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Planktonic archaea include predominantly Marine Group I Thaumarchaeota (MG I) and
Marine Group II Euryarchaeota (MG II), which play important roles in the oceanic
carbon cycle. MG I produce specific lipids called isoprenoid glycerol dibiphytanyl
glycerol tetraethers (GDGTs), which are being used in the sea surface temperature
proxy named TEX86. Although MG II may be the most abundant planktonic archaeal
group in surface water, their lipid composition remains poorly characterized because
of the lack of cultured representatives. Circumstantial evidence from previous studies of
marine suspended particulate matter suggests that MG II may produce both GDGTs and
archaeol-based lipids. In this study, integration of the 16S rRNA gene quantification and
sequencing and lipid analysis demonstrated that MG II contributed significantly to the
pool of archaeal tetraether lipids in samples collected from MG II-dominated surface
waters of the Northwestern Pacific Ocean (NWPO). The archaeal lipid composition
in MG II-dominated NWPO waters differed significantly from that of known MG I
cultures, containing relatively more 2G-OH-, 2G- and 1G- GDGTs, especially in their
acyclic form. Lipid composition in NWPO waters was also markedly different from MG
I-dominated surface water samples collected in the East China Sea. GDGTs from MG
II-dominated samples seemed to respond to temperature similarly to GDGTs from the
MG I-dominated samples, which calls for further study using pure cultures to determine
the exact impact of MG II on GDGT-based proxies.

Keywords: Marine Group II Euryarchaeota, Marine Group I Thaumarchaeota, Archaeal lipids, Ring Index,
Northwestern Pacific Ocean, East China Sea

INTRODUCTION

Planktonic archaea are dominated by Marine Group I Thaumarchaeota (MG I; Brochier-Armanet
et al., 2008; Spang et al., 2010) and Marine Group II Euryarchaeota (MG II; DeLong, 1992;
Zhang et al., 2015). MG I are chemolithoautotrophs that use nitrification as a major energy
acquiring mechanism (Könneke et al., 2005, 2014; Stahl and de la Torre, 2012) and occur
predominantly in the deeper depths of open ocean, coastal seas, and estuaries (Karner et al., 2001;
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Teira et al., 2006; Caffrey et al., 2007; Schattenhofer et al., 2009;
Xie et al., 2014; Nunoura et al., 2015; Sintes et al., 2015; Ingalls,
2016; Tian et al., 2018). Isolation, purification and laboratory
cultures of MG I have enabled a better understanding of
their physiology, biochemistry, and niche specification (Martens-
Habbena et al., 2009; Qin et al., 2014; Bayer et al., 2015; Elling
et al., 2015; Santoro et al., 2015).

Members of MG II have not been cultured; however,
information on their lifestyle has been obtained through
metagenomic studies. It is suggested that MG II live
heterotrophically and occur mostly in the photic zone (Iverson
et al., 2012; Zhang et al., 2015; Xie et al., 2018; Rinke et al., 2019;
Santoro et al., 2019; Tully, 2019). However, MG II ecotypes
have also been found in the deeper parts of the ocean (Li et al.,
2015; Liu et al., 2017). Deep ocean MG II clades do not contain
genes for proteorhodopsin, a light-driven protein present in MG
II from the photic zone (Li et al., 2015). Other euryarchaeotal
planktonic archaea include Marine Group III (MG III) that
occur throughout the water column (Fuhrman and Davis, 1997;
Haro-Moreno et al., 2017) and Marine Group IV (MG IV) that
occur predominantly in the deep sea (López-García et al., 2001).
MG III and MG IV are often present in low abundance. Little is
known in terms of their ecological distribution and physiology
(Santoro et al., 2019).

In parallel with molecular biology approaches, lipidomics is
a powerful tool to study archaeal biogeochemical functions and
adaptation to the environment. Notably, the development of
high performance liquid chromatography – mass spectrometry
(HPLC-MS) allows the identification of a wide range of archaeal
membrane lipids (e.g., Schouten et al., 2000, 2008; Sturt et al.,
2004; Becker et al., 2013; Wörmer et al., 2013; Zhu et al., 2013).
Archaea possess unique membrane lipids: glycerol dibiphytanyl
glycerol tetraethers (GDGTs) and archaeols (ARs; Koga and
Morii, 2005; Koga and Nakano, 2008; Schouten et al., 2013). In
living cells, thaumarchaeal lipids are dominated by intact polar
lipids (IPLs) with monoglycosidic (1G-) or diglycosidic (2G-),
phosphatidic (P-) or glycophosphatidic (HPH-) headgroups
attached to the glycerol sn-1 hydroxyl position (Supplementary
Figure S1). The core structure of GDGTs (C-GDGTs) may
contain up to eight cyclopentane moieties (Supplementary
Figure S1; de Rosa and Gambacorta, 1988; Kate, 1993; Schouten
et al., 2013), one or two additional hydroxyl groups (OH-, 2OH-
GDGTs; Supplementary Figure S1; Lipp and Hinrichs, 2009; Liu
et al., 2012), or double bonds (unsaturated GDGTs with one to
six double bonds; Zhu et al., 2014). AR containing a methoxy
group at the sn-1 position of the glycerol moiety (MeO-AR) and
macrocyclic archaeols (MARs) and unsaturated archaeols (uns-
ARs; Zhu et al., 2013, 2016; Elling et al., 2014) are also observed
in oceanic settings.

GDGTs contain information that can be used to evaluate
paleo sea surface temperature (SST) (e.g., TEX86 index; Schouten
et al., 2002), terrestrial organic matter input to the ocean
(e.g., BIT index; Hopmans et al., 2004), or biogeochemical
redox state in the ocean (e.g., Methane Index; Zhang et al.,
2011). Although GDGTs have applications in paleoceanography
and microbial ecology, their specific taxonomic sources remain
ambiguous. Lipidomic studies on Nitrosopumilus maritimus, the

first representative of MG I isolated from marine environments,
reported lipids including GDGTs with zero to four cyclopentyl
moieties and crenarchaeol, a GDGT containing one cyclohexyl
and four cyclopentyl moieties (Könneke et al., 2005; Schouten
et al., 2008). Crenarchaeol has so far only been observed
in Thaumarchaeota (Sinninghe Damsté et al., 2002b; Elling
et al., 2017) and has been postulated as a biomarker for
archaeal nitrification (de la Torre et al., 2008; Pearson et al.,
2008). Similarly, MeO-AR is reported to be present in all
thaumarchaeal strains studied to date but does not appear to
occur in crenarchaeal or euryarchaeal species. Thus, MeO-AR
may also be used as a tentative biomarker for Thaumarchaeota
(Elling et al., 2014, 2017).

