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Abstract: Osteochondral tissue regeneration has remained a critical challenge in orthopaedic surgery, especially due to 
complications of arthritic degeneration arising out of mechanical dislocations of joints. The common gold standard of 
autografting has several limitations in presenting tissue engineering strategies to solve the unmet clinical need. However, 
due to the complexity of joint anatomy, and tissue heterogeneity at the interface, the conventional tissue engineering 
strategies have certain limitations. The advent of bioprinting has now provided new opportunities for osteochondral tissue 
engineering. Bioprinting can uniquely mimic the heterogeneous cellular composition and anisotropic extra-cellular matrix 
(ECM) organization, while allowing for targeted gene delivery to achieve heterotypic differentiation. In this perspective, 
we discuss the current advances made towards bioprinting of composite osteochondral tissues and present an account of 
challenges—in terms of tissue integration, long-term survival, and mechanical strength at the time of implantation—required 
to be addressed for effective clinical translation of bioprinted tissues. Finally, we highlight some of the future trends related 
to osteochondral bioprinting with the hope of in-clinical translation.
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1. Introduction: Current Status of Osteo­
chondral Tissue Bioprinting

Damage to the articular surface in the form of 
localized cartilage erosion is usually observed 
in relation to joint degenerative disease(s) such 

as osteoarthritis (OA) or trauma[1]. Post-traumatic OA is 
particularly significant, since it affects a demographic 
that is considered too young for joint replacements. As 
such, OA is one of the major chronic conditions plaguing 
our society, causing considerable pain and debilitation, 
affecting an estimated 21 million people with an 
economic burden of $89.1 billion annually in the US[2–4]. 

Surgical methodologies aimed at cartilage healing, such 
as microfracture, grafting and autologous chondrocyte 
implantation, are often complicated, costly or yield 
unsatisfactory results in the long-term, especially in the 
elderly population, eventually needing joint replacement 
to restore normal function[5–8]. To this end, regenerative 
medicine that aims to repair, regenerate and improve 
functionality of injured/diseased tissues holds great po-
tential in osteochondral therapy, which involves both the 
cartilage and bone and has generated significant interest. 
However, challenges still exist in achieving this goal of 
engineering tissue structures that can closely mimic the 
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native osteochondral tissues individually as well as the 
interface region[9]. The heterogeneous and anisotropic 
cartilage is generally considered as a layered structure 
of “zones” that possess mechanical properties reflecting 
each zone’s compositional and architectural make-
up[10]. The layered arrangement of chondrocytes and 
bone cells are unique feature of the osteochondral tissue 
as shown in Figure 1, which is difficult to recapi tulate 
using current regenerative approaches. Although various 
scaffolding approaches and materials have been used to 
date[5], successful regeneration of large articular cartilage 
with native-like biological, mechanical and structural 
characteristics is still a challenge. Similarly, individual 
challenges also remain for bone-tissue engineering, 
making the regenerative strategies for composite tissue 
even more challenging[11,12]. 

1.1 Drawbacks of Current Tissue Engineering 
Approaches for Osteochondral Rege neration
Articular cartilage repair is a highly challenging clinical 
problem for orthopaedic surgeons[13]. Adult articular 
cartilage has limited intrinsic repair capacity due to 
its avascular nature[14]. Even a minor focal lesion can 
cause progressive cartilage damage, affecting the whole 
articulating joint and increasing the risk of developing 
OA. Traditional cartilage repair techniques focus on 
pain relief as well as restoring tissue function[5]. Osteo-
chondral injury, depending upon the size and chroni-

city, may be more of a challenge to treat. Smaller acute 
lesions (less than 2 cm2) are filled with type-I collagen 
fibrocartilage, which has been proven biomechanically 
and histologically inferior to native hyaline cartilage[15]. 
Larger lesions (greater than 2 cm2) require addressing the 
underlying subchondral bone in addition to the articular 
cartilage. There are five clinically available treatment 
options for osteochondral restoration. These include: 
1) osteochondral autograft, 2) osteochondral allograft, 
3) impaction bone grafting, 4) Autologous chondrocyte 
implantation (ACI) “Sandwich Technique”, and 5) 
biphasic scaf folds[16–26]. These techniques, along with 
their strengths and limitations, are summarized in Table 
1.

