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Abstract
Metabolic flux analysis (MFA) is a widely used method for quantifying intracellular metabolic

fluxes. It works by feeding cells with isotopic labeled nutrients, measuring metabolite isoto-

pic labeling, and computationally interpreting the measured labeling data to estimate flux.

Tandem mass-spectrometry (MS/MS) has been shown to be useful for MFA, providing posi-

tional isotopic labeling data. Specifically, MS/MS enables the measurement of a metabolite

tandem mass-isotopomer distribution, representing the abundance in which certain parent

and product fragments of a metabolite have different number of labeled atoms. However, a

major limitation in using MFA with MS/MS data is the lack of a computationally efficient

method for simulating such isotopic labeling data. Here, we describe the tandemer

approach for efficiently computing metabolite tandem mass-isotopomer distributions in a

metabolic network, given an estimation of metabolic fluxes. This approach can be used by

MFA to find optimal metabolic fluxes, whose induced metabolite labeling patterns match

tandem mass-isotopomer distributions measured by MS/MS. The tandemer approach is

applied to simulate MS/MS data in a small-scale metabolic network model of mammalian

methionine metabolism and in a large-scale metabolic network model of E. coli. It is shown
to significantly improve the running time by between two to three orders of magnitude com-

pared to the state-of-the-art, cumomers approach. We expect the tandemer approach to

promote broader usage of MS/MS technology in metabolic flux analysis. Implementation is

freely available at www.cs.technion.ac.il/~tomersh/methods.html

Introduction
Metabolic flux analysis (MFA) is a method for quantifying in vivo metabolic fluxes that is com-
monly used to address problems in biotechnology and medicine [1–6]. It involves feeding cells
with isotopic labeled nutrients (e.g. 13C labelled substrates), measuring metabolite isotopic
labeling, and applying computational methods to estimate fluxes [1, 7–9].

MFA is based on the key observation that metabolite isotopic labeling patterns are uniquely
determined by the distribtuion of metabolic flux in the network [10]. It is typically imple-
mented as a non-convex optimization problem, searching for the most likely distribution of
fluxes that would give rise to metabolite isotopic labeling that optimally matches experimental
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measurements. The running time of MFA methods becomes a major bottleneck when analyz-
ing large-scale metabolic networks, consisting of hundreds of reactions, when repeatedly
applied to compute accurate flux confidence intervals [11, 12], and in experimental design of
isotopic labeling experiments [13]. The major factor that affects the performance of MFA
implementations is the time required to simulate metabolite isotopic labeling for a candidate
flux distribution.

A distinct labeling pattern of a certain metabolite is called an isotopomer, while the distribu-
tion of abundances of all isotopomers is reffered to as, isotopomer distribution. A metabolite
with n carbons has 2n distinct isotopomers; for example, as shown in Table 1, a metabolite hav-
ing 4 carbons has 16 possible isotopomers. Previous studies have suggested the cumomers [14]
and fluxomers [15] approaches for efficiently simulating the isotopomer distributions of all
metabolites in a metabolic network given a flux vector. However, as the number of distinct isoto-
pomers of a metabolite is exponentially dependent on the number of carbons that is has, these
methods require a huge number of variables and may become computationally intractable.

Measuring the complete isotopomer distribution of metabolites is technically infeasible.
Instead, mass-spectrometry is typically used to measure the relative abundance of a given
metabolite having different number of labeled atoms (i.e. zero labeled atoms, one, two, etc). A
set of isotopomers of a certain metabolite having the same mass is referred to asmass-
isotopomers, while the relative abundance of mass-isotopomers denotedmass-isotopomer dis-
tribution. Notably, a mass-isotopomer distribution provides limited information on positional
isotopic labeling, as isotopomers with the same number of labeled atoms have the same mass
regardless of their position. Mass-isotopomer distributions can be calculated given the com-
plete isotopomer distributions (by summing the abundances of isotopomers having the same
number of labeled atoms). Alternatively, they can be directly and efficiently computed via the
EMU approach [1].

Table 1. The distribution of isotopomers of metabolite A (shown in Fig 2) within tandemers of A,
defined with respect to A 2;3;4f g

2;3f g .

Isotopomers Tandemers

0000 [M + 0] > [m + 0]

0001 [M + 1] > [m + 0]

0010 [M + 1] > [m + 1]

0011 [M + 2] > [m + 1]

0100 [M + 1] > [m + 1]

0101 [M + 2] > [m + 1]

0110 [M + 2] > [m + 2]

0111 [M + 3] > [m + 2]

1000 [M + 0] > [m + 0]

1001 [M + 1] > [m + 0]

1010 [M + 1] > [m + 1]

1011 [M + 2] > [m + 1]

1100 [M + 1] > [m + 1]

1101 [M + 2] > [m + 1]

1110 [M + 2] > [m + 2]

1111 [M + 3] > [m + 2]

Isotopomers are represented by sequences of zeroes and ones, denoting non-labeled and labeled atoms,

respectively.