Unsaturated acyclic archaeols (uns-ARs) with four double
bonds were recently suggested as potential biomarkers for MG
II based on analyses of uns-AR0:4 in suspended particulate
matter (SPM) of epipelagic waters from the eastern tropical
North Pacific, equatorial Pacific and off the coast of Cape Blanc
(Zhu et al., 2016). Using a combination of GDGT analysis,
metagenomics, and pyrosequencing of the SSU rRNA gene on
samples from North Pacific Subtropical Gyre water column, it
has been suggested that MG II also produce GDGTs, including
crenarchaeol (Lincoln et al., 2014). This could potentially affect
the use of TEX86, a SST proxy expressed as the ratio of
GDGTs with different degree of cyclization (Schouten et al.,
2002). TEX86 was proposed based on the premise that the
large majority of GDGTs in the water column were solely
produced by MG I (Schouten et al., 2002). Thus, the significant
contribution of a second archaeal clade to the oceanic GDGT
pool, as inferred by Lincoln et al. (2014), may complicate the
relationship between TEX86 and SST. The findings of Lincoln
et al. (2014) were debated by Schouten et al. (2014) who
raised concern about the low abundance of extracted DNA
and the use of C-GDGTs instead of IP-GDGTs, which are
considered to better represent living biomass. Additional results
were published by Besseling et al. (2020) who reported an
absence of MG II-derived GDGTs from surface waters in the
Atlantic Ocean and the North Sea. In addition, Zeng et al.
(2019) identified two enzymes responsible for GDGT cyclization
(i.e., GDGT ring synthases) and could only detect the related
genes in metagenomes from MG I species and not in the MG
II metagenomes. Together, these previous reports suggest that
MG I Thaumarchaeota may be the dominant source of cyclized
GDGTs in open ocean settings, although GDGT-producing MG
II have been reported elsewhere (Wang et al., 2015). Therefore,
the potential contribution of MG II to the GDGT pool in the
ocean remains controversial.

In this study, we characterized and quantified archaeal
membrane lipids in surface water samples from the Northwestern
Pacific Ocean (NWPO) and East China Sea and supported these
measurements with DNA sequencing and determination of cell
density in order to determine the sources of the archaeal lipids.
Both sample sets differed markedly in their archaeal community
members with MG II being dominant in NWPO samples and
MG I in East China Sea samples. Accordingly, the combined
sample set was ideally suited to constrain the contribution of
MG II to the marine archaeal lipid pool, to evaluate its effect
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on archaeal lipid based proxies, and to test previous hypotheses
regarding candidate lipids of MG II (Lincoln et al., 2014; Zhu
et al., 2016). In addition, this study presented the full range
of intact and core archaeal lipids that were detected in surface
waters, thus providing an important contribution towards a
better understanding of the archaeal lipid distribution and related
processes in the oceanic water column.

MATERIALS AND METHODS

Shipboard Sampling and Environmental
Parameters
Samples were collected on board the R/V Dongfanghong II
during the East China Sea 2014 cruise (October; E-samples;
The sampling plan and region were filed before the cruise
started and approved by the Chinese Ministry of Foreign Affairs)
and the NWPO 2015 spring cruise (April; N-samples). In situ
temperature and salinity were measured by a conductivity-
temperature-density (CTD) unit (Sea-Bird 911 CTD). Samples
for inorganic nutrients (nitrate, nitrite, phosphate, and silicate)
were filtered through 0.45 µm cellulose acetate filters and
stored at −20◦C until analysis with an AutoAnalyzer 3 HR
(SEAL Analytical).

During each cruise, samples of SPM were collected from
surface water (2 to 10 m; Figure 1 and Supplementary Table S1).
For each sample, 80–200 L of seawater were filtered using a
submersible pump through a GF/F filter (Whatman, 142 mm)
of 0.7 µm pore diameter. Filters were then stored at −20◦C
until analysis. Previous studies (Ingalls et al., 2012) suggested
that 0.7 µm GF/F filters may under-collect GDGTs in general
and IP-GDGTs specifically because archaeal cells can be less
than 1 µm (Könneke et al., 2005; Engelhardt, 2007). To
ensure comparability, lipids and DNA were extracted from
the same filters.

FIGURE 1 | Map of sample collecting locations. Blue dots represent samples
collected in Northwestern Pacific Ocean (NWPO) (N-samples). Orange dots
represent samples collected in East China Sea (E-samples).

Lipid Extraction
For each sample, lipids were extracted from 88% (7/8) of
a freeze-dried GF/F filter. The filter was cut into slices and
extracted using a modified Bligh and Dyer method (Zhang et al.,
2013). In brief, the extraction was performed four times using
methanol (MeOH), dichloromethane (DCM) and phosphate
buffer at pH 7.4 (2:1:0.8 v/v). After sonication (10–15 min each
time), additional DCM and buffer were added to achieve a
final MeOH/DCM/buffer ratio of 1:1:0.9. The bottom organic
phase was collected with a glass pipette (repeated at least
three times). The total lipid extract was dried under N2, re-
dissolved in MeOH and filtered using a 0.45 µm PTFE filter
before analysis.

Intact Polar and Core Lipid Analyses
Lipid separation was achieved on an ultra-high performance
liquid chromatography (UHPLC) system (Dionex Ultimate
3000RS) in reversed phase conditions with an ACE3 C18
column (2.1 × 150 mm × 3 µm; Advanced Chromatography
Technologies) maintained at 45◦C (Zhu et al., 2013). Target
compounds were detected by scheduled multiple reaction
monitoring (sMRM) of diagnostic MS/MS transitions
(Supplementary Table S2) on a triple quadrupole/ion trap
mass spectrometer (ABSciEX QTRAP4500) equipped with a
TurboIonSpray ion source operating in positive electrospray
ionization (ESI) mode.