Currently, the most commonly utilized restorative 
option with the most data is osteochondral allograft, 
which combines viable donor subchondral bone and 
overlying hyaline articular cartilage[17,18]. This may 
be performed utilizing a shell or dowel technique 
incorporating differing amounts of subchondral bone, 
and can be titrated to the specific clinical situation and 
needs[18,24]. This graft provides living osteoblasts and 
osteocytes, as well as chondroblasts and chondrocytes, 
along with well-organized extracellular matrix to the 
defect without the donor site morbidity of autograft 
osteochondral plugs (mosaicplasty). While commonly 
utilized and demonstrated good short-term success, 
long-term studies demonstrate only 66% graft survival 

Figure 1. A schematic showing the osteochondral tissue with stratified layers and their characteristics
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at 20 years[27]. Osteochondral allograft is useful for 
lesions of the femoral condyles as well as to a lesser 
extent the tibial plateau[24]. Its use in the patellofemoral 
compartment is limited because of surface contour 
matching and complexity. Osteochondral allograft, be-
cause of its viability, is particularly susceptible to both 
donor rejection and incorporation issues, as well as 
disease transmission[16,18,24]. In addition, because it is the 
most commonly utilized restorative option, availability 
is becoming more challenging, often with wait times 
of over a year, during which time continued pain, func-
tional limitations, and lost work and wages may be 
experienced. Failure of use of osteochondral allografts is 
associated with age at time of primary allograft, number 
of previous surgeries, size of defects, and bicondylar 
in volvement. Patients who are of age 30 years or older 
at the time of osteochondral implantation have a 3.5 
times greater risk of failure as compared to younger 
patients[24,27]. 

A cellular scaffolds (more practical in clinical settings) 
and cellularized scaffolds (loaded with cells, such as 
chondrocytes[28], mesenchymal stem cells (MSCs)[29,30] 
and human-induced pluripotent stem cells (hiPSCs)[31,32]), 
give structural support to recruited or loaded cells for 
their proliferation and differentiation, and regeneration of 
extra-cellular matrix (ECM) until the scaffold degrades. 
For acellular scaffolds, biochemical cues are usually 
applied, including stromal cell-derived factor alpha 1 

(SDF-1α)[33], which helps the recruitment of progenitor 
cells, and transforming growth factor β (TGF-β) fa-
mily (i.e., TGF-β1 and TGF-β3[34]), which promotes 
the differentiation of recruited progenitor cells into 
chondrocytes and enhances biochemical composition 
and functional properties of the regenerated tissue. The 
major challenge with the scaffold-based techniques is 
the degradation of scaffold matrix and its complications 
such as toxic products and abrupt changes in mechanical 
properties after implantation. Most importantly, cells in 
scaffolds are limited in their interactions and signaling 
while they are confined in gel matrix[35]. This is parti-
cularly important in differentiation of cells, as well as 
the mechanotransductive signaling between cells that 
facilitate successful regeneration of anisotropic tissues. 
Cell-free graft techniques, which use biocompatible and 
degradable materials as a scaffold to support endogenous 
tissue regeneration, show promise in animal models 
but have yet to find clinical success[36–38]. Cell-seeded, 
biphasic scaffolds may serve as an integrated solution to 
reca pitulate the osteochondral interface and underlying 
bone[37,39], but despite the success in pre-clinical stu dies, 
only three biphasic osteochondral scaffolds have exten-
sive clinical application[40]. The use of these biphasic 
systems has resulted in mixed outcomes with frequent 
failures to restore subchondral bone and long recovery 
periods[40–42]. 

Instead of using exogenous biomaterials, scaffold-free 

Table 1. Clinical options for osteochondral restoration

Technique Pros Cons References

Osteochondral osteoarticular 
allograft

• Restoration of architecturally correct 
hyaline cartilage and bone with viable bone 
and cartilage cells

• Excellent short-term patient reported 
outcomes and survivability

• Disease transmission and 
immunogenicity

• Availability
• Contouring challenges in 

patellofemoral joint
• Short-term clinical results not 

sustained through long-term follow-
up 

[16–18,24,27,95]

Osteochondral autograft 
(mosaicplasty)

• Restoration of architecturally correct 
hyaline cartilage and bone with viable bone 
and cartilage cells

