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Abstract

Osteoporosis is one of the most common diseases and can be treated by either anti-resorption drugs, anabolic drugs, or
both. To search for anabolic drug targets for osteoporosis therapy, it is crucial to understand the biology of bone forming
cells, osteoblasts, in terms of their proliferation, differentiation, and function. Here we found that protein palmitoylation
participates in signaling pathways that control osterix expression and osteoblast differentiation. Mouse calvarial osteoblasts
express most of the 24 palmitoyl transferases, with some being up-regulated during differentiation. Inhibition of protein
palmitoylation, with a substrate-analog inhibitor, diminished osteoblast differentiation and mineralization, but not
proliferation or survival. The decrease in differentiation capacity is associated with a reduction in osterix, but not Runx2 or
Atf4. Inhibition of palmitoyl transferases had little effect in p532/2 osteoblasts that show accelerated differentiation due to
overexpression of osterix, suggesting that osterix, at least partially, mediated the effect of inhibition of palmitoyl
transferases on osteoblast differentiation. BMPs are the major driving force of osteoblast differentiation in the differentiation
assays. We found that inhibition of palmitoyl transferases also compromised BMP2-induced osteoblast differentiation
through down-regulating osterix induction. However, palmitoyl transferases inhibitor did not inhibit Smad1/5/8 activation.
Instead, it compromised the activation of p38 MAPK, which are known positive regulators of osterix expression and
differentiation. These results indicate that protein palmitoylation plays an important role in BMP-induced MAPK activation,
osterix expression, and osteoblast differentiation.
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Introduction

Bone is a dynamic organ and is constantly remodeled. New

bones are formed by osteoblasts to replace the old ones, which are

resorbed by osteoclasts. A fine balance between bone formation

and bone resorption is needed to maintain an optimal bone mass

[1,2]. Indeed, there exist multiple coupling mechanisms between

osteoblasts and osteoclasts [3]. For example, osteoblasts can

synthesize and secrete cytokines such as M-CSF and RANKL to

promote osteoclastogenesis from hematopoietic stem cells of the

bone marrow. On the other hand, bone resorption releases TGFb
and BMPs that are trapped in the bone matrix, facilitating

osteoblast migration, differentiation and function [4]. Disruption

of the balance between bone resorption and formation usually

leads to osteosclerosis or osteoporosis [2]. Osteoporosis affects one

out of every two women and one out of every four men over age

50, and is regarded as a major public health threat. While there

are some anti-resorption drugs in clinical use, such as SERMs and

bisphosphonates, there is a lack of anabolic drugs. To date,

parathyroid hormone (and teriparatide) and strontium ranelate are

the only available anabolic drugs in clinical use [5,6]. Increasing

efforts are being made to search for more efficient anabolic drugs

with lesser adverse effects.

Osteoblasts are derived from bone marrow mesenchymal stem

cells (MSCs) under the influence of growth factors such as BMPs

and Wnts [2,7]. The two transcription factors that are relatively

specific to osteoblast, Runx2 and osterix (Osx), play essential roles

in osteoblast differentiation from MSC [8–10]. Deletion of either

one by gene targeting leads to the loss of mature osteoblasts and

lack of calcified bones [11,12]. On the other hand, ectopic

expression of Runx2 or Osx enhances osteoblast differentiation

and mineralization [12,13]. Moreover, there is evidence to support

the notion that the levels of Osx determine the differentiation

status of osteoblasts [14–16]. Given the importance of Osx in

osteoblast differentiation and function, it is important to study the

regulation of Osx expression. Recent studies show that Osx can be

induced by Notch, BMPs, and TNF and its expression is further

controlled by posttranslational regulation [17–21]. The induction

of Osx is believed to mediate the effect of BMPs on osteoblast

differentiation. BMPs can transactivate Osx through both the

canonical BMP-Smad1/5/8 pathway and the non-canonical

BMP-MAPK pathway [17–19].