Quantification of lipids was achieved by adding an internal
glycerol trialkyl glycerol tetraether standard (C46-GTGT; Huguet
et al., 2006). Structures of the different lipids detected can
be found in Supplementary Figure S1. Lipid abundance was
corrected for response factors of commercially available as well
as purified standards as described by Elling et al. (2014). In
brief, abundances of IPLs were corrected by determining the
response factors of purified 2G-GDGT-0 (for 2G-OH- and 2G-
GDGTs), 1G-GDGT-0 (for HPH-, 1G-OH-, and 1G-GDGTs),
2G-AR (for 2G-AR) and 1G-AR (for 1G-AR) standards versus the
C46-GTGT standard. Similarly, the abundance of C-GDGTs was
corrected by the response factor of purified GDGT-0 standard
versus the C46-GTGT standard. The abundances of C-AR, C-uns-
ARs and MeO-AR were corrected by the response factor of a
core archaeol standard (Avanti Polar Lipids, Inc. Alabaster, AL,
United States) versus the C46-GTGT standard. In this study,
C-uns-ARs are presented as C-uns-AR (u), where u = the
number of double bond equivalents (DBE), representing either
double bonds or rings and thus including both unsaturated and
macrocyclic archaeols.

Nucleic Acid Extraction, Quantitative
Polymerase Chain Reaction, and
Sequencing
DNA was extracted from 12% (1/8) of a GF/F filter (142 mm, ca.
4∼12 L filtered seawater) using the FastDNA SPIN Kit for Soil
(MP Biomedical, Solon, OH, United States) with a final elution in
100 µL deionized water.

The archaeal 16S rRNA gene was quantified in all samples
by quantitative polymerase chain reaction (qPCR; PIKO REAL
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96, Thermo Fisher Scientific). Abundance (cells per liter) was
normalized according to the dilution folds of DNA template
and the volume of filtered seawater. The qPCR primers were
Arch_787F (5′ ATTAGATACCCSBGTAGTCC 3′; Yu et al.,
2005) and Arch_915R (5′ GTGCTCCCCCGCCAATTCCT 3′;
Stahl, 1991).

Pyrosequencing was conducted on all samples, targeting
the archaeal 16S rRNA gene. Primers were Arch_524F (5′
TGYCAGCCGCCGCGGTAA 3′) and Arch_958R (5′ YCCG
GCGTTGAVTCCAATT 3′), which showed higher coverage
for archaeal 16S rRNA gene as described recently (Cerqueira
et al., 2017). Sequencing was performed using the Illumina
Miseq platform at Majorbio Bio-Pharm Technology, Co., Ltd.,
Shanghai, China. Sequencing analysis was performed on the free
online platform of Majorbio I-Sanger Cloud Platform1. Before
analysis, sequences were demultiplexed and quality-filtered using
QIIME (version 1.9.1). Sets of sequences with at least 97%
identified were defined as an OTU (operational taxonomic unit),
and chimeric sequences were identified and removed using
UCHIME (Edgar et al., 2011). The taxonomy of each 16S
rRNA gene sequence was analyzed using RDP Classifier2 against
the SILVA ribosomal RNA gene database using a confidence
threshold of 70% (Cole et al., 2009; Quast et al., 2013).

Calculations and Statistical Analysis
Cell densities of MG I, MG II, and MG III were inferred based on
total archaeal community composition derived from sequencing
(Table 1) and total archaeal cell density obtained by qPCR
(Table 2) according to equation 1 (MG I is taken as an example),
where n = cell density (cells/L) and f = relative abundance (%):

nMG I = ntotal archaea× fMG I (1)

The cellular lipid content (fg/cell) was calculated using the
equations below for the MG I community only (Eq. 2) and for the
whole archaeal community (Eq. 3), where n = cell density (cells/L)
and a = lipid abundance (ng/L). Intact polar GDGTs (IP-GDGTs)
were defined as the sum of HPH-, 2G-OH-, 2G-, 1G-OH-, and
1G-GDGTs. Total GDGTs are the sum of IP- and C- GDGTs.

Cellular lipid content of MG I =
a total or IP GDGTs

n MG I
× 106 (2)

Cellular lipid content of total archaea =
a total or IP GDGTs

n total archaea
× 106

(3)

Ring Index (RI) was calculated using Equation 4 according to
Zhang et al. (2016):

RI =
1× GDGT − 1+ 2× GDGT − 2+ 3× GDGT − 3+ 4× crenarchaeol

GDGT − 0+ GDGT − 1+ GDGT − 2+ GDGT − 3+ crenarchaeol
(4)

Cluster analysis in this study was performed by PAST
software using the unweighted pair-group average algorithm.

1https://www.i-sanger.com
2http://rdp.cme.msu.edu/

Correlation coefficients and p-values were obtained by analysis
using R software. The neighbor-joining trees were constructed
using MEGA software.

RESULTS

Oceanographic Settings
The N-sample set was collected in the NWPO in April,
2015 and the E-sample set was collected in East China Sea
in October, 2014. In situ temperature, salinity and nutrient
content were determined for every sample. Salinity varied
little between the two sample sets (Supplementary Table S1),
but the temperature and nutrient contents of them changed
substantially. The average in situ temperature of the N-samples
was 18.1◦C, with a range of 17.5–18.7◦C. The E-samples
had an average of 25.4◦C, with a range of 24.3–26.4◦C
(Supplementary Table S1).

The fixed nitrogen contents in the N-samples were two to four
times higher than those in the E-samples. The average nitrate
content of the N-samples was 4.19 µmol/L with a range of
0.77 to 8.84 µmol/L (n = 5); the average nitrate content of the
E-samples was 1.1 µmol/L with a range of 0.53 to 2.05 µmol/L
(n = 10). The average nitrite content of the N-samples was
0.16 µmol/L with a range of 0.02 to 0.27 µmol/L, while that
of the E-samples was 0.04 µmol/L with a range of 0.01 to
0.14 µmol/L.