• No disease transmission or immunogenicity 
concerns

• Donor site morbidity
• Contouring challenges in all 

locations

[15–18]

Impaction bone grafting (allo- or 
autograft)

• Can be performed with auto- or allograft
• Inexpensive

• Limited data
• No biologic restoration of articular 

surface

[23]

ACI “Sandwich Technique” • Restoration of architecturally correct 
hyaline cartilage and bone with viable bone 
and cartilage cells

• Contouring can be modified to all 
compartments of the knee

• Limited data
• Expensive

[96,97]

Biphasic scaffolds • Directed bone and cartilage restoration 
using bio-directive matrix

• Relatively cheap

• Mixed clinical results with even 
short-term follow-up

• Breakdown products from 
bioresorbable materials may be 
chondrotoxic and detrimental to the 
surrounding cartilage and bone. 

[25,26]
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approaches have been recently used, where chondrocyte 
spheroids (also known as chondrospheres[43]) self-
assemble into articular cartilage when implanted into 
the lesion, and has been under investigation in a phase-
III controlled clinical trial in Europe[44]. Chondrospheres 
have similar properties to native cartilage and can 
be engineered by altering their cellular density, self-
assembly and culture condition. 

1.2 Three­dimensional (3D) Printing for 
Osteochondral Defect Healing
Attempts to create bi-layered grafts for osteochondral 
tissue regeneration have been further boosted by 
the development of three-dimensional (3D) printing 
technology. Initially, 3D printing was used in conjunction 
with conventional scaffold fabrication techniques, such 
as particulate leaching, to obtain bi-layered structures. 
In most such cases, polymeric scaffolds have been 
selected to mimic the cartilage tissue, whereas a ceramic 
phase is usually chosen to represent the subchondral 
bone. For example, hydroxyapatite has been printed 
with a porous polylactide (PLA) scaffold to mimic the 
osteochondral tissue composition and in vivo results 
exhibited osteogenic and chondrogenic markers in both 
respective layers[45]. Similarly, stereolithography process 
has been used to fabricate osteochondral constructs with 
polyethylene glycol and beta (β)-tricalcium phosphate, 
which showed encouraging results in a year-long 
follow-up study in a rabbit critical-size defect model[46]. 
Using fused deposition modeling, Cao et al. fabricated 
a honey-comb-like PCL scaffold with 0°/60°/120° 
lay-down pattern to create anisotropic structures[47]. 
Using 3D printing technology, tissue constructs with 
porosity gradient with embedded nanomaterials have 
been demonstrated for osteochondral healing[48,49]. 
Furthermore, MSCs and chondrocytes cultured on such 
scaffolds showed different tissue morphologies over 
time[48]. Similar experiments using fibrin glue to mimic 
the cartilage tissue have also been reported[50,51]. 3D 
printing using selective laser sintering is also a facile 
technique to create gradient porosity[52,53]. Though 
3D printing techniques allow for creating different 
mechanical and porosity properties, inferior cell–
cell interactions and inhomogeneous cell growth and 
differentiation amongst the scaffold remain the barriers 
for effective clinical translation.

1.3 Bioprinting for Osteochondral Engineer ing
Bioprinting is a process by which living cells and bio-
materials can be deposited precisely in a layer-by-layer 
manner as per a prescribed computer-aided design for 
the fabrication of engineered tissue constructs[54]. Based 
upon the mechanism of deposition, bioprinting can be 
defined in three broad categories—extrusion-based 

bioprinting (EBB), droplet-based bioprinting (DBB), and 
laser-based bioprinting (LBB)—the detailed mechanisms 
of which are available at several sources[55,56]. The 
bioprinting techniques offer several advantages for 
engineering of osteochondral tissue constructs. Bio-
printing allows for precise mimicking of the native 
heterogeneous, anisotropic tissue architectures. Most 
bioprinting techniques presently have the capability to 
process several different types of cells and biomaterials, 
rendering unique potentiality to tune structural and 
mechanical properties as per the requirement of specific 
tissue-type. In the case of osteochondral tissue, wherein 
the mechanical and compositional requirements are 
different for cartilage and bone tissues, bioprinting can 
thus be advantageous. Moreover, the ability to precisely 
control the patterning of cells and biological materials 
enables the fabrication of zonal variations seen in 
osteochondral tissue. Interestingly, all the processing 
and fabrication of labile biological materials, such as 
genes, growth factors and cells, through bioprinting can 
be achieved under physiologically ambient conditions. It 
has been thus observed that bioprinted constructs allow 
for precise facilitation of cell–cell interactions, which 
is critical to fabricate a composite tissue[57–61]. Thus, 
bio printing has attracted the attention of researchers 
working with the quest to devise improved solutions for 
osteochondral healing.