doi:10.1371/journal.pone.0130213.t001
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Information on the positional labeling of metabolites can be obtained by tandem mass-spec-
trometry (i.e. MS/MS) and was previously shown to significantly improve quantification of met-
abolic fluxes via MFA [12, 16–18]. It works by isolating a single parent ion from the full
spectrum and measuring its mass, followed by a collision that yields product ions whose mass is
also measured. It can hence be employed to derive the mass-isotopomer distribution of a metab-
olite of interest and that of a collisional fragment. Most importantly, MS/MS can further mea-
sure the abundance of specific transitions from certain parent to product mass-isotopomers,
referred to as tandem mass-isotopomers (also denoted here as tandemers, for short). We denote
the number of labeled atoms of a parent ion by M+0 (having no labeled atoms), M+1 (having
one labeled atom), etc., and the number of labeled atoms of a product ion by m+0, m+1, etc. We
denote a transition from parent mass-isotopomerM + i to product mass-isotopomerm + j, by
[M + i]> [m + j]. This provides additional information on positional labeling beyond that avail-
able via the mass-isotopomer distribution of the parent and product fragments separately
(describing the abundance of a metabolite having various combinations of specific mass-isoto-
pomers for the parent and product molecules). The relative abundance of all tandemers is
referred to as a tandem mass-isotopomer distribution (or tandemer distribution, for short).

Currently, there is no method for efficiently simulating tandemer distributions. Previous
applications of MFA given MS/MS data have inefficiently computed the complete isotopomer
distributions for all metabolites in the network (for example, via cumomers [18]) in order to
simulate tandemer distributions. Here, we present the tandemer method for efficiently simulat-
ing MS/MS measurements (i.e. tandemer distributions) of metabolites in a metabolic network.
It builds upon and extends ideas set forward by the EMUmethod which efficiently simulates
mass-isotopomer measurements [1].

Theory

A formal definition of tandemers
We denote ametabolite fragment pair (MFP) of a metabolite A with parent fragment N and
product fragment K by AN

K, with N� {1. . .n} (where n is the total number of atoms), and K�
N. For example, Fig 1a shows metabolite A having 4 carbons and an associated MFP A 2;3;4f g

2;3f g ,

where N = {2,3,4} and K = {2,3}. A tandemer of metabolite A, [M + i]> [m + j] with respect to a

Fig 1. (a) Metabolite A and its MFP A 2;3;4f g
2;3f g with parent fragment N = {2,3,4} and product fragment K = {2,3}.

(b) The tandemer distribution matrix ½A� 2;3;4f g
2;3f g . The abundance of infeasible tandemers in ½A� 2;3;4f g

2;3f g is, by
definition, zero.

doi:10.1371/journal.pone.0130213.g001
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MFP AN
K is defined as a set of isotopomers of A having 0� i� |N| labeled atoms within the par-

ent fragment N, and 0� j� |K| labeled atoms within the product fragment K. A tandemer is
considered feasible if it does not represent an empty set of isotopomers, i.e. when j is no larger
than i (as the product fragment K is enclosed within the parent fragment N), and no smaller
than i − (|N| − |K|) (when all atoms that are in the parent but not in the product fragment are
labeled). The number of feasible tandemers for AN

K is hence (|N| − |K| + 1)(|K| + 1) [18].

The entire tandemer distribution of A, with respect to the MFP AN
K, can be represented by a

tandemer distribution matrix ½A�NK with |N| + 1 rows (representing the number of labeled
atoms in the parent fragment; from zero to |N|), and |K| + 1 columns (representing the number

of labeled atoms in the product fragment), such that ½A�NK(i,j) is the relative abundance of tande-
mer [M + i]> [m + j]. As entries in ½A�NK represent distinct events whose sum is 1, the matrix
represents a probability distribution. Notably, the abundance of infeasible tandemers is by defi-

nition zero. Fig 1b shows the tandemer distribution matrix ½A� 2;3;4f g
2;3f g , while Table 1 shows the

corresponding feasible tandemers. For example, given a metabolite A having 4 carbons, where
the abundance of the isotopomer 1001 is 0.6, that of 0101 is 0.3 and 1011 is 0.1 (and the abun-
dance of all other isotopomers of A is zero), the the tandemer distribution matrix of MFP

A 2;3;4f g
2;3f g is:

½A�f2;3;4gf2;3g ¼

0

1

2

3

0 1 2

0 0 0

0:6 0 0

0 0:4 0

0 0 0

2
6666666664

3
7777777775

Calculating metabolite tandemer distributions
Under isotopic steady-state, for metabolite B that is produced solely through one biochemical

reaction with a single substrate, A, the tandemer distribution matrix ½B�MN is equal to ½A�M
0

N 0 ,
where atoms in M’ and N’ are mapped to atoms in M and N, respectively (Fig 2a). We refer to

AM
0

N 0 as the substrate MFP of BM
N via reaction i, and denote it by SðBM

N ; iÞ:
For metabolite C that is produced solely through one reaction with two substrates, A and B,

½C�MN can be calculated based on two tandemer distribution matrices: ½A�M1

N1
(where atoms in M1

and N1 are mapped to atoms in M and N, respectively) and ½B�M2

N2
(where atoms of M2 and N2

are similarly mapped to M and N; Fig 2b). AM1
N1

and BM2
N2

are further referred to as the substrate

MFPs of CM
N via reaction i, and denote by S1ðCM

N ; iÞ and S2ðCM
N ; iÞ respectively. Specifically,

½C�MN ði; jÞ can be calculated as following:

Cði; jÞ ¼
X

0 � i1 < m1

0 � i2 < m2

i1 þ i2 ¼ i

X
0 � j1 < n1

0 � j2 < n2

j1 þ j2 ¼ j

Aði1; j1Þ � Bði2; j2Þ ð1Þ
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We refer to ½C�MN as being equal to the Cauchy product between matrices Am1�n1 and Bm2�n2 ,
denoted A� B (extending the definition of Cauchy product between vectors to matrices).