Phosphate content averaged 0.11 µmol/L (ranging from 0.03
to 0.2 µmol/L, n = 5) in the N-samples and 0.05 µmol/L
(ranging from 0.03 to 0.08 µmol/L, n = 10) in the E-samples.
Silicate content averaged 2.45 µmol/L (ranging from 0.11 to
4.68 µmol/L) in the N-samples and 0.95 µmol/L (ranging from
0.24 to 1.57 µmol/L) in the E-samples (Supplementary Table S1).

Archaeal Community Structure
Results of the 16S rRNA gene sequencing showed that archaeal
communities substantially differed between the N- and E- sample
sets. In the N-samples collected in April 2015 (Figure 1),
the relative abundance of MG I ranged from 0.2 to 5.2%.
MG II represented the vast majority of 16S rRNA gene reads
with a range from 94.1 to 99.7% (Table 1 and Figure 2).
In contrast, in most E-samples collected in October 2014
(Figure 1), MG I accounted for more than 88.4% while MG II
accounted for less than 9.0% (except E-7 with MG I accounting
for 54.9% and MG II accounting for 43.1%; Table 1 and
Figure 2). For both sets of samples, MG III only accounted
for a small proportion of archaea, from 0.01 to 3.0% and other
unclassified archaea accounted for less than 3.0% of the total
archaeal sequences at all stations. Hence, we normalized the
sequencing results by setting the sum of MG I, II and III to
100% (Table 1).

Seven most prevalent archaeal OTUs were assigned to MG I
and 18 to MG II (7 to MG II A and 11 to MG II B; Figure 2
and Supplementary Figure S3). Among MG I, OTU 476 was
predominant in N-samples (occupied over 82.7% in MG I and
1.8 ± 1.3% in total reads). An exception was sample N-B3
that showed a predominance of OTU 227 occupying 88.0% in
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TABLE 1 | Relative abundance of archaea based on archaeal 16S rRNA gene sequencing, of all detectable archaeal lipids and total archaeal lipid content based on UHPLC-MS analysis.

Relative abundance of
archaea based on 16S rRNA

gene sequencing (%)

Relative abundance of total archaeal lipids (%) Total lipid
content
(ng/L)

Site MG I MG II MG III HPH-
GDGTs

2G-OH-
GDGTs

2G-GDGTs 1G-OH-
GDGTs

1G-GDGTs C-GDGTs IP-ARs C-AR C-uns-
ARs

MeO-AR

N-B3 5.2 94.3 0.5 0.5 6.6 9.4 0.4 21.0 60.6 0.2 0.1 0.7 0.4 12.0

N-A4 4.2 95.1 0.6 0.3 12.5 16.8 0.6 61.1 3.5 0.2 0.3 4.8 0.0 7.4

N-A8 2.6 94.9 2.4 1.4 13.3 26.0 0.7 44.6 8.6 0.3 0.5 4.6 0.1 4.1

N-B6 4.0 94.1 1.9 1.4 12.6 21.9 0.4 46.9 6.2 0.1 0.4 10.1 0.1 6.7

N-B9 0.2 99.7 0.1 0.1 11.6 19.4 0.7 45.6 19.4 0.1 0.1 2.7 0.1 2.9

Average of
N-samples

3.3 ± 1.7 95.6 ± 2.1 1.1 ± 0.9 0.7 ± 0.6 11.3 ± 2.7 18.7 ± 6.2 0.5 ± 0.2 43.8± 14.4 19.7± 23.7 0.2 ± 0.1 0.3 ± 0.2 4.6 ± 3.5 0.1 ± 0.1 6.6 ± 3.5

Average of
N-samples except
N-B3

2.8 ± 1.6 96 ± 2.2 1.3 ± 0.9 0.8 ± 0.7 12.5 ± 0.7 21 ± 3.9 0.6 ± 0.2 49.5 ± 7.7 9.4 ± 7 0.2 ± 0.1 0.3 ± 0.2 5.6 ± 3.2 0.1 ± 0.03 5.3 ± 2.1

E-1 93.4 6.3 0.3 0.5 2.1 8.2 0 22.0 29.9 0.6 0.2 36.4 0.2 1.4

E-2 88.4 8.5 3.0 1.0 3.5 10.0 0 22.7 28.2 0.3 0.1 33.8 0.4 2.1

E-3 ND* ND* ND* 1.4 8.9 11.5 0.14 32.7 24.6 0.1 0.0 20.4 0.3 11.5

E-4 90.4 9.0 0.6 1.1 4.6 8.5 0.03 23.1 26.0 0.2 0.1 36.2 0.3 3.3

E-5 99.5 0.5 0.02 0.0 5.0 10.5 0.05 50.1 20.3 0.4 0.2 13.3 0.2 6.6

E-6 ND* ND* ND* 0.4 6.0 7.0 0.12 34.8 25.6 0.3 0.1 25.5 0.2 9.3

E-7 54.9 43.1 2.0 0.7 6.0 7.8 0.11 29.3 20.8 0.1 0.1 35.0 0.3 9.8

E-8 99.1 0.9 0.01 0.0 6.4 7.7 0.15 64.8 12.7 0.0 0.2 7.7 0.4 22.3

E-9 96.5 3.3 0.2 0.0 3.6 8.7 0.05 51.8 23.9 0.1 0.2 11.3 0.3 6.7

E-10 97.6 2.2 0.2 0.2 2.6 11.6 0.04 55.0 18.6 0.2 0.3 11.4 0.2 10.8

Average of
E-samples

90 ± 13.8 9.2 ± 13.2 0.8 ± 1 0.5 ± 0.5 4.9 ± 2 9.1 ± 1.6 0.1 ± 0.06 38.6± 15.5 23 ± 5.1 0.2 ± 0.2 0.1 ± 0.1 23.1± 11.7 0.3 ± 0.1 8.4 ± 6.1

∗ND, not detected.
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FIGURE 2 | Heatmap based on the distribution of representative archaeal OTUs (labels marked in blue represent major OTUs from N-samples; labels in orange
represent OTUs from E-samples). Color scale on the right correspond to the percentage of OTU 16S rRNA gene amplicon reads over the total reads. Samples are
listed in the order of OTU-distribution cluster analysis result (blue labels are N-samples and orange labels are E-samples).