One of the early osteochondral tissue bioprinting 
efforts was attempted with EBB of two different cell 
types: mesenchymal stem cells with osteoinductive 
calcium phosphate particles, and chondrocytes on 
two sides of an alginate mesh scaffold[62]. After ap-
pro ximately three weeks in culture as well as in vivo 
experimentation, functional markers and ECM cha-
racteristics of both osteogenic and chondrogenic diffe-
rentiation were observed indicating the formation of 
interfacial composite tissue. Later research has shown 
that bioprinting of cells with an appropriate hydrogel can 
be used to direct differentiation into desired tissue. In 
these studies, collagen type-I or polycaprolactone (PCL) 
was found to be suitable for bone tissue formation, and 
hyaluronic acid or alginate was suitable for cartilage 
tissue formation[63]. As depicted in Figure 2A, a separate 
study has shown that droplet-based bioprinting can be 
effectively used to obtain composite tissue, where human 
mesenchymal stem cells (hMSCs) were bioprinted 
on patterned bone morphogenetic protein-2 (BMP-
2) committed to osteoblast formation, while MSCs 
were bioprinted on patterned TGF-β1 committed to 
chondrocyte differentiation[64]. Using a Bioscaffolder®, 
a potential method to generate osteochondral models 
of clinically-relevant sizes using poly(lactic acid) 
microcarriers has been developed[65]. This study explored 
the fabrication of a bilayered graft in which cartilage 
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region was printed with gelatin methacrylate-gellan gum 
(GelMA-GG) and the bone region was represented by 
GelMA-GG with encapsulated microcarriers (MCs). 
Poly(lactic-co-glycolic acid)–poly(ethylene glycol) 
mi cro  spheres with controlled release of BMP-2 has 
been demonstrated with maintenance of cell viabilities 
post-bioprinting to engineer osteochondral tissue con-
structs[66]. 

2. Towards Mimicking the Heterogeneity 
and Anisotropy 
Articular cartilage is the lining on articulating sur-
faces of diarthrodial joints and it functions as a shock 
absorber to distribute the load from weight and daily 
activities[67]. Articular cartilage is responsible for resis-
ting compressive stress and enables a proper distribution 

Figure 2. Successful fabrication of tissue constructs by bioprinting: (A) Fibrocartilage transition region of around 1–2 mm in length, 
obtained by bioprinting of encapsulated hMSCs with TGF-β1 (red color zone) and BMP-2 (green color zone) patterns (reproduced/
adapted from Gurkan et al.[64]), and (B1) bioprinting cartilage tissue strands facilitated their rapid fusion and maturation into (B2) a single 
patch of articular cartilage demonstrating proteoglycan formation and integration of interface regions (reproduced/adapted from Yu et 
al.[94])
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of mechanical loading on the subchondral bone. Another 
important function of articular cartilage is lubrication 
of the joint. Lubricants, such as proteoglycan 4, reduce 
friction between contacting surfaces, thus minimizing 
wear and tear of the joint[68]. One of the hallmarks of 
the osteochondral interface is the zonal variations in 
the structure, property of articular cartilage and the 
subchondral bone, which makes the design of tissue 
engineering scaffolds challenging. Chondrocytes or-
ganize extracellular matrix in to unique and highly 
specialized tissue. Articular cartilage can be divided 
into the superficial zone, transitional zone and middle 
(radial) or deep zone, and calcified cartilage zone. It 
varies in composition of primary constituents viz. water, 
collagen, proteoglycans, chondrocytes and some other 
minor proteins. The superficial-zone takes up to 20% 
of the total cartilage thickness and cells in that zone 
secrete lubricants. It contains densely packed collagen 
fibers in parallel to the articulating surface to resist 
shear stress and to protect the joint. The deeper zones, 
including middle-zone, deep-zone and calcified zone, are 
relatively less in cell density and have thicker collagen 
bundles, which are perpendicular to the articulating 
surface. Deeper zones help articular cartilage to resist 
compression force. The subchondral bone, on the part, 
is composed of concentric lamellar layers around the 
osteons and flat layers representing new bone formation. 
The peripheral bone is largely avascular, while the endo-
steal bone abuts directly on calcified cartilage[69].