Protein function is affected by its expression level, localization,

interaction with other proteins, and its posttranslational modifica-

tions. Recent studies indicate that many proteins can be modified

by palmitoylation on cysteine residues by a family of proteins that

contain a unique zf-DHHC domain. At least 24 members have

been identified in mammalian genome [22]. This modification

regulates protein localization, trafficking, and stability [23–25]. To

understand the importance of protein palmitoylation in osteoblast

biology, we analyzed the expression of the 24 palmitoyl

acyltransferases (PATs) by RT-PCR and found some of them
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were up-regulated when osteoblasts started to differentiate. More

importantly, we found that inhibition of protein palmitoylation

with a substrate analog inhibitor impeded osteoblast differentiation

and function, which are mediated by altered expression of Osx

through the p38 MAPK pathway. This study also suggests that

palmitoylation modifies proteins downstream of BMPR and

upstream of p38 MAPK and this modification might regulate

other cellular events that involve this pathway.

Results

Expression of palmitoyl transferases during osteoblast
differentiation

Protein palmitoylation plays an important role in regulating

localization, trafficking, and degradation of a protein, and its

interaction with other proteins. To learn whether protein palmitoyla-

tion is involved in osteoblast function, we first analyzed the expression

of the 24 potential PATs in calvarial osteoblasts at different stages of

differentiation by RT-PCR (Table 1 for primer sequences). It was

found that 20 out of 24 PATs can be detected (Fig. 1A–C). More

interestingly, DHHC1, 2, 6, 7, 15, 23, 25 were up-regulated in

differentiating osteoblasts compared to non-differentiated cells

(Fig. 1B), suggesting that these PATs might play an active role in

this process. On the other hand, DHHC9, 12, 13, 18 were slightly

down-regulated compared to non-differentiated osteoblasts, while

DHHC4, 5, 8, 14, 16, 17, 19, 20, and 24 showed no alteration at the

mRNA levels (Fig. 1A and 1C). DHHC3, 11, 21, 22 were

undetectable, suggesting that their expression in osteoblasts could be

very low. Note that DHHC10 does not exist. A recent study showed

that in most of the human tissues, 17 of these PATs were expressed

[26]. Our previous studies showed that both DHHC19 and DHHC6

were ubiquitously expressed in both mouse and human tissues [27].

Osteoblasts have many PAT substrates
To confirm that protein palmitoylation does occur in osteo-

blasts, we labeled OBs with 3H-palmitic acid for 24 hours. Total

proteins were separated onto SDS-PAGE gels, which were dried

and exposed to X-ray films. Osteoblasts clearly showed several

radio-labeled bands (proteins with covalent palmitoyl modifica-

tion). The most prominent ones were at the MW of ,20, 36, 45,

80, 135 kDa (Fig. 1D). This pattern is different from that of

Figure 1. Expression of PATs and protein palmitoylation in
osteoblasts. A. RT-PCR analysis of the mRNA levels of the 24 known
PATs during osteoblast differentiation. Primary osteoblasts were
cultured in the differentiation medium for different periods of time.
Total RNA was isolated from these cultures and was then used to carry
out RT-PCR. These PATs were classified into unaltered expression (A),
increased expression (B), and decreased expression (C), in comparison
to the day 1 cultures. D. 2BP was able to inhibit protein palmitoylation
in primary osteoblasts. Primary osteoblasts were treated with 100 mM of
2BP for 2 hrs and then 3H-palmitic acid was included in the culture
medium for 24 hrs. The cells were harvested and the same amounts of
total proteins were loaded for control and 2BP treated samples. The
SDS-PAGE gel was dried and exposed to x-ray films. The palmitoylated
proteins are radio-labeled. Actin was used as a loading control.
doi:10.1371/journal.pone.0004135.g001

Table 1. The primer sequences for the 24 mouse PATs and
other genes studied here and the sizes of the PCR products.