For example, let us consider the bi-substrate reaction shown in Fig 2b, in which A (having 3
carbons) is condensed with B (having 2 carbons) to make C, with carbons from A mapped to
the first 3 carbons in C and atoms from B mapped to the last 2 carbons in C. In this case, the

tandemer distribution matrix for C 2;3;4;5f g
3;4f g , can be calculated based on the Cauchy product of

the tandemer distributions of the substrate MFP's A 2;3f g
3f g and B 1;2f g

1f g .

Under isotopic steady-state, a tandemer distribution matrix for the MFP AN
K is determined

based on the corresponding tandemer distributions of all of its substrate MFPs according to
the following balance equation:

½A�NK
X

i2
reactions

producing A

( )vi ¼

X
i2

Uni� substrate

reactions

producing A

8>><
>>:

9>>=
>>;

SðAN
K ; iÞ

� � � vi þX
i2

Bi� substrate

reactions

producing A

8>><
>>:

9>>=
>>;
½S1ðAN

K ; iÞ� � ½S2ðAN
K ; iÞ� � vi ð2Þ

where vi is the flux through reaction i.

An algorithm for simulating tandemer distributions
Our goal is to efficiently simulate the tandemer distribution for a pre-defined set of metabolites
(for which corresponding experimental data might be available). We assume that a metabolic
network model with reaction atom-mappings (describing the mapping of substrate to product
metabolite atoms in each reaction) and candidate fluxes are given. To address this problem, we

Fig 2. Calculating the tandemer distribution matrix of a product MFP based on tandemer distribution
matrices of substrate MFPs in uni-substrate (a) and bi-substrate (b) reactions.

doi:10.1371/journal.pone.0130213.g002
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present the tandemers approach, whose outline is shown in Fig 3. A detailed explanation of the
various steps of the algorithms is provided below, while a Matlab implementation is available
at: www.cs.technion.ac.il/~tomersh/methods.html.

2.3.1. Identifying a minimal set of MFPs whose tandemer distributions are needed to
simulate MS/MS measurements. The identification of a minimal set of MFP's in the meta-
bolic network whose tandemer distributions would enable simulating the tandemer distribu-
tion of a given set of metabolites is done using a recursive procedure, in a similar manner to
that presented in the EMU approach [1]. Specifically, starting with a list of MFPs for which tan-
demer distributions are available, we traverse the metabolic network to iteratively add substrate
MFPs (via the definition of substrate MFPs provided above). This procedure ends when no
more new MFPs can be added to the list.

The total number of MFPs depends on many factors, including the structure of the meta-
bolic network, number of atoms per metabolite, reaction atom mappings, and number of
metabolites for which experimental MS/MS data is available as input. In theory, for each

Fig 3. An outline of the tandemers approach. First, given MS/MSmeasurements and a metabolic model, a
minimal set of MFPs is identified constructing an MFP graph. Second, MFPs are clustered and sorted and
third, isotopic balance equations are formulated for each MFP cluster. Given a candidate flux vector,
tandemer distributions are calculated by solving the set of isotopic balance equations.

doi:10.1371/journal.pone.0130213.g003
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metabolite with n carbons, the worst case number of possible MFPs could go up to:

Xn

i¼1

Xi

j¼1
ðni ÞðijÞ < 3n ð3Þ

Hence, theoretically, the number of MFPs for a certain metabolite found by the recursive pro-
cedure described above may exceed the number of possible isotopomers for that metabolite
(which is 2n). In practice, as we show below, applying this method on various metabolic net-
works, the number of MFPs found per metabolite is markedly lower than the number of isoto-
pomers, resulting in improved running time compared to existing methods.

2.3.2. MFP’s clustering and ordering. In a uni-substrate reaction producing MFP BN
K, the

size of the parent fragment in BN
K equals that of its substrate AN0

K0 ¼ SðBN
K ; iÞ (i.e. |N’| = |N|),

while in a bi-substrate reaction, the size of the parent fragment is larger than that of both its
substrate MFPs (noting that a bi-substrate reaction in which one of the substrate MFP has a
parent fragment of size zero can be regarded as a uni-substrate reaction). Hence, a tandemer
distribution with parent fragment of a certain size is linearly dependent upon tandemer distri-
butions with parent fragment of the same size, and non-linearly dependent (via Cauchy prod-
uct) only upon tandemer distributions with smaller parent fragments (see Eq 2). Therefore, all
tandemer distributions can be computed by sequentially solving linear balance equations for
sets of tandemer distributions with increasing sizes (as Cauchy product of tandemer distribu-
tion matrices of smaller parent fragments can be computed before reaching tandemer distribu-
tions of larger parent fragments; similarly to the EMU [1] and cumomer [19] approaches).