The unique anisotropic arrangement is formed due 
to the external loads over time, which is transmitted 
through the matrix of the tissue and converted into a 
biochemical signal, alerting cells to either produce more 
or catabolize existing ECM[5]. Scaffold-based tissue 
engineering approaches interrupt this transmission as 
the scaffold material confines the cells and shields cells 
from this mechanotransductive signaling cascade[70]. 
Thus, novel scaffold-free tissue engineering approaches 
are needed to help preserve the natural balance between 
external mechanical loading and the maintaining of 
zonal microenvironments for chondrocytes to adapt 
and regulate their biosynthetic activities in order to 
produce zonally-stratified characteristics of cartilage. 
Moreover, at the osteochondral interface, chondrocytes 
from the calcified cartilage zone and cells from sub-
chondral bone differ in their differentiation status and 
metabolic activities, making any tissue engineering 
strategy to recapitulate this interface very challenging. 
The heterotypic cell-specific differentiation should not 
compromise the mechanical integrity of the interface. In 
general, the compressive modulus of articular cartilage 
increases from superficial layer (0.079 MPa) to 2.10 MPa 
in the deepest zone, while the tensile modulus varies 
in inverse direction, reducing from 25 MPa (superficial 

zone) to 15 MPa in deep zone[71]. On the other hand, the 
modulus values of subchondral bone range higher than 
values obtained with biofabricated constructs, which 
mostly lie in 30–3,000 kPa range[72,73]. In this aspect, 
though hydrogel materials have been the preferred choice 
for cartilage bioprinting, the mechanical properties of 
the subchondral bone demand a more robust support 
structure such as PCL. 

To mimic the zonal compositions, a Fab@Home 3D 
printer has been shown to effectively deposit PLGA–
PEG microspheres co-printed with alginate-cell sus-
pension in multilayered structures[66]. Present bio printing 
capabilities are adequate to obtain scaffolds with mi-
metic osteochondral mechanical, biochemical and 
porosity gradients. Custom-developed 3D bioprinters 
have been used to create multilayered os teo chondral 
tissue constructs by bioprinting human tur binate mesen-
chymal stem cells (htMSC) on a slowly degrading 
PCL frame[74,75]. Using this approach, htMSCs with 
atelocollagen and recombinant human bone morpho-
genetic protein (rhBMPs) have been bioprinted over the 
PCL layer, creating a layer with a thickness of 4 mm to 
mimic the subchondral bone tissue. This was followed by 
bioprinting of htMSC-HA-TGF-β at 1-mm thickness on 
the subchondral bone structure to mimic cartilage tissue. 
The constructs showed promising results in the repair of 
rabbit knee joints. Recently, an EBB platform has been 
combined with a multi-nozzle electrospinning technique 
to fabricate gradient constructs with differential release 
rates of gentamycin sulfate (GS) and desferoxamine 
(DFO), which can be extended to co-print cells[76].

