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A diastereo- and enantioselective approach to access chiral CF,-functionalized aziridines from difluorodiazoethyl phenyl sulfone

(PhSO,CF,CHN)) and in situ-formed aldimines is described. This multicomponent reaction is enabled by a combined strong

Brgnsted acid catalytic platform consisting of a chiral disulfonimide and 2-carboxyphenylboronic acid. The optical purity of the ob-

tained CF,-substituted aziridines could be further improved by a practical dissolution—filtration procedure.

Introduction

Chiral aziridines are prevalently found in natural products and
artificially made bioactive molecules, thus receiving significant
attention in the past decades [1-6]. Among them, the introduc-
tion of fluorine or fluoroalkyl groups into three-membered
N-heterocycles has emerged as an attractive direction due to the
unique fluorine effect in pharmaceuticals and biology [7-11]. In
this context, it is not surprising that the syntheses of trifluo-
romethylaziridines have been pursued from versatile precursors
[12-25]. However, catalytic asymmetric approaches to chiral
CF3-functionalized aziridines have only been reported by
Cahard in 2012, who utilized trifluorodiazoethane (CF;CHN))

as the nucleophile to react with aldimines catalyzed by chiral
phosphoric acid (Scheme 1a) [26]. In comparison, there is a sig-
nificant dearth of available synthetic approaches to CF,-functio-
nalized aziridines, particularly in a stereocontrolled manner.
Indeed, a handful of reported methods document the employ-
ment of difluoromethylimines, difluoromethyl phenyl sulfone,
and difluoromethyl vinyl sulfonium salts as the fluorinating
partner en route to various CF;-substituted aziridines [27-31],
and a general protocol to chiral CF,-aziridines remains an
unsolved challenge. Thus, herein we report a diastereo- and en-

antioselective aza-Darzens reaction between in situ-generated

638


https://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:zhangfg1987@tju.edu.cn
mailto:majun_an68@tju.edu.cn
https://doi.org/10.3762%2Fbjoc.16.60

Beilstein J. Org. Chem. 2020, 16, 638—-644.

a) Synthesis of chiral CF3-aziridines from CF3CHN,: Cahard [26]

NH,
% N2 PMP
OH !
Ar + chiral phosphoricacid ~ H” ~CF, N
Al
OH rﬁ(u\Cﬁ
OMe o
b) Synthesis of chiral CF,-aziridines from PhSO,CF,CHNs5: this work
NH, N, PMP
0 combined strong L N
OH Brensted acid H™ "CFSOPh  aAp LN
Ar + — “CF,SO,Ph
OH (0]
OMe

Scheme 1: Preparation of chiral aziridines from fluorinated diazo reagents.

aldimines and our recently developed difluorodiazo reagent
PhSO,CF,CHNj; acting as the difluorinated nucleophile [32-
35], providing access to a variety of chiral CF,-fuctionalized
aziridines under mild conditions (Scheme 1b). The key to this
multicomponent transformation hinges upon the discovery of a
combined strong Brgnsted acid system comprised of a chiral
disulfonimide and 2-carboxyphenylboronic acid.

Results and Discussion

We commenced the desired one-pot transformation by conduct-
ing the model reaction between phenylglyoxal monohydrate
(1a), 4-methoxyaniline (2a), and PhSO,CF,CHNj (3, Ps-DFA).
Initial screenings were focused on the evaluation of various
chiral phosphoric acids that have proven effective in similar
aza-Darzens reactions of diazo esters and trifluorodiazoethane