Following a method proposed by [20], we divided the linear balance equations into smaller
sets of equations that can be sequentially solved. Specifically, we construct a directed graph
whose nodes represent the identified MFPs and edges connect an MFP AN

K with its substrate

SðAN
K ; iÞ for uni-substrate reactions, and with both its substrates S1ðAN

K ; iÞ and S2ðAN
K ; iÞ for bi-

substrate reactions. Notably, for a given MFP in this graph, its parent fragment size is not
smaller than those of all MFPs having a directed edge towards it (see Fig 2). Hence, decompos-
ing the graph into strongly connected components [21] and applying topological sorting on
the identified clusters [22] leads to a cascade of MFP clusters, each consisting of MFPs having
the same parent fragment size, with clusters ordered according to a non-decreasing fragment
parent size (see Example below in Section 2.4). Iterating through the list of clusters, all tande-
mer distributions in a given cluster can be calculated via a set of linear equations based on tan-
demer distributions inferred in previous clusters (via Eq (2); where non-linear terms associated
with bi-substrate reactions are calculated based on tandemer distributions inferred in previous
clusters)[22].

2.3.3. Formulating and solving a series of linear balance equations for MFPs in each
cluster. Tandemer distributions for MFPs in a cluster are linearly dependent on each other,
given the corresponding tandemer distributions for MFPs in previous clusters. Notably, the set
of balance equations for tandemer distribution matrices for MFPs in the i’th cluster can be for-
mulated as following:

AiXi ¼ BiYi ð4Þ

where Xi is a matrix whose rows represent the tandemer distributions for MFPs in the i’th clus-
ter (i.e. each tandemer distribution represented as a row vector; removing infeasible tande-
mers), Yi is a matrix whose rows represent tandemer distributions and Cauchy product of
tandemer distributions computed for previous clusters, and Ai and Bi consist of corresponding
fluxes.

Efficient Modeling of MS/MS Data for Metabolic Flux Analysis
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Solving a set of balance equations for MFPs in the i’th cluster requires calculating the inverse
of Ai, whose number of rows (and columns) is equal to the number of MFPs in the cluster. As
the cumomers approach also involves grouping cumomers in clusters and inverting flux matri-
ces (similar to Ai, here) whose size depends on the number of cumomers in each cluster, the
running time of cumomers and tandemers approaches can be compared in terms of cumomers
and MFPs cluster sizes, and the time needed to invert the corresponding flux matrices. Theo-
retically, an n fold reduction in the number of MFPs versus cumomers in a cluster should result
in n3 improvement in running time. Notably, the number of non-feasible tandemers in each
tandemer distribution matrix (represented by the number of column of Xi has a negligible
effect on the time require to solve Eq (4), which is dominated by the n3 time required to calcu-
late the inverse of Ai).

An example of the tandemers approach on a toy metabolic network
In this section we describe the application of the tandemers approach on a toy metabolic net-
work shown in Fig 4a, where atom mappings are given in Fig 4b. We assume that metabolic
fluxes as well as the labeling pattern of A are known (considering that isotopically labeled A is

given the growth media) and aim to compute the tandemer distribution of a E 1;2;3;4f g
2;3f g (assumed

to be measured via MS/MS). Applying the recursive procedure described in the previous sec-

tion, starting from E 1;2;3;4f g
2;3f g , we identify a total of 10 MFPs (for metabolites other than A) whose

tandemer distribution is needed to compute that of E 1;2;3;4f g
2;3f g . The MFP graph and its three con-

nected components are shown in Fig 4c. Notably, cluster (III) depends on clusters (I) and (II),
while the latter clusters are mutually independent.

For example, the isotopic balance equation for tandemer distribution matrices in cluster (I)
is formulated as following, according to Eq (4):

�ðv1 þ vb5Þ 0 0 vb5

v3 �ðv2 þ v3 þ vb4Þ vb4 0

0 vf4 �ðv2 þ vf4Þ 0

vf5 v6 0 �ðvf5 þ v6Þ

2
66664

3
77775

�

½B�f3;4gf4g ð0; 0Þ ½B�f3;4gf4g ð1; 0Þ ½B�f3;4gf4g ð1; 1Þ ½B�f3;4gf4g ð2; 1Þ
½C�f1;2gf2g ð0; 0Þ ½C�f1;2gf2g ð1; 0Þ ½C�f1;2gf2g ð1; 1Þ ½C�f1;2gf2g ð2; 1Þ
½D�f1;2gf2g ð0; 0Þ ½D�f1;2gf2g ð1; 0Þ ½D�f1;2gf2g ð1; 1Þ ½D�f1;2gf2g ð2; 1Þ
½E�f3;4gf4g ð0; 0Þ ½E�f3;4gf4g ð1; 0Þ ½E�f3;4gf4g ð1; 1Þ ½E�f3;4gf4g ð2; 1Þ