MG I and 1.0 ± 1.5% in total reads. OTU 213 and OTU 90
were predominant in E-samples (averaging 56.0 ± 24.0 and
31.3 ± 23.7% in MG I, 52.6 ± 24.9 and 27.1 ± 19.9% in total
reads, respectively; Figure 2).

Among MG II, OTU 160 and OTU 269 were predominant
in N-samples (affiliated to MG II A; averaging 45.0 ± 12.9
and 18.6 ± 6.4% in MG II, 44.0 ± 13.0 and 18.0 ± 6.1% in
total reads, respectively). OTU 310, OTU 89 and OTU 233 had
higher relative abundance in E-samples (affiliated to MG II B;
averaging 40.9 ± 13.2, 19.6 ± 12.9, and 14.2 ± 6.4% in MG II;
4.1 ± 7.2, 1.0 ± 1.2, and 1.2 ± 2.3% in total reads; Figure 2 and
Supplementary Figure S3).

Archaeal Cell Density and Total Lipid
Content
Archaeal cell density in each sample was quantified by qPCR
targeting the archaeal 16S rRNA gene. On average, 1.5 × 107

archaeal cells per liter of seawater (cells/L; Table 2) were observed
in N-samples (ranging from 3.2 × 106 to 4.4 × 107 cells/L).
E-samples showed a slightly higher average archaeal cell density
of 3.3× 107 cells/L (Table 2).

MG I and MG II specific cell densities were estimated
by multiplying their relative abundance within total archaeal
sequences with the qPCR-derived archaeal cell density (Eq. 1). As
a result, MG I ranged between 1.7 × 104 and 2.3 × 106 cells/L

in N-samples and between 7.1 × 106 and 5.6 × 107 cells/L in
E-samples. MG II in N-samples were 1–2 orders of magnitude
higher (3 × 106 to 4.2 × 107 cells/L) than in E-samples (2 × 105

to 5.6× 106 cells/L; Table 2 and Supplementary Figure S2).
The total archaeal lipid content varied greatly within each

sample set. Total archaeal lipids ranged from 2.9 to 12 ng/L
(average was 6.6 ± 3.5 ng/L) in N-samples and from 1.4 to
22.3 ng/L (average was 8.4± 6.1 ng/L) in E-samples (Table 1).

Archaeal Lipid Distribution
Except for sample N-B3 (characterized by a predominance
of C-GDGTs), all N-samples were dominated by 1G-GDGTs
followed by 2G-GDGTs and C-GDGTs (Figure 3 and Table 1).
These three components were also the major lipids in E-samples.
In both N- and E- samples, 2G-OH-GDGTs with 0–4 cyclopentyl
rings were detected, in which 2G-OH-GDGTs -3 and -4 have
not been reported in previous studies. These two compounds
were identified based on exact mass and retention pattern
with the sMRM method and also with a parallel quadrupole
time-of-flight tandem mass spectrometer (qTOF-MS) analysis
(Supplementary Table S2; cf. Zhu et al., 2013). 2G-OH-
GDGTs relative abundance ranged between 6.6 and 13.3% in
the N-samples and between 2.1 and 8.9% in the E-samples.
HPH-GDGTs accounted for less than 2% of total archaeal
lipids in every sample and 1G-OH-GDGTs (including 1G-
OH-GDGTs -0, -1, and -2) for less than 1% (Table 1).
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TABLE 2 | Cell density of Archaea based on qPCR and cell densities of Marine Groups I, II, and III inferred by archaeal community composition from sequencing (the cell
numbers are equivalent to gene copies assuming one cell contains one 16S rRNA gene of studied archaea); abundances of GDGTs, IP-GDGTs and intact polar
crenarchaeol (IP-Cren, including HPH-, 2G- and 1G- crenarchaeol); cellular lipid contents in GDGTs and IP-GDGTs estimated for MG I and the whole archaeal cells.

Cell density (cells/L) Lipid abundance (ng/L) Cellular lipid content
based on MG I cell

density (fg/cell)

Cellular lipid content
based on archaea

cell density (fg/cell)

Site Archaea MG I MG II MG III GDGTs IP-GDGTs IP-Cren GDGTs IP-GDGTs GDGTs IP-GDGTs

N-B3 4.4E + 07 2.3E + 06 4.2E + 07 2.3E + 05 11.8 4.6 1.0 5.16 1.99 0.27 0.10

N-A4 1.7E + 07 7.4E + 05 1.7E + 07 1.1E + 05 7.0 6.8 2.0 9.47 9.12 0.40 0.39

N-A8 5.1E + 06 1.3E + 05 4.8E + 06 1.2E + 05 3.9 3.5 0.8 28.8 26.2 0.76 0.69

N-B6 3.2E + 06 1.3E + 05 3.0E + 06 5.8E + 04 6.0 5.6 1.4 46.9 43.6 1.89 1.76

N-B9 7.4E + 06 1.7E + 04 7.3E + 06 8.5E + 03 2.8 2.2 0.7 165 132 0.38 0.30

E-1 1.9E + 07 1.7E + 07 1.2E + 06 6.3E + 04 0.9 0.5 0.2 0.05 0.03 0.05 0.02

E-2 2.3E + 07 2.0E + 07 2.0E + 06 7.0E + 05 1.4 0.8 0.3 0.07 0.04 0.06 0.03

E-3 2.0E + 07 ND* ND* ND* 9.1 6.3 2.4 ND* ND* 0.45 0.31

E-4 3.6E + 07 3.3E + 07 3.2E + 06 2.1E + 05 2.1 1.2 0.5 0.06 0.04 0.06 0.03

E-5 4.0E + 07 3.9E + 07 2.0E + 05 6.7E + 03 5.7 4.3 2.3 0.14 0.11 0.14 0.11

E-6 2.5E + 07 ND* ND* ND* 6.9 4.5 2.1 ND* ND* 0.27 0.18

E-7 1.3E + 07 7.1E + 06 5.6E + 06 2.6E + 05 6.3 4.3 1.6 0.89 0.61 0.49 0.33

E-8 3.9E + 07 3.9E + 07 3.5E + 05 5.7E + 03 20.5 17.7 8.8 0.53 0.45 0.52 0.45

E-9 5.5E + 07 5.3E + 07 1.8E + 06 1.3E + 05 5.9 4.3 2.5 0.11 0.08 0.11 0.08

E-10 5.7E + 07 5.6E + 07 1.3E + 06 9.6E + 04 9.5 7.5 4.3 0.17 0.13 0.17 0.13

∗ND, not detected.