Despite some success of 3D bioprinting as a tool 
for osteochondral tissue regeneration, developing an 
integrated construct closely mimicking the heterogeneity 
and anisotropy of articular cartilage, subchondral 
bone and the soft–hard interface remains a critical 
challenge. Solving this challenge plays a crucial role 
in improving the osteochondral tissue regeneration 
process and graft integration with host tissue[77]. Many 
of the limitations for traditional osteochondral tissue 
engineering approaches can be attributed to the inability 
of precise spatiotemporal and temporal control of 
biomechanical and biochemical cues for direct cell mi-
gration, differentiation and cell–cell interaction. 3D 
bioprinting-based approaches to engineer osteochondral 
tissue can provide precise spatial control of bioactive 
compounds and biomaterials to mimic the gradients of 
biologic and mechanical signals along the osteochondral 
axis. For example, growth factors for chondrogenesis 
and osteogenesis, and plasmid DNA encoding osteo- 
and chondrogenic genes and siRNA modulators of 
differentiation, can be integrated into “bioinks” made 
of biomaterials with different mechanical properties for 
cartilage and bone tissue, respectively. Several miRNAs, 
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miR-26a, -148b, -27a, and -489, have shown to regulate 
osteogenesis in MSCs[78–80]. Of these compounds, miR-
148b has been shown to induce de novo osteogenesis 
in bone marrow-derived MSC and ASC and has been 
demonstrated to enhance progenitor osteogenesis and 
bone repair both in vitro and in vivo[79,81–83]. Several 
miRNAs such as miR-146a, miR-9, miR-29a and miR-
140 play a role in the regulation of chondrogenesis[84–89]. 
In addition, different drug delivery systems can 
be incorporated into “bioinks” and be deposited in 
regions that require controlled release of cell-signaling 
molecules[90]. For example, at the osteochondral inter-
face, chemokine-guided migration of endogenous cells is 
desired to provide subchondral bone integration followed 
by cell differentiation[33]. By modulating bioprinting 
parameters, the release of chemokines and cytokine 
signals promoting cell migration and differentiation 
can be controlled in a sequential man ner providing for 
precise spatiotemporal control of osteochondral tissue 
development. 

3. Challenges in Clinical Translation of 
Bioprinted Osteochondral Tissues
Challenges to clinical translation include both clinical 
and administrative/translational[91]. Clinically, the 
bio printed tissue will need to incorporate with the 
surrounding host chondral surfaces and host subchondral 
bone. If allogeneic, this will be expected to have similar 
potential incorporation challenges as viable allograft 
osteoarticular allografts. Autograft osteochondral 
com  posites will need tissue harvest, cell expansion, 
printing and the maturation of the fabricated construct, 
making one-stage printing in-situ challenging. The 
composite printed grafts themselves will need sufficient 
biomechanical strength at implantation to sustain joint 
motion and immediate rehabilitation to avoid iatrogenic 
stiffness and pain. This will be more of a challenge with 
larger animal models as well as clinical translation. To 
help reconcile, customized bioreactors will need to be 
designed for cultivating bioprinted grafts to enhance 
their biological and mechanical time-zero properties. 
Post-operative rehabilitation will have to account for 
initial time-zero strength with limited weight bearing 
for a small period of time. In addition, the inflammatory 
milieu in the synovium with osteoarthritis will have to 
be addressed so as to not create an unfavorable envi-
ronment for the bioprinted graft. This may require 
biological treatment directly to the synovium or possibly 
incorporated into the graft. Administratively, like 
many chondral and osteochondral restorative options, 
bioprinting of composite osteochondral tissues will need 
to demonstrate cost-efficacy. As many of the components 
(and equipment needed) to graft fabrication may be 
very expensive, cost prohibition may be an issue. This, 

like all technologies, will likely become more cost-
effective over time, with more efficiency in production 
and equipment manufacturing. Last, but often most 
challenging, will be the often daunting regulatory 
hur dles for clinical translation from cartilage basic 
science[92,93]. This can prove costly and time-consuming, 
and many technologies and developers have floundered 
when attempting to jump through the many hoops of the 
regulatory process.

4. Future Perspectives
Although research in 3D bioprinting is expanding at a 
rapid rate, it is essential that tissue-specific development 
roadmaps are adopted by independent groups to delivery 
clinically-relevant constructs. With particular regards 
to osteochondral tissue, it is critical that bioprinting 
is capable of manipulating both soft- as well as hard-
matrix materials. In this context, it may be a viable 
concept to explore scaffold-free bioprinting for cartilage 
tissue and a mechanically strong support matrix for 
bone tissue. Already, scaffold-free bioprinting has 
recently shown promise towards cartilage differentiation 
for osteochondral healing as shown in Figures 2(B1) 
and (B2)[94]. If these can be combined effectively with 
PCL biofabrication, a viable solution can be designed. 
Secondly, with respect to the tissue heterogeneity, 
advances in designing of constructs with gradient 
porosity are essential. The gradient scaffolds should 
also be capable of delivering growth factors/genes with 
precise spatiotemporal control to achieve functional 
constructs in required time frames.
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