2
6666664

3
7777775

¼

�v1 0 0

0 �v2 0

0 0 �v2

0 0 0

2
66664

3
77775 �

½A�f3;4gf4g ð0; 0Þ ½A�f3;4gf4g ð1; 0Þ ½A�f3;4gf4g ð1; 1Þ ½A�f3;4gf4g ð2; 1Þ
½A�f1;2gf2g ð0; 0Þ ½A�f1;2gf2g ð1; 0Þ ½A�f1;2gf2g ð1; 1Þ ½A�f1;2gf2g ð2; 1Þ
½A�f3;4gf3g ð0; 0Þ ½A�f3;4gf3g ð1; 0Þ ½A�f3;4gf3g ð1; 1Þ ½A�f3;4gf3g ð2; 1Þ

0 0 0 0

2
666664

3
777775

Considering that the tandemer distribution ½B� 3;4f g
4f g is calculated as part of cluster (I) and ½C� 1;2f g

1f g
as part of cluster (II), enables to calculate the Cauchy product between the two matrices prior
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to solving the balance equations for cluster (III). Given the Cauchy product between ½B� 3;4f g
4f g

and ½C� 1;2f g
1f g , the isotopic balance equations for cluster (III) are linear:

½B� 1;2;3;4f g
2;3f g � ðv1 þ vb5Þ ¼ ½A� 1;2;3;4f g

2;3f g � v1 þ ½E� 1;2;3;4f g
2;3f g � vb5

½E� 1;2;3;4f g
2;3f g � ðvf5 þ v6Þ ¼ ½B� 1;2;3;4f g

2;3f g � vf5 þ ½B� 3;4f g
4f g � ½C� 1;2f g

1f g � v6

Fig 4. (a) A toy metabolic network, where the labeling pattern of A that is supplied in the media is assumed to be known, and the tandemer distribution of
½E� 1;2;3;4f g

2;3f g is to be calculated; (b) Atommapping for network reactions; (c) An MFP graph and three strongly connected components whose numbering is
determined via topological sorting.

doi:10.1371/journal.pone.0130213.g004
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Results

Applying the tandemers method on a small-scale model of mammalian
methionine metabolism
To demonstrate the applicability of the tandemers method for efficiently computing experi-
mental MS/MS data in 13C labeling experiments, we applied it on a simplified metabolic net-
work model of mammalian cellular metabolism of methionine (Fig 5, S1 File). Methionine
metabolism involves two partially overlapping cyclic pathways for transmethylation (of protein
and DNA) and propylamine transfer (for polyamine biosynthesis). The metabolic donor of
both the methyl and propylamine groups is S-adenosylmethionine (SAM), which has 15 car-
bons (hence, a high-carbon metabolite). The product metabolites S-adenosylhomocysteine
(SAH) and methylthioadenosine (MTA) also have high number of carbons, 14 and 11 carbons
respectively (as one additional SAM carbon is oxidized to CO2 prior to the propylamine trans-
fer). Considering that the number of isotopomers of a metabolite with n carbons is 2n, explicitly
modeling the entire isotopomer distribution of all five metabolites in this network (as done in
the cumomers method) would require 52,306 variables.

To apply the tandemers method, we utilized experimentally determined fluxes in this net-
work as input [23]. We assume that the carbon labeling pattern of metabolites that are outside
the scope of the model, including that of media methionine, ATP, and 5-methyl-tetrahydrofo-
late (i.e. the labeling of the methyl group in 5-methyl-THF) are known. First, we applied the
tandemers method to compute the tandemer distribution of all 5 metabolites in the network,
assuming that parent fragments are the intact metabolites, and that product fragments are the
adenine group in SAM, SAH, and MTA, and the four methionine carbons other than the
methyl group for methionine and HCys. The resulting number of MFPs whose tandemer dis-
tributions are found to be required to compute the tandemer distributions of the given MFPs is
35. These are divided into clusters, such that the largest cluster has only 4 MFPs. In compari-
son, applying the cumomers method given the same input data would require a total of 52,306
cumomers (the same as the number of isotopomers), divided into clusters whose largest one
has 10,197 cumomers.

Next, we ran both the tandemers and cumomers methods multiple times, choosing a differ-
ent subset of metabolites to calculate their tandemer distribution in each run. The parent

Fig 5. Methionine metabolism, including transmethylation cycle, polyamine biosynthesis and
methionine salvage cycle.Metabolites abbreviations: SAM: S-Adenosylmethionine; SAH:
S-Adenosylhomocysteine; HCyc: L-Homocysteine; MTA: Methylthioadenosine.

doi:10.1371/journal.pone.0130213.g005
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fragment was assumed to be the intact metabolite and the product fragment was chosen to be
the ribose, adenine, propylamine, or the four methionine carbons other than the methyl group.
We find an average number of only 33 MFPs per run of the tandemers method, while the
cumomers method requiring of 52,306 cumomer variables regardless of assumed input. The
average running time of the tandemers method was found to be 0.00046 seconds, while that of
the cumomers method was 0.68 seconds, ~1500-fold higher (Table 2). Notably, the significant
reduction in running time will be especially important for designing optimal isotope tracing
experiments, requiring numerous (many thousands for large-scale networks) repeated simula-
tions of isotope labeling patterns for possible flux distributions [13].