FIGURE 3 | Cluster analysis based on the distribution of all detectable archaeal membrane lipids. Chemical structures are shown in Supplementary Figure S1.
Blue labels are N-samples and orange labels are E-samples.

GDGTs with 0–3 cyclopentyl rings and crenarchaeol were
detected (see chemical structures in Supplementary Figure S1
and relative abundances in Supplementary Table S3) but

the crenarchaeol isomer, unsaturated GDGTs and OH-GDGTs
were not detected. The ring distribution of 2G-GDGTs was
different from those of HPH-, 1G-, and C- GDGTs. The
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former group was dominated by GDGTs -1, -2, and -3
while GDGT-0 and crenarchaeol predominated in the latter
(Supplementary Table S3).

ARs accounted for 1.4 to 37.3% of total archaeal lipids
(Table 1) with core unsaturated ARs (C-uns-ARs, with 1 to
7 DBE) being the most abundant AR types (Table 1 and
Supplementary Figure S1). IP-ARs (including 1G- and 2G- AR),
C-AR, and methoxy archaeol (MeO-AR) all represented less than
1% of total archaeal lipids in every sample (Table 1 and Figure 3).

A cluster analysis performed on the comprehensive lipid
distribution showed distinct lipid distributions between the
N- and E- samples. The N-B3 sample had a significantly
different lipid distribution from other samples and was thus
subsequently considered as an outlier. Lipid distributions of N-
and E- samples mainly differed upon the relative abundance
of C-GDGTs, 2G-GDGTs, 1G-GDGTs, 2G-OH-GDGTs, and
C-uns-ARs (Figure 3). In MG I-dominated E-samples, 1G-
GDGTs ranged from 22 to 64.8% (38.6 ± 15.5% in average),
C-GDGTs from 12.7 to 29.9% (23 ± 5.1% in average), and
2G-GDGTs from 7 to 11.6% (9.1 ± 1.6% in average; Table 1).
By contrast, in MG II-dominated N-samples, lipid distribution
showed higher relative amounts of 1G-GDGTs (49.5 ± 7.7% in
average), 2G-GDGTs (21 ± 3.9% in average) and lower amounts
of C-GDGTs (9.4 ± 7% in average; Table 1). Among the minor
lipids, the E-samples showed higher amounts of C-uns-ARs
(23.1 ± 11.7% in average) while the N-samples had a higher
relative abundance of 2G-OH-GDGTs (12.5 ± 0.7% in average;
Figure 3 and Table 1).

DISCUSSION

Potential Contribution of MG II
Euryarchaeota to the Archaeal
Tetraether Lipid Pool
Previous studies showed that MG II usually inhabit the surface
photic zone while MG I are found in deeper layers of the water
column (e.g., Zhang et al., 2015; Ingalls, 2016), which is consistent
with the observed microbial community in the N-samples but
not in the E-samples. Seasonality may explain the observed
contrasted community structure between the two sample sets
as it was previously observed to impact MG I (Massana et al.,
1997; Murray et al., 1998; Galand et al., 2010; Hollibaugh et al.,
2011; Pitcher et al., 2011b) and MG II (Pernthaler et al., 2002;
Galand et al., 2010) communities. Previous studies reported MG I
blooms during low phytoplanktonic productivity season (Pitcher
et al., 2011a), which is consistent with the predominance of
MG I in the E-samples collected in October (He et al., 2013).
In contrast, the MG II-dominated samples (N-samples) were
sampled in spring. This is in agreement with the detection of
a spring MG II bloom in surface waters at German Bight in
the North Sea (Pernthaler et al., 2002). Besides, we observe
that the predominant MG II OTUs (OTU 160 and OTU 269;
Figure 2 and Supplementary Figure S3) in the N-samples
collected in April are phylogenetically affiliated to MG II A, which
were previously observed to be predominant in summer when

FIGURE 4 | Variation of inferred cellular lipid contents: (A) Assuming MG I
being the sole source of GDGTs and (B) assuming archaea including MG I
and MG II being the source of GDGTs. The cellular lipid content was
calculated by dividing the lipid concentrations measured from UHPLC-MS by
the cell numbers (MG I or total archaea) estimated from qPCR and
sequencing. Blue columns represent the average value of the N-samples.
Orange columns represent the average value of the E-samples. Bars
represent standard deviation in each sample set. In Figure (A) the primary y
axis on the left represents values of the N-samples and secondary y axis on
the right represents values of the E-samples. The scale of the primary y axis is
different from the secondary y axis. In Figure (A), the bars are hatched to
highlight that these values are hypothetical.

nutrients become depleted. On the contrary, MG II B seem to
be more abundant during winter when nutrients are replenished
(Galand et al., 2010).

The unambiguous difference in archaeal community structure
between the two sample sets offers the opportunity to analyze in
detail the lipid contribution by the uncultivated MG II archaea in
the samples they dominate. For this purpose, IPLs were analyzed
from the same filters used for archaeal community analysis. IPLs,
particularly those with phosphate head groups, are assumed to be
rapidly degraded upon cell death (White et al., 1979; Harvey et al.,
1986) and hence are representative of the active living archaeal
community at the moment of sampling. We thus consider the
overprint from extinct cell biomass to be minimal.