Gene Forward Reverse Size

Zdhhc1 CACCTGCTCTGCTTCCACAT CTCAGCTGATGCCGAGTAGT 503

Zdhhc2 GGTCTGCCTGATACTCAAGC GTTCCATTCCTCCACAGCAC 561

Zdhhc3 TACAAGTGTCCCAAG TGCTG GGTCCTTCAGACCACATACT 527

Zdhhc4 ACCTTCATCGTCTTGCACCT GGAGTGAATGTTCTGGTGGA 761

Zdhhc5 ACCCTCACCAGTCCGTTATG GGTGTAGGTGCAGAGGTGTG 608

Zdhhc6 TTCGGATTGGCTGCGTTTGC AGTCACCATCACAGGGACAC 612

Zdhhc7 GGTGTGGTTCATCCGAGATG TTCTCGCTCTTCAGCCTCTC 662

Zdhhc8 CGACAATGGGCTGAAAGCTG GTGCAGGTAGGGTGAATGGT 666

Zdhhc9 CTACCTCTTCATCCTCTCTC TCTTCAGGAATGCTGGTGTC 485

Zdhhc11 AGTACTGCCACCTGTGTGAG TTCGGCGAAAGAGTAGACAC 606

Zdhhc12 GTGCTAAGCTCCCTGCTGCT GCAGCCTTCTCTCCAGCAAC 665

Zdhhc13 GACTGGCTCTCTGGACTTCA TAAGCCAAAGCAGCCACACT 531

Zdhhc14 AGCCTGTGTGATAACTGCGT CATGGTACGGCTATGTGCTA 848

Zdhhc15 CGTTCTCTACTGCCTGTACA AACCTGCTACGTTTCCGACT 477

Zdhhc16 CTCATCCTCCGAACCTACTC TCCAGTTGTCCAAGCAGCCA 630

Zdhhc17 ATGGTTCTTCTGGTTCTGGA TCCTTACACATCCATGGTTG 657

Zdhhc18 TCTCCCTCTCCTTCTTGACG CTCCTACCATGCTGGCGTCT 431

Zdhhc19 ACCTTCTTCAGTCTCGTCTC CTACAGTGTTTAGGACGACG 658

Zdhhc20 TCTACACCACATCAGCTTCA CTGGTTTGCAACAGAAGCTT 589

Zdhhc21 TGCCTGGTTGCCTTAGTGAG ACAGGATCTTCCAACGAGTG 555

Zdhhc22 GTGACCTTCGTACTGCAGCT ATTTGTCCTGCTGCTTCGAG 729

Zdhhc23 TGCTGGCACTCTGGTATTAC CAGCTGGATGAGGAAGATGT 742

Zdhhc24 TTCCTGTGTCTCCTGCTTCA AGTCACAAGACCCACATCAC 434

Zdhhc25 TCACACCTACGGACTATGCT CATGGTGCTCACTCACTTTG 576

b-actin AGATGTGGACAGCAAGCAG GCGCAAGTTAGGTTTTGTCA 123

Atf4 TTCCACTCCAGAGCATTCCT CAGGTGGGTCATAAGGTTTG 280

Col1a1 GCAATCGGGATCAGTACGAA CTTTCACGCCTTTGAAGCCA 484

M-CSF CTGACACAGGCCATGTGGAG GAGAGGGTAGTGGTGGATGT 315

Ocn AAGCAGGAGGGCAATAAGGT AGCTGCTGTGACATCCATAC 291

Opg CACCCTGTGTGAAGAGGCCT GCAGGCTCTCCATCAAGGCA 310

Opn TCACCATTCGGATGAGTCTG ACTTGTGGCTCTGATGTTCC 436

Osx TGAGGAAGAAGCCCATTCAC ACTTCTTCTCCCGGGTGTG 197

RankL TACTTTCGAGCGCAGATGGAT GTACGCTTCCCGATGTTTCAT 483

Runx2 CCGCACGACAACCGCACCAT CGCTCCGGCCCACAAATCTC 288

doi:10.1371/journal.pone.0004135.t001
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cardiomyocytes, suggesting that different cell types may have

specific sets of palmitoylated proteins [28]. Taken together, these

results indicate that osteoblasts express many PATs and some

proteins are palmitoylated.

Inhibition of PATs impeded osteoblast differentiation
and mineralization, but not proliferation or survival

To study whether protein palmitoylation plays a role in osteoblast

function, we intended to inhibit protein palmitoylation with PATs

inhibitors and/or to silence PATs with short hairpin RNA. However,

too many PATs are expressed in osteoblasts and antibodies against

these PATs are mostly unavailable, it was not feasible, at this stage, to

silence individual PATs. Instead, we used 2-bromohexadecanoic acid

(2-bromopalmitate, 2BP) to block PAT activity. 2BP is a substrate

analog inhibitor that should have an effect on most if not all PATs

[29]. We found that 100 mM of 2BP was sufficient to repress protein

palmitoylation in osteoblast by 80% (Fig. 1D). In the following

experiments, we used 2BP at the concentration of 10 to100 mM in

osteoblasts to inhibit PAT activities and check the consequences in

two aspects: differentiation and mineralization.

We first looked at one of the early markers of osteoblast

differentiation, alkaline phosphatase (ALP). It was found that 2BP

had a dosage dependent inhibitory effect on ALP expression.