Applying the tandemers approach in a large-scale metabolic network
model of E. coli
To further demonstrate the applicability of the tandemers approach, we applied it on a large-
scale metabolic network model of E. coli [13]. This isotopomer model accounts for glycolysis,
TCA cycle, pentose phosphate pathway, oxidative phosphorylation, pyruvate metabolism, ana-
plerotic reactions and other central and biosynthetic pathways, with a total of 206 metabolites
and 405 reactions. Notably, metabolites with a high number of carbons were not included in
this network reconstruction to facilitate the application of the cumomers approach (by lump-
ing surrounding reactions together) [13]. The total number of isotopomers in this large-scale
network is hence surprisingly low, reaching 19,404 isotopomers (much lower than that in the
small-scale methionine network applied above). Hence, even though this network model is
substantially larger than the methionine network, we do not expect the tandemers approach to
demonstrate the same level of improvement compared to the cumomers method.

We applied the tandemers method 1000 times to compute the tandemer distribution of ran-
domly chosen sets of metabolites (having between 1 to 20 metabolites). The average number of
resulting MFPs was 695, with a maximal MFP cluster size of 32. In comparison, applying the
cumomers approach resulted in 19,404 cumomers, and a maximal cluster size of 4,016. The
average running time of the tandemers and cumomers methods are 0.01 and 3.3 seconds,
respectively, representing a ~300-fold improvement by the tandemers method (Table 2).

For the tandemers methods, the number of variables represents the number of MFP whose
tandemer distribution is calculated; for the cumomers approach, it represents the number of
cumomers. The number of these variables corresponds to the size of the flux matrices whose
inverse is calculated by each method, and is hence proportional to overall running time (see
Section 2.3.3). We report the average variable count, clustersize, and running time for the
cumomers and tandemers methods in multiple simulations given different sets of metabolites
and collisional fragments, as described above. Notably, considering that MFA applications and
especially experimental design of isotope tracing experiments require thousands of repeated
simulations of metabolite isotopic labeling, the ~1500-fold and 300-fold improvement in

Table 2. Comparison of the performance of the cumomers and tandemers methods in calculating tandemer distributions onmammalian methio-
nine and E. coli networks.

Mammalian methionine metabolism model E. coli model

Variable count Maximal cluster size Running time Variable count Maximal cluster size Running time

Cumomers 52,306 10,197 0.68 19,404 4,016 3.3

Tandemers 33 4 0.00046 695 32 0.01

doi:10.1371/journal.pone.0130213.t002
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running time observed in the mammalian methionine network and on the E. coli network,
respectively, is of a major practical importance.

Discussion
TandemMS holds great promise for metabolic flux analysis as it provides information on
metabolite positional labeling [12, 16–18]. However, a major limitation in using MFA with
MS/MS data is the lack of a computationally efficient method for simulating isotopic labeling
data measurable via MS/MS. State-of-the-art methods such as cumomers that enable to simu-
late MS/MS data requires simulating the abundance of all distinct isotopomers, whose number
is exponentially dependent on the number of atoms in each metabolite. Here, we described the
tandemers approach that is specifically designed for efficiently computing tandem mass-
isotopomer distributions measurable via MS/MS, demonstrating a roughly two to three orders
of magnitude improvement in running time compared to the cumomers approach. The tande-
mers approach is especially useful when analyzing metabolic networks with metabolites having
a high number of carbons, where modeling the entire isotopomer distribution may become
computationally intractable.

In our application of the tandemers method on a metabolic network of mammalian methio-
nine metabolism and for E. coli, we computed tandemer distributions for MFPs in which the
parent fragment was the entire metabolite. This represents the case where no in-source frag-
mentation occurs during MS ionization, which is typically the situation with LC-MS. However,
in-source fragmentation can occur (mostly with GC-MS), leading to measurement of tandemer
distributions with parent fragment that is not the entire metabolite. Such in-source fragmenta-
tion can provide further useful information on positional labeling, for example, as was recently
used to infer all distinct isotopomers of aspartate [24]. Obviously, the tandemers approach may
also be used to compute tandemer distributions for MFPs with parent fragments that are not
the entire metabolite.

In a recent study, we described a method, Metabolic Flux Analysis/Unknown Fragments
(MFA/UF), capable of using MS/MS data to improve flux inference even when the positional
origin of fragments is unknown [12]. MFA/UF extends upon standard MFA and jointly
searches for the most likely metabolic fluxes together with the most plausible position of colli-
sional fragments that would optimally match measured MS/MS data. To simulate MS/MS data
given candidate fluxes and candidate collisional fragments, MFA/UF utilized the cumomers
approach to simulate MS/MS labeling data. Considering that the tandemers approach was
shown here to outperform the cumomers method, integrating it within MFA/UF is expected to
lead to a significant improvement in running time.

Considering that a major current complication in utilizing MS/MS data in metabolic flux
analysis involves the lack of computationally efficient methods for simulating such experimen-
tal measurements, we expect the tandemers approach to promote broader usage of this
technology.

