resulting from the BEAM analysis
with a q-value less than or equal to 0.01 were separated with hierarchical clustering
using the plot_multiple_branches_heatmap() function with num_clusters= 3 and
“branches” set to the terminal branchpoints for each respective sample. Genes from
each respective hierarchical cluster were input into the “Compute Overlaps” Gene Set
Enrichment Analysis software (v6.4), which calculates a False Discovery Rate using
the Benjamini Hochberg method to correct the hypergeometric p-value (http://
software.broadinstitute.org/gsea/msigdb/annotate.jsp)37. The Hallmark, C1, C2, C3,
C4, C5, C6, and C7 MSigDB gene sets were used in this analysis38. For the combined
trajectory analysis, we utilized the same parameters discussed above except the
reduceDimension() function included the ncenter= 600 parameter.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14256-1

8 NATURE COMMUNICATIONS |          (2020) 11:496 | https://doi.org/10.1038/s41467-019-14256-1 | www.nature.com/naturecommunications

https://github.com/broadinstitute/inferCNV
https://github.com/harbourlab/UPhyloplot2
https://resources.aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-o0.0.tbl
https://resources.aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-o0.0.tbl
http://software.broadinstitute.org/gsea/msigdb/annotate.jsp
http://software.broadinstitute.org/gsea/msigdb/annotate.jsp
www.nature.com/naturecommunications


Deparaffinization, staining, and imaging. Deparaffinization and rehydration of
FFPE sections involved sequential incubation of the slides in xylene (2 × 5min), 100%
ethanol (2 × 2min), 95% ethanol (1 × 2min), tap water (2 × 2min) followed by dis-
tilled water (1 × 2min). Antigen retrieval involved placing slides in a staining container
of 10mM citrate buffer, 0.05% Tween 20 pH 6, inside a pressure cooker and steaming
under high pressure at approximately 110–120 degrees for 15min. Slides were then
cooled in the pressure cooker for 10min before releasing the steam and placed in hot
distilled water for 2min prior to rinsing under running tap water for 5min followed
by wash buffer (PBS/0.2% Tween 20, pH 7.2) for 5min. Excess liquid was removed
from the slides and a barrier drawn around the tissue section using a hydrophobic pen.
Sections were blocked by incubating with blocking buffer (PBS/3% normal rabbit
serum/0.1% TritonX) for 20min. Blocking buffer was aspirated and a cocktail of
primary antibodies (UltraPlex detection system, Cell IDx) diluted with antibody
diluent (PBS/1% BSA/0.2% Tween 20/15mM) was added to the slide and
incubated for 1 h at room temperature in a humidified chamber. Slides were then
washed with wash buffer (3 × 5min) and a cocktail of detection antibodies (UltraPlex
detection system, Cell IDx) diluted with antibody diluent (PBS/1% BSA/0.2% Tween
20) was added to the slide and incubated for 1 h as previously. As negative control,
slides were incubated with secondary detection cocktail alone. Slides were then washed
with wash buffer (3 × 5min) and rinsed with distilled water (1 × 2min). Slides were
then mounted using Fluoroshield with DAPI (Immunobiosciences) and coverslips
applied prior to scanning at 20X using the Leica Versa scanner. Analysis was per-
formed on the Aperio ImageScope, (v12.4.2.5010), using Leica Quantitative
Algorithm (v1).

UltraPlex antibodies. Each primary antibody was labeled with a specific peptide
hapten tag (UltraPlex, Cell IDx) and combined at a final concentration of 5ug/ml of
each antibody. The UltraPlex panel comprised CTLA-4-CH014 (clone CAL49),
CD8-CH015 (clone EP334), PD-1-CH016 (clone EP239), and LAG3-CH021 (clone
EP294). The detection cocktail comprised anti-CH014-CL550, anti-CH015-CL490,
anti-CH016-CL750 and anti-CH021-CL650. All secondary antibodies were com-
bined at a final concentration of 5 µg/ml for each antibody.

Single-cell V(D)J analysis. Raw BCL files for each B-cell and T-cell library were
analyzed using CellRanger (version 2.2.0). The “mkfastq” command was used to
generate FASTQ files and the “vdj” command was used to generate sequence
annotations and VLOUPE visualization files aligned to the GRCh38 Ensembl
build 87 genome in addition to a 10X-specific addendum to genes and a 10X-
specific blacklisted transcript ID (2.0.0). Raw data from each sample from the
“all_contig_annotations.csv” output were intersected with the T and B cells pre-
viously filtered using Seurat. Further filtering of the data was conducted by only
including clonotypes that had “productive”,”high_confidence”, and “is_cell” equal
to true. Clonotypes were grouped by “raw_clonotype_id” for clonotype percentage
determination. Additionally, the “chain”, “v_gene”, “d_gene”,”j_gene”,”c_gene”,
and “cdr3” sequences were collected for each clonotype and are available as Sup-
plementary Table 2. Sequence level clonotype data were also investigated using the
Loupe VDJ Browser (2.0.1). To visualize the distribution of each clonotype in tSNE
space the Loupe Cell Browser (2.0.0) was used. A loupe file of Seurat filtered T/B
cells was generated using Cellranger reanalyze and the VDJ analysis vloupe file was
imported to show clonotypes present and confirm clonotype percentages.

Statistics. No statistical method was used to predetermine sample size. For each
experiment, tumor tissue samples from a single patient were processed individually.
Single cell suspensions for each sample were processed for scRNA-seq (10x Geno-
mics) in an independent Chromium chip. For differential expression analysis in
Seurat, the default two-sided non-parametric Wilcoxon rank sum test with Bonferroni
correction using all genes in the dataset was utilized.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
For visualization of the intra-tumor evolutionary trees, the UPhyloplot2 plotting
algorithm was developed and is available at https://github.com/harbourlab/UPhyloplot2.

Data availability
All sequencing data generated have been deposited in dbGaP under accession code
phs001861.v1.p1. Processed sequencing data have been deposited in GEO under
accession code GSE139829. The cisTarget Human motif database v9 used as part of the
SCENIC analysis can be accessed at https://resources.aertslab.org/cistarget/motif2tf/
motifs-v9-nr.hgnc-m0.001-o0.0.tbl. The source data underlying Figs. 2b, 4d, and 4f are
provided as a source data file.
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