Fig. 2A shows the ALP staining of osteoblasts cultured in the

differentiation medium, while Fig. 2B shows the quantitative ALP

activities that were normalized to the total protein levels. It is

obvious that inhibition of protein palmitoylation diminished ALP

expression. We then tested the expression of a few other markers

by RT-PCR. It was found that 2BP mainly down-regulated the

mRNA levels of osteocalcin, but not collagen type 1a or

osteopontin (Fig. 2C). More significantly, we found that 2BP

severely inhibited bone nodule formation, a later marker of

osteoblast differentiation and an indicator of osteoblast bone

forming activity (Fig. 2D). These results indicate that protein

palmitoylation is required for osteoblast differentiation into mature

osteocytes. However, treatment of osteoblast with the same

amounts of palmitic acid, the substrate of PATs (.150 mM

palmitic acid showed cytotoxicity in primary osteoblasts), showed

no significant effect on osteoblast differentiation (Fig. 2E). The

reason why higher concentrations of palmitic acid did not enhance

osteoblast differentiation could be that the serum provides

sufficient amount of palmitic acid for protein palmitoylation.

To test whether 2BP has an effect on cell proliferation/survival

in the in vitro differentiation assays, which may indirectly influence

osteoblast differentiation, we first counted the live cells in

osteoblast cultures in the presence or absence of 2BP. No

significant difference was observed (Fig. 3A). Moreover, 2BP

showed no significant effect on the total protein levels of the

osteoblast cultures (Fig. 3B). More importantly, removal of 2BP

from cell cultures led to a recovery of osteoblast differentiation.

Two sets of osteoblast cultures were treated with increasing

concentrations of 2BP for three days. One set was continually

cultured in the presence of 2BP for 4 more days, while the other

set had 2BP washed off and then cultured for 4 more days in the

differentiation medium. It was found that the expression of ALP in

osteoblasts recovered rather well and this was confirmed by the

quantitative ALP assays (Fig. 3C and data not shown). These

results indicate that 2BP, at the concentrations used, has little

effect on cell proliferation and/or survival, at least for a short term.

Instead, it mainly affects osteoblast differentiation.

Down-regulation of Osx by the PAT inhibitor
Osteoblast differentiation is controlled by transcription factors

such as Runx2, Osx, and Atf4. Elevation in any of these

transcription factors promotes osteoblast differentiation while

deletion of any of them leads to defects in osteoblast maturation

and bone calcification [11,12,30]. We used RT-PCR to monitor

the mRNA levels of these transcription factors. Both Osx and

Runx2, but not Atf4, showed an up-regulation during osteoblast

differentiation, with the increase in Osx mRNA levels being much

more pronounced (Fig. 4). 2BP treatment did not significantly

affect the mRNA levels of Runx2 or Atf4, suggesting that Runx2

and Atf4 are unlikely to mediate the inhibitory effect of 2BP on

osteoblast differentiation. In contrast, 2BP treatment diminished

Osx mRNA levels. These results suggest that down-regulation of

Osx might mediate the effect of 2BP on osteoblast differentiation.

It is known that osteoblasts express and secrete cytokines that

promote osteoclastogenesis [3]. We also tested whether inhibition of

protein palmitoylation had any effect on the synthesis of these

cytokines. RT-PCR assays show that both OPG and RankL were

down-regulated during differentiation while the levels of M-CSF

were not altered (Fig. 4). 2BP treatment only slightly decreased the

mRNA levels of RankL (Fig. 4). Since during osteoblast differenti-

ation, RankL down-regulation is associated with Osx up-regulation,

we believe that the further decrease of RankL induced by 2BP is

probably not due to the changes in Osx. These results suggest that

inhibition of protein palmitoylation may not greatly affect the ability

of osteoblast to promote osteoclastogenesis.

p532/2 OBs were resistant to PAT inhibitor in
differentiation

To further confirm that Osx mediates the effect of 2BP on

osteoblast differentiation, we used p532/2 osteoblasts that have

been shown to have an increased expression of Osx and enhanced

differentiation [16,31,32]. Moreover, elevated expression of Osx,

which was directly repressed by p53, was demonstrated to mediate

the effect of p53 on differentiation. We found that the elevated

levels of Osx was not further induced during osteoblast

differentiation in p532/2 osteoblast, and that 2BP showed little

effect on the mRNA levels of Osx either (Fig. 5A). Consistent with

this result, ALP staining was not markedly inhibited by 2BP

(Fig. 5B). Moreover, 2BP showed only a slight effect on bone

nodule formation in p532/2 osteoblast cultures (compared to the

Fig. 2D) (Fig. 5C). These results indicate that p532/2 osteoblasts

are refractory to the negative effect of 2BP, suggesting that Osx

mediated the effect of 2BP on osteoblast differentiation.