Supporting Information
S1 File. Methionine metabolism model.
(XLSX)

Author Contributions
Conceived and designed the experiments: NT TS. Performed the experiments: NT TS. Ana-
lyzed the data: NT TS. Wrote the paper: NT TS.

Efficient Modeling of MS/MS Data for Metabolic Flux Analysis

PLOS ONE | DOI:10.1371/journal.pone.0130213 July 31, 2015 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130213.s001


References
1. Antoniewicz MR, Kelleher JK, Stephanopoulos G. Elementary metabolite units (EMU): a novel frame-

work for modeling isotopic distributions. Metab Eng. 2007; 9(1):68–86. Epub 2006/11/08. doi: 10.1016/
j.ymben.2006.09.001 PMID: 17088092; PubMed Central PMCID: PMC1994654.

2. Boghigian BA, Seth G, Kiss R, Pfeifer BA. Metabolic flux analysis and pharmaceutical production.
Metab Eng. 2010; 12(2):81–95. Epub 2009/10/29. doi: 10.1016/j.ymben.2009.10.004 PMID:
19861167.

3. Jin ES, Jones JG, Merritt M, Burgess SC, Malloy CR, Sherry AD. Glucose production, gluconeogene-
sis, and hepatic tricarboxylic acid cycle fluxes measured by nuclear magnetic resonance analysis of a
single glucose derivative. Analytical biochemistry. 2004; 327(2):149–55. Epub 2004/03/31. doi: 10.
1016/j.ab.2003.12.036 PMID: 15051530.

4. Sauer U. Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol. 2006; 2:62. Epub 2006/
11/15. doi: 10.1038/msb4100109 PMID: 17102807; PubMed Central PMCID: PMC1682028.

5. Sillers R, Al-Hinai MA, Papoutsakis ET. Aldehyde-alcohol dehydrogenase and/or thiolase overexpres-
sion coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clos-
tridium acetobutylicum fermentations. Biotechnol Bioeng. 2009; 102(1):38–49. Epub 2008/08/30. doi:
10.1002/bit.22058 PMID: 18726959.

6. Wiechert W. An introduction to 13C metabolic flux analysis. Genetic engineering. 2002; 24:215–38.
Epub 2002/11/06. PMID: 12416307.

7. Wiechert W, Mollney M, Isermann N, Wurzel M, de Graaf AA. Bidirectional reaction steps in metabolic
networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng. 1999;
66(2):69–85. Epub 1999/11/24. PMID: 10567066.

8. Möllney M, Wiechert W, Kownatzki D, de Graaf AA. Bidirectional reaction steps in metabolic networks:
IV. Optimal design of isotopomer labeling experiments. Biotechnology and Bioengineering. 1999;
66(2):86–103. PMID: 10567067

9. Wiechert W, Siefke C, de Graaf AA, Marx A. Bidirectional reaction steps in metabolic networks: II. Flux
estimation and statistical analysis. Biotechnol Bioeng. 1997; 55(1):118–35. Epub 1997/07/05. doi: 10.
1002/(SICI)1097-0290(19970705)55:1<118::AID-BIT13>3.0.CO;2-I PMID: 18636450.

10. Rantanen A, Rousu J, Jouhten P, Zamboni N, Maaheimo H, Ukkonen E. An analytic and systematic
framework for estimating metabolic flux ratios from 13C tracer experiments. BMC Bioinformatics. 2008;
9(1):266. doi: 10.1186/1471-2105-9-266

11. Antoniewicz MR, Kelleher JK, Stephanopoulos G. Determination of confidence intervals of metabolic
fluxes estimated from stable isotope measurements. Metab Eng. 2006; 8(4):324–37. Epub 2006/04/25.
doi: 10.1016/j.ymben.2006.01.004 PMID: 16631402.

12. Tepper N, Shlomi T. An integrated computational approach for metabolic flux analysis coupled with
inference of tandem-MS collisional fragments. Bioinformatics. 2013; 29(23):3045–52. Epub 2013/10/
15. doi: 10.1093/bioinformatics/btt516 PMID: 24123514.

13. Schellenberger J, Zielinski DC, Choi W, Madireddi S, Portnoy V, Scott DA, et al. Predicting outcomes of
steady-state 13C isotope tracing experiments using Monte Carlo sampling. BMC Systems Biology.
2012; 6(9).

14. Wiechert W, Mollney M, Petersen S, de Graaf AA. A universal framework for 13C metabolic flux analy-
sis. Metab Eng. 2001; 3(3):265–83. Epub 2001/07/20. doi: 10.1006/mben.2001.0188 PMID: 11461148.

15. Srour O, Young JD, Eldar YC. Fluxomers: a new approach for 13Cmetabolic flux analysis. BMC Syst
Biol. 2011; 5:129. Epub 2011/08/19. doi: 10.1186/1752-0509-5-129 PMID: 21846358.

16. Jeffrey FM, Roach JS, Storey CJ, Sherry AD, Malloy CR. 13C isotopomer analysis of glutamate by tan-
demmass spectrometry. Analytical biochemistry. 2002; 300(2):192–205. Epub 2002/01/10. doi: 10.
1006/abio.2001.5457 PMID: 11779111.