MG I are considered as the dominant source of IPL-GDGTs
in the ocean (Schouten et al., 2013). In this study, we determined
how much lipid a MG I cell would contain if all detected GDGTs
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were exclusively produced by MG I cells (Eq. 2). In the E-samples,
cellular GDGT content varies from 0.05 to 0.89 fg/cell (0.25 fg/cell
in average; Table 2 and Figure 4A) and cellular IP-GDGT from
0.03 to 0.61 fg/cell (0.19 fg/cell in average; Table 2 and Figure 4A)
for MG I. These values are close to previous estimates of MG
I cells based on both environmental and pure culture samples
(1 fg/cell, Sinninghe Damsté et al., 2002b; 0.25 fg/cell, Schouten
et al., 2012; 0.9 to 1.9 fg/cell, Elling et al., 2014).

In the MG II-enriched N-samples, assuming all GDGTs
derive from MG I cells, the calculated cellular archaeal lipid
quota would be 5.16 to 165 fg/cell (51 fg/cell in average)
for total GDGTs and 1.99 to 132 fg/cell for IP-GDGTs (43
fg/cell on average; Table 2 and Figure 4A). These values are
two orders of magnitude higher than the results found in the
E-samples as well as in former studies. We hypothesize that
the overestimation of cellular lipid content in the N-samples
may be due to neglecting GDGT production from the MG II
communities as previously suggested by Lincoln et al. (2014)
in the North Pacific Subtropical Gyre shallow and intermediate
depths. Consequently, cellular lipid contents in total GDGTs
and IP-GDGTs were calculated based on the total archaeal
cell density (Eq. 3; Table 2). Total cellular GDGT content
in the N-samples then ranges from 0.27 to 1.89 fg/cell (0.74
fg/cell on average) and cellular IP-GDGT content from 0.1 to
1.76 fg/cell (0.65 fg/cell on average; Table 2 and Figure 4B).
These values are in the same order of magnitude as the
estimates from the E-samples as well as from previous studies.
Therefore, the observed GDGT distributions can be most
plausibly explained by the production of GDGTs by MG II
community members.

Our observations are inconsistent with those made in a recent
study (Besseling et al., 2020), which estimated the potential
contribution of MG II to the IPL pool by analysis of (sub)surface
waters of the North Atlantic Ocean and the coastal North Sea.
These authors did not detect IP-GDGTs and other archaeal IPLs
in samples dominated by MG II and concluded that MG II
contributed neither to GDGTs nor to any other known archaeal
IPLs (Besseling et al., 2020). Nonetheless, potential alternative
lipids belonging to the abundant MG II were not identified.
Currently, we can only speculate that the inconsistency between
our study and theirs may be due to geographical difference
or different quantification approaches. Ultimately the analysis
of an MG II isolate, when available, will shed more light on
the lipid composition for archaeal lipids of this ubiquitous
planktonic archaeal group.

Differences of Lipid Distribution Between
MG I and MG II Enriched Sample Sets
Cluster analysis of the lipidomic distributions suggests
significant differences between the N- and E- samples,
which further supports a potential contribution from MG
II to the lipid pool (Figure 3). MG I-enriched E-samples
show high abundances of 1G-GDGTs, 2G-GDGTs and
C-GDGTs (Figure 3), which is consistent with former
studies in MG I-enriched marine environments (Schouten
et al., 2008; Pitcher et al., 2011b; Sinninghe Damsté et al.,

2012). Besides, Elling et al. (2017) comprehensively described
the lipid inventory of 10 Thaumarchaeal cultures in which
members of Group 1.1a, inhabiting marine environments,
were characterized by high abundances of 1G-GDGTs,
2G-GDGTs and 2G-OH-GDGTs (in decreasing order of
abundance). MG II-dominated N-samples exhibit lower
amounts of C-GDGTs and increased amounts of 1G-GDGTs,
2G-GDGTs and 2G-OH-GDGTs. Higher relative abundance
of 2G-GDGTs in MG II-dominated N-samples is consistent
with the observation in the Mediterranean Sea water column,
where MG II were positively correlated with 2G-GDGTs
(Besseling et al., 2019).

In addition, we observed high abundances of C-uns-
ARs in MG I-enriched E-samples (between 7.7 and 36.4%;
23.1 ± 11.7% in average) and low values in the N-samples
(between 2.7 and 10.1%; 5.6 ± 3.2% in average; Table 1).
Hence, C-uns-ARs may potentially be biomarkers for MG I,
as also demonstrated by significant correlations between MG
I cell density and abundances of C-uns-ARs (except outlying
sample E-7; Supplementary Figure S4a). However, C-uns-ARs
have never been observed in pure cultures of MG I as well as
in other Thaumarchaeota (Elling et al., 2017). Instead, other
studies attributed C-uns-ARs to MG II or methanogen sources
(Zhu et al., 2016; Baumann et al., 2018). Specifically, Zhu et al.
(2016) observed that C-uns-AR0:4 was particularly abundant
in the euphotic zone of the Equatorial Pacific. Baumann et al.
(2018) reported C-MARs in two strains of (hyper)thermophilic
methanogens. Thus, these compounds may be produced by
a large range of Archaea, including both MG I and MG II.
Furthermore, both in the N- and E- sample sets, C-uns-AR (4)
dominated, followed by C-uns-AR (6), C-uns-AR (5), and C-uns-
AR (3) (Supplementary Table S5). Accordingly, the unsaturation
degree of C-uns-ARs showed little variation between the N- and
E- sample sets (Supplementary Table S5). This suggests that
the contrasting temperature and archaeal community structure
between the two sample sets have little effect on the unsaturation
degree of C-uns-ARs in this study.