PAT inhibitor compromised BMP2-induced osteoblast
differentiation

In the in vitro differentiation assays, BMPs from the serum or

secreted by osteoblasts themselves are the driving force of

differentiation. It has been shown that the addition of noggin and

chordin to differentiation cultures diminished osteoblast differenti-

ation, which is accompanied by down-regulation of Osx [19]. We

then tested whether 2BP has an effect on BMP2 induced

differentiation. It was found that 50 ng/ml of BMP2 was able to

dramatically up-regulate ALP expression, which was almost

abolished by 2BP (Fig. 6A). More interestingly, BMP2 was able to

markedly up-regulate the mRNA levels of Osx, which was impeded

by 2BP as well (Fig. 6B), supporting the notion that 2BP inhibits

osteoblast differentiation by repressing Osx expression. On the other

hand, BMP2 had minimal effect on the mRNA levels of Runx2.

PAT inhibitor negatively regulated the activation of p38
MAPK but not Smad1/5/8

How does inhibition of protein palmitoylation regulate Osx

expression? Several studies indicate that Osx is under the control

Palmitoylation in Osteoblast
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of the canonical BMP-Smad pathway as well as the non-canonical

BMP-MAPK pathway. We found that 2BP had little effect on

Smad1/5/8 phosphorylation in the in vitro differentiation assays

(Fig. 7A). No significant change was observed in the activation of

Erk1/2 either. However, PAT inhibitor seemed to inhibit the

activation of p38 MAPK (Fig. 7A). Since BMPs are the driving

force of osteoblast differentiation and they activate MAPKs, these

results suggest that protein palmitoylation is necessary for the

activation of the p38 MAPK pathway, but not the canonical BMP-

Smad pathway. This conclusion was supported by the finding that

2BP also compromised BMP2-induced activation of both Erk1/2

and p38 MAPKs (Fig. 7B). The failure of 2BP to affect Erk1/2

activation in differentiation assays (Fig. 7A) suggest that other

signaling pathways might have made compensation. The corre-

lation between compromised p38 MAPK activation and the down-

regulation of Osx suggests that protein palmitoylation is involved

in BMPs-induced p38 MAPK activation, Osx expression and

osteoblast differentiation.

Figure 2. Inhibition of protein palmitoylation impeded osteoblast differentiation. A. The effect of 2BP on ALP staining. Primary osteoblasts
were treated with increasing amounts of 2BP for 4 days in differentiation medium and then stained for ALP. B. Quantitation of ALP activities that were
normalized to the protein levels of the cells. C. The effect of 2BP on the expression of several osteoblast differentiation markers. The experiments
were carried out like Fig. 2A and total RNA were isolated from these cells. RT-PCR was carried out to determine the mRNA levels of these markers. The
value of control (lane 1) was set at 1.00. D. The effect of 2BP on bone nodule formation. The experiments were carried out like Fig. 2A. After 21 days in
culture, the plates were stained using a Von Kossa method.
doi:10.1371/journal.pone.0004135.g002
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Discussion

This study shows that most of the 24 PATs are expressed in

primary osteoblasts, with some showing an up-regulation during

differentiation. In addition some proteins are palmitoylated in

osteoblasts and the modification can be inhibited by the substrate

analog inhibitor, 2BP. It was also found that inhibition of PATs

with the inhibitor impeded osteoblast differentiation and function,

evidenced by a decrease in the expression of ALP, osteocalcin,

Osx, and in bone nodule formation. Moreover, this inhibitor also

compromised BMP2-induced osteoblast differentiation. However,

treatment of the cells with the same concentration of palmitic acid

did not show such effects. In addition, inhibition of PATs showed

little effect on osteoblast proliferation and survival under

differentiation assay conditions. These results suggest that protein

palmitoylation plays an important role in osteoblast differentiation.

How does protein palmitoylation regulate osteoblast differenti-

ation? Our results suggest that Osx might mediate this effect.