17. Rühl M, Rupp B, Noh K, Wiechert W, Sauer U, Zamboni N. Collisional fragmentation of central carbon
metabolites in LC-MS/MS increases precision of 13C metabolic flux analysis. Biotechnol Bioeng. 2012;
109(3):763–71. Epub 2011/10/21. doi: 10.1002/bit.24344 PMID: 22012626.

18. Choi J, Antoniewicz MR. Tandemmass spectrometry: a novel approach for metabolic flux analysis.
Metab Eng. 2011; 13(2):225–33. Epub 2010/12/08. doi: 10.1016/j.ymben.2010.11.006 PMID:
21134484.

19. Wiechert W. 13Cmetabolic flux analysis. Metab Eng. 2001; 3(3):195–206. Epub 2001/07/20. doi: 10.
1006/mben.2001.0187 PMID: 11461141.

20. Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G. An elementary metabolite unit
(EMU) based method of isotopically nonstationary flux analysis. Biotechnology and bioengineering.
2008; 99(3):686–99. Epub 2007/09/06. doi: 10.1002/bit.21632 PMID: 17787013.

Efficient Modeling of MS/MS Data for Metabolic Flux Analysis

PLOS ONE | DOI:10.1371/journal.pone.0130213 July 31, 2015 13 / 14

http://dx.doi.org/10.1016/j.ymben.2006.09.001
http://dx.doi.org/10.1016/j.ymben.2006.09.001
http://www.ncbi.nlm.nih.gov/pubmed/17088092
http://dx.doi.org/10.1016/j.ymben.2009.10.004
http://www.ncbi.nlm.nih.gov/pubmed/19861167
http://dx.doi.org/10.1016/j.ab.2003.12.036
http://dx.doi.org/10.1016/j.ab.2003.12.036
http://www.ncbi.nlm.nih.gov/pubmed/15051530
http://dx.doi.org/10.1038/msb4100109
http://www.ncbi.nlm.nih.gov/pubmed/17102807
http://dx.doi.org/10.1002/bit.22058
http://www.ncbi.nlm.nih.gov/pubmed/18726959
http://www.ncbi.nlm.nih.gov/pubmed/12416307
http://www.ncbi.nlm.nih.gov/pubmed/10567066
http://www.ncbi.nlm.nih.gov/pubmed/10567067
http://dx.doi.org/10.1002/(SICI)1097-0290(19970705)55:1&lt;118::AID-BIT13&gt;3.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1097-0290(19970705)55:1&lt;118::AID-BIT13&gt;3.0.CO;2-I
http://www.ncbi.nlm.nih.gov/pubmed/18636450
http://dx.doi.org/10.1186/1471-2105-9-266
http://dx.doi.org/10.1016/j.ymben.2006.01.004
http://www.ncbi.nlm.nih.gov/pubmed/16631402
http://dx.doi.org/10.1093/bioinformatics/btt516
http://www.ncbi.nlm.nih.gov/pubmed/24123514
http://dx.doi.org/10.1006/mben.2001.0188
http://www.ncbi.nlm.nih.gov/pubmed/11461148
http://dx.doi.org/10.1186/1752-0509-5-129
http://www.ncbi.nlm.nih.gov/pubmed/21846358
http://dx.doi.org/10.1006/abio.2001.5457
http://dx.doi.org/10.1006/abio.2001.5457
http://www.ncbi.nlm.nih.gov/pubmed/11779111
http://dx.doi.org/10.1002/bit.24344
http://www.ncbi.nlm.nih.gov/pubmed/22012626
http://dx.doi.org/10.1016/j.ymben.2010.11.006
http://www.ncbi.nlm.nih.gov/pubmed/21134484
http://dx.doi.org/10.1006/mben.2001.0187
http://dx.doi.org/10.1006/mben.2001.0187
http://www.ncbi.nlm.nih.gov/pubmed/11461141
http://dx.doi.org/10.1002/bit.21632
http://www.ncbi.nlm.nih.gov/pubmed/17787013


21. Weitzel M, Wiechert W, Nöh K. The topology of metabolic isotope labeling networks. BMC Bioinformat-
ics. 2007; 8(315).

22. Kahn AB. Topological sorting of large networks. Communications of the ACM. 1962; 5(11):558–62.

23. Shlomi T, Fan J, Tang B, Kruger WD, Rabinowitz JD. An analytical approach for quantifying methionine
metabolism in cancer cells. Anal Chem. 2014.

24. Choi J, Grossbach MT, Antoniewicz MR. Measuring complete isotopomer distribution of aspartate
using gas chromatography/tandemmass spectrometry. Anal Chem. 2012; 84(10):4628–32. Epub
2012/04/19. doi: 10.1021/ac300611n PMID: 22510303.

Efficient Modeling of MS/MS Data for Metabolic Flux Analysis

PLOS ONE | DOI:10.1371/journal.pone.0130213 July 31, 2015 14 / 14

http://dx.doi.org/10.1021/ac300611n
http://www.ncbi.nlm.nih.gov/pubmed/22510303