Previous studies of SPM from surface water identified HPH-
GDGTs, especially HPH-crenarchaeol as produced by MG I
(Besseling et al., 2019; Sollai et al., 2019). In this study, HPH-
GDGTs are detected in every sample as a minor constituent (less
than 1.5%); however, HPH-crenarchaeol systematically shows
higher relative abundance in MG I-dominated E-samples than
in MG II-dominated N-samples (Supplementary Table S3),
further supporting potential chemotaxonomic specificity of
HPH-crenarchaeol for MG I. Among core lipids, crenarchaeol
(Sinninghe Damsté et al., 2002a,b; Schouten et al., 2013) and
MeO-AR (Elling et al., 2014, 2017) were both postulated as
biomarkers for MG I. We do not observe any correlation between
MG I and crenarchaeol in the present data set, suggesting that
core crenarchaeol does not appear to be a universal biomarker
for MG I (Supplementary Table S4). Instead, core crenarchaeol
correlates with MG II cell density (Supplementary Table S4).
This is consistent with the positive correlations between the
abundance of specific MG II subgroups with HPH-crenarchaeol
and 2G-crenarchaeol observed in the Mediterranean Sea water
column (Besseling et al., 2019). But this is inconsistent with the
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FIGURE 5 | Plot of in situ temperature against the ring index. Significant
correlations exist in 1G- and C- GDGTs, with R2 value of 0.89 and 0.92
(p-value < 0.001, regression lines are not shown), respectively.

genome-mining results suggesting that MG II do not contain
the recently discovered genes encoding the enzymes responsible
for ring insertions in GDGTs (Zeng et al., 2019). However, Zeng
et al. (2019) also noted that MG II from natural environments
may use other pathways for GDGT synthesis (including ring
structures), which have yet to be characterized. MeO-AR in
both the N- and E- samples shows low absolute abundance
(relative abundances less than 0.5%; Figure 3 and Table 1).
The relative abundance of MeO-AR slightly increases in MG
I-enriched E-samples (Figure 3 and Table 1) but there is no
significant correlation between MG I cell density and MeO-
AR abundance (Supplementary Figure S4b). Accordingly, its
reliability as diagnostic MG I biomarker is also questionable.

Based on the discussion above, no specific biomarkers for
MG II could be identified. Previous findings based on genome
analysis suggested that MG II may have the potential to synthesize
mixed membranes consisting of archaeal type ether lipids
with bacterial/eukaryotic G3P glycerol-phosphate backbones
(Villanueva et al., 2016; Rinke et al., 2019). However, our results
demonstrate a circumstantial link between the existence of the
commonly found GDGTs and the dominance of MG II in the
NWPO where MG I were present at less than 5.2% of the total
archaeal community.

Temperature Is the Main Driver for
Archaeal Lipid Distribution in Samples
With Different Archaeal Communities
The TEX86 proxy was developed to reconstruct past SSTs based
on GDGT distribution and is now being regularly used in
paleoceanography studies (Schouten et al., 2002, 2013; Tierney
and Tingley, 2015). The prerequisite for this proxy is that
temperature should be the main driver of GDGT distribution

in the environment. It was indeed demonstrated in culture
experiments on archaeal strains that higher temperatures led
to higher cyclization degree (Uda et al., 2001, 2004; Lai et al.,
2008; Boyd et al., 2011). However, several studies pointed to
additional environmental factors which could also influence
GDGT cyclization degree. For instance, TEX86 values increase in
late growth phases (Elling et al., 2014), at lower O2 concentrations
(Qin et al., 2015) and with lower ammonia oxidation rate (Hurley
et al., 2016; Evans et al., 2018). Besides, archaeal community
structure is known to have an effect on GDGT distribution
(Wuchter, 2006; Herfort et al., 2007; Turich et al., 2007; Elling
et al., 2015). In this study, no crenarchaeol isomer was detected
precluding the calculation of TEX86. The ring index (RI), which
behaves similarly to TEX86 (Schouten et al., 2002), was thus
computed in order to estimate the potential impact of MG
II-produced GDGTs on the TEX86 proxy (Figure 5; Eq. 4;
Zhang et al., 2016).

The Ring Index of 1G- and C- GDGTs shows strong
correlations with in situ temperature, with lower RI
corresponding to lower in situ temperatures in MG II-dominated
N-samples and higher RI to higher in situ temperatures in MG
I-dominated E-samples (Figure 5 and Supplementary Table S6).
This implies that in situ temperatures apparently influenced
the RI of these lipid pools in both sample sets with different
archaeal communities.

The low sensitivity of 2G-RI to temperature indicates that
the cyclization degree of 2G-GDGTs may be less impacted by
temperature. 2G-GDGTs are dominated by GDGTs -2 and -
3 and crenarchaeol, while the other GDGT pools show higher
abundances of crenarchaeol and GDGT-0 (Supplementary
Table S3). In addition, the MG II-dominated N-samples show
higher abundances of 2G-GDGTs (Table 1). The lack of
correlation between 2G-RI and temperature may suggest a
potentially high impact of the planktonic archaeal community
structure on archaeal temperature reconstruction proxies.
Indeed, our results suggest that (i) MG II may be significant
contributors of 2G-GDGTs (Figure 3 and Table 1) and (ii)
2G-GDGT cyclization degree is only weakly impacted by
temperature. These data call for further investigation aiming at
determining (i) the global contribution of MG II to the archaeal
lipid pool produced in the water column and (ii) the export
mechanisms of IPLs and particularly 2G-GDGTs to the seafloor.
Understanding these two key points are of prime importance for
evaluating the potential impact of MG II communities on the
TEX86-based paleotemperature proxies.

CONCLUSION

16S rRNA gene sequencing results of two sample sets
collected from surface waters of NWPO and East
China Sea highlighted substantial differences in archaeal
community structures between the two sample sets, with
MG II dominating the former and MG I the latter. By
examining the absolute lipid abundance and archaeal cell
densities estimated from qPCR and sequencing analysis,
we revealed a potentially high contribution of MG II
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to archaeal tetraether lipids in MG II-dominated samples
collected from surface waters of the NWPO. This is consistent
with an early observation of MG II contribution to the GDGT
pool in the North Pacific Subtropical Gyre. Archaeal lipid
distribution in these samples differed from the MG I-dominated
samples collected from East China Sea surface waters. Notably,
higher abundances of unsaturated archaeols were observed in the
MG I-dominated samples than in the MG II-dominated ones.
The widespread occurrence of these unsaturated compounds
implies that they may be synthesized by a large range of
Archaea. However, the lipid distribution differences seemed to
only marginally impact the cyclization degree of the whole
GDGT pool produced in the surface waters. Overall, this study
provides new clues on the distribution of MG II archaeal
lipids and their biological sources in oceanic surface water,
while cautioning the use of archaeal lipid-based proxies for
paleoclimate reconstruction.
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