Firstly, treatment with PAT inhibitor down-regulated Osx

expression, not Runx2 or Atf4. Secondly, BMP2-induced

osteoblast differentiation was also hindered by the PAT inhibitor

and this was accompanied by a decrease in the expression of Osx,

but not Runx2. Thirdly, when Osx could not be repressed in

p532/2 osteoblasts, which showed enhanced differentiation due to

elevated Osx expression [16], osteoblast differentiation was

refractory to the inhibitory effect of the PAT inhibitor. Thus it

appears that protein palmitoylation is required for the basal

Figure 3. PAT inhibitor show minimal effect on proliferation/survival of osteoblast cultures. A. Primary osteoblast cells were cultured in
differentiation medium with different amounts of 2BP for 4 days and the cell numbers in each culture plates were determined by trypan blue
exclusion methods. B. The experiments were done like Fig. 3A and the cells were collected and lysed in the same volume of lysis buffer and the
protein concentrations were determined by the BioRad method. C. Recovery of 2BP treated cells in ALP expression. Primary osteoblasts were treated
with different concentrations of 2BP for three days, washed off, and further cultured in differentiation medium for 4 more days before being stained
for ALP (bottom panel), in comparison to the cells that were treated with 2BP all the time (upper panel).
doi:10.1371/journal.pone.0004135.g003

Figure 4. Regulation of Osx by 2BP. Primary osteoblasts were
cultured in differentiation medium with or without 100 mM of 2BP for
different periods of time. These cells were then collected to isolate total
RNA. RT-PCR was carried out to determine the mRNA levels of these
proteins. The value of control (lane 1) was set at 1.00.
doi:10.1371/journal.pone.0004135.g004
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expression of Osx and the induction of Osx by BMP2. These

results also support the notion that Osx might be a critical

transcription factor that integrates many cues to control osteoblast

differentiation. For example, c-Abl, p53, Atm, and p38 MAPK are

all involved in osteoblast differentiation and they all regulate the

expression of Osx, but not Runx2 [16,19,33,34]. One explanation

for the difference between Runx2 and Osx could be that Runx2

induction by BMPs is usually transient and modest, whereas Osx

induction can be long lasting and robust (Fig. 4 and 6).

BMPs are synthesized and secreted by osteoblasts and are the

main driving force of in vitro differentiation [19]. The observation

that PAT inhibitor compromised Osx induction by BMP2 suggests

that protein palmitoylation might be involved in signaling

pathways activated by BMPs. However, PAT inhibitor did not

show a marked effect on the canonical BMP-Smad signaling.

Instead, it compromised MAPK activation at the basal level and in

the presence of BMP2. One possibility is that components of the

non-canonical pathway such as Tak1, Tab1/2, Xiap, MAPKKs,

are palmitoylated [35]. Another possibility is that BMPRs are

palmitoylated and their palmitoylation differentially regulates the

Smad pathway and the MAPK pathway. Indeed, we found that

BMPRI and II could be palmitoylated. We are currently mapping

the palmitoylation sites and studying their role in regulating BMPs

triggered Smad and MAPK pathways (Leong et al, unpublished

results). Further studies are needed to determine how protein

palmitoylation affects MAPK activation through BMP receptors.

This is because BMP-Smad signaling and MAPK activation can

be complex: i) MAPKs are regulated by many cues including

growth factors that are present in the culture medium, and some

types of stress; ii) BMPs have been reported to either activate or

inhibit MAPKs, depending on the cell type and context

[19,36,37]; iii) BMPs are known to require cooperation with other

signaling pathways to control the expression of target genes due to

the nature of Smad binding elements (only 4 bp) [38]; iv) a

crosstalk exists between BMP-Smad signaling and MAPK [38,39].

Thus it is important that caution be exercised in interpreting these

results. Nevertheless, this study provides a new dimension in p38

MAPK activation and osteoblast differentiation. Future study will

focus on identifying the palmitoylation target and studying the

function of the palmitoylation in regulating Osx expression and

osteoblast differentiation.

In summary, this is the first study to show that protein

palmitoylation plays an important role in osteoblast differentiation

and function. It seems that the potential palmitoylation substrates

might regulate the MAPK pathway, especially p38 MAPK, to

regulate Osx expression and osteoblast differentiation. Given the

importance of BMPs activated signaling pathways in bone

remodeling and cancer development, it is worth the effort to further

study how protein palmitoylation affects these signaling events.

Materials and Methods

Isolation, culture and treatment of calvarial osteoblasts
To prepare primary osteoblasts, calvaria were excised from 4–5

newborn pups (p532/2 and wild type on a 129/Sv background),

washed in PBS and digested in MEM alpha medium containing

Figure 5. Overexpression of Osx in p532/2 osteoblasts rendered resistance to the inhibitory effect of 2BP on differentiation. A. 2BP
treatment did not significantly down-regulate the mRNA levels of Osx. Primary osteoblasts were cultured in the presence or absence of 2BP for
different periods of time and total RNA was isolated and RT-PCR was carried out to determine the mRNA levels of Osx. The value of control (lane 1)
was set at 1.00. B. PAT inhibitor did not markedly affect ALP staining in p532/2 osteoblasts. p532/2 osteoblasts were treated with different amounts
of 2BP for 7 days and then stained for ALP. C. PAT inhibitor did not markedly affect bone nodule formation in p532/2 osteoblasts. p532/2 osteoblasts
were treated with different amounts of 2BP for 21 days and then stained for mineralization.
doi:10.1371/journal.pone.0004135.g005
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0.1% collagenase type V & 0.05% trypsin-EDTA for 15 min at

37oC five times. The supernatant from the first digestion was

discarded and supernatants from the last four digestions were pooled.

The cells were washed and plated onto 6 well plates and grown in

MEM alpha medium supplemented with 15% FCS (Research Sera)

and glutamine until confluent. The osteoblast cultures were

amplified to passage 3 before use in further experiments. The mice

were kept at the Biological Resources Center (BRC) of Singapore

and were used for the experiments following protocols approved by

the Institute of Molecular and Cell Biology and BRC. A palmitate

analog inhibitor, 2-bromohexadecanoic acid (Merck, Darmstadt,

Germany) was dissolved in 100% ethanol at a stock concentration of

100 mM and added to cells at the respective concentrations with

ethanol as the control.

Alkaline phosphatase (ALP) staining and quantitation
Calvarial cells were seeded on 12-well plate at a density of

1.56105 cells in differentiation medium (growth medium supple-

mented with 50 mg/ml ascorbic acid and 10 mM b-glycerophos-

phate) and incubated at 37uC for 4 or 7 days. For ALP staining,

the differentiation medium was removed and the cells were fixed

with fixative solution [60% v/v acetone and 0.8% v/v citrate

concentrate (Sigma-Aldrich, St. Louis, MO)] for 30 seconds before

rinsing with deionized water for 45 seconds. For the biochemical

assay, cell layer was rinsed twice with Tris buffered saline [20 mM

Tris in 0.9% NaCl, pH 7.4] before harvesting in 500 ml of 50 mM

Tris, pH 7.4 buffer. The cell suspension was sonicated for 20

seconds. The ALP activity was assayed in 221 assay buffer [0.1 M

221 buffer (Sigma-Aldrich), 10 mM MgCl2, pH 10.3] with

10 mM p-nitrophenylphosphate (Sigma-Aldrich) as the substrate.

The reaction was stopped upon the addition of 0.3 N NaOH and

the absorbance was read at 405 nm. The enzyme activity was then

normalized with the protein concentration.

Bone nodule formation
Calvarial cells were seeded as for ALP staining but were

incubated for 14 and 21 days. Cells were rinsed twice with Tris

buffered saline and followed by fixing with 4% formalin for 5 to

10 minutes. The fixed cells were then rinsed twice with ddH2O.

Mineral deposition was stained with 5% silver nitrate and exposed

under UV until desired intensity was achieved before washing with

ddH2O.

RNA isolation and Quantitative RT-PCR
Total RNA was extracted from cells after rinsing twice with ice-

cold PBS and purified with TRIzolH reagent (Invitrogen)

according to manufacturer’s protocol. cDNAs were synthesized

from 1 mg of total RNA using Reverse-ItTM RTase Blend

(Abgene, Epsom, UK) with Oligo(dT)15. The detection and

Figure 6. PAT inhibitor decreased BMP2-induced osteoblast
differentiation, which was likely mediated by Osx. A. 2BP
diminished the ALP expression induced by BMP2. Primary osteoblasts
were cultured in the presence or absence of 2BP for 1 day, and then
were further cultured in the presence of 50 ng/ml of BMP2 for 4 days.
The plates were then stained for ALP. B. 2BP down-regulated BMP2-
induced Osx expression. Primary osteoblasts were cultured in the
absence or presence of different concentrations of 2BP for a day, and
then further cultured in the presence of 50 ng/ml of BMP2 for 16 hrs.
The cells were collected and total RNA was isolated, which was used to
perform RT-PCR to determine the mRNA levels of Osx and Runx2. The
value of control (lane 1) was set at 1.00.
doi:10.1371/journal.pone.0004135.g006

Figure 7. Inhibition of protein palmitoylation compromised
p38 MAPK. A. 2BP showed an inhibitory effect on p38 MAPK activation
in differentiation assays, without a significant effect on Erk1/2 activation
or Smad1/5/8 activation. Primary osteoblasts were cultured in
differentiation medium with or without 2BP for different periods of
time. Cells were collected for Western blot analysis of the activation of
p38, Erk1/2, and Smad1/5/8. B. 2BP also compromised p38 MAPK
activation in response to BMP2. Primary osteoblasts were pretreated
with PAT inhibitor overnight, and then stimulated with 100 ng/ml of
BMP2. Cells were collected at different time points for analysis of p38
and Erk1/2 activation.
doi:10.1371/journal.pone.0004135.g007
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quantification of target mRNA was performed with semiquanti-

tative RT-PCR. The primer sequences for the respective genes are

shown in Table 1. The amplification for each mRNA was

performed in the linear range for RT-PCR by optimizing the

template concentration and limiting the amplification cycles to

below 30 to ensure exponential amplification.

Western blot analysis
The cells were rinsed twice with ice-cold PBS and harvested by

scraping in 80 ml RIPA buffer [50 mM Tris, pH 8.0, 150 mM

NaCl, 1 mM EDTA, 1% (v/v) NP-40, 0.5% (w/v) NaDOC, 0.1%

SDS, 1 mg/ml aprotinin, 1 mg/ml leupeptin, 1 mg/ml pepstatin,

2 mM PMSF, 2 mM NaF, 4 mM Na3VO4], followed by rocking

at 4uC for 30 minutes. The cell lysates were then clarified by

centrifugation at 12,000 g for 10 minutes. The proteins were

quantified using DC protein assay (Bio-Rad, Hercules, CA). 60 mg

proteins were resolved by SDS-PAGE and then electrophoretically

transferred to PVDF membrane. The membrane was blocked with

5% non-fat milk for an hour and probed with the respective

primary antibodies overnight at 4uC. After incubation, the

membrane was washed thrice with TBST for 10 minutes each

and probed with respective secondary antibodies for an hour.

Finally, the membrane was washed thrice with TBST and target

proteins were detected using ECL kit (GE Healthcare, Buck-

inghamshire, UK). The primary antibodies used for analysis were

anti-Erk1/2, phospho-Erk1/2, p38 MAPK, phospho-p38 MAPK,

p53, phospho-Smad1/5/8 (Cell Signaling, Danvers, MA), anti-

Smad1 (Millipore, Billerica, MA), anti-b-actin (Sigma-Aldrich).

Protein labeling with 3[H]-palmitic acid
Calvarial cells were pretreated with 100 mM 2-BP for 4 hours

before the treatment with 50 mCi [9, 10-3H(N)]-palmitic acid

(Perkin Elmer, Waltham, MA) for 24 hours. Total proteins were

harvested, quantitated and resolved by SDS-PAGE. The gel was

then fixed with acetic acid and methanol for an hour. This was

followed by impregnating the gel with EN3HANCETM (Perkin

Elmer) for an hour and subsequently, precipitating the scintillators

with cold water containing 10% polyethylene glycol 6000 for an

hour. The treated gel was sandwiched between two layers of

cellophane sheets and air-dried before exposing to X-ray film for 3

weeks.

Quantitation and statistical analysis
RT-PCR (negative images of gels) was scanned with a

Molecular Dynamics scanning densitometer. The relative levels

of mRNA of interest were then determined by measuring the

intensity of the corresponding bands. All values were averages of

three experiments and were normalized to the constitutive

expression of the housekeeping genes b-actin. Statistical analysis

was performed using an unpaired t test (STATISTICA software;

StatSoft, Inc.). Significant association was defined when * P,0.05

compared with control.
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