[36-39]. Unfortunately, these endeavors resulted in either no

conversion or no enantioselectivity at all. As arylboronic acids
have been harnessed to enhance the Brgnsted acidity in asym-
metric organocatalysis in combination with chiral diols or chiral
aminoalcohols [40-44], we envisioned that the simultaneous use
of arylboronic acids and chiral Brgnsted acids may bring about
a complementary catalytic platform. Encouragingly, the
targeted CF,-functionalized aziridine 4a was obtained in up to
51% ee and high diastereoselectivity, albeit in a low yield
(Table 1, entries 1 and 2). The difficulty in further improving
the conversions might be ascribed to the limited Brgnsted
acidity of chiral phosphoric acids. Bearing this in mind, we then
turned our attention to chiral disulfonimides developed by List,
which have been established as a unique type of stronger
Brgnsted acids [45]. Putting it into practice, a range of BINOL-
derived disulfonimides was used as the chiral additive in combi-
nation with 2-carboxyphenylboronic acid (COOH-BA) in the

Table 1: Representative screening results of the asymmetric aziridination reaction of PhSOoCF2CHN».2

NH,
o) FI’MP
OH arylboronic acid chiral Brgnsted acid N
Ph * Ph. X
Na,SOy, toluene N> rt,12-24h \[ CF,S0,Ph
OH rt, 30 min U 5
OMe H”_“CF,SO.Ph
1a 2a 3 4a
entry arylboronic acid (mol %) chiral Bransted acid (mol %) yield of 4a (%)° ee (%) of 4a and dr of crude mixture®
1 COOH-BA (8) CPA-1 (5) 24 51,131
2 COOH-BA (8) CPA-2 (5) 28 25,111
3 COOH-BA (8) CDSI-1 (5) 21 41,191
4 COOH-BA (8) CDSI-2 (5) 50 41, 9:1
5d COOH-BA (8) CDSI-3 (5) 16 60, 5:1
6d COOH-BA (8) CDSI-4 (5) 64 73,131
7 COOH-BA (8) CDSI-5 (5) 34 33, 10:1
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Table 1: Representative screening results of the asymmetric aziridination reaction of PhSOoCF2CHN».2 (continued)

8 COOH-BA (8) CDSI-6 (5)
9 OH-BA (8) CDSI-4 (5)
10d SO;H-BA (8) CDSI-4 (5)
11d NO,-BA (8) CDSI-4 (5)
12 CF3-COOH-BA (8) CDSI-4 (5)
13¢ COOH-BA (8) CDSI-4 (5)
14 COOH-BA (8) CDSI-4 (5)
15d COOH-BA (8) CDSI-4 (10)
169 - CDSI-4 (5)

CDSI-6

CDSI-1

47 52, 9:1
63 68, 28:1
62 66, 16:1
45 62, 16:1
81 67, 8:1
60 47, 5:1
trace n.d.

65 70, 12:1
10 60, >20:1

CDSI-3 Me
: :B(OH)Z B(OH),
COOH OH
COOH-BA OH-BA
E:[B(OH)Z @B(OH)z
SO3H NO,
SO;H-BA NO,-BA

FsC B(CH),
\C[ CF3;-COOH-BA
COOH

aGeneral reaction conditions: 1a (8 mg, 0.05 mmol, 1.0 equiv), 2a (7 mg, 0.055 mmol), arylboronic acid (0.004 mmol), and Na;SO4 (40 mg) was
stirred in toluene (1 mL) at rt for 30 min, then the chiral Brensted acid (0.0025 mmol) and 3 (18 mg, 0.075 mmol) were added and the mixture was
reacted at rt for 12 hours unless otherwise noted; Pyield of isolated product 4a was given for entries labelled with d; hexafluorobenzene was used as
an internal standard to determine the yield in other cases; “ee of 4a was determined by chiral HPLC analysis, and the dr of the crude reaction mixture
was probed by '°F NMR analysis; 90.3 mmol scale of reaction was conducted: 1a (46 mg, 0.3 mmol, 1.0 equiv), 2a (41 mg, 0.33 mmol), arylboronic
acid (0.024 mmol), and Na>SO4 (200 mg) was stirred in toluene (2 mL) at rt for 30 min, then the chiral Bransted acid (0.015 mmol) and 3 (105 mg,
0.45 mmol) were added and the mixture was reacted at rt for 12—-24 hours; ®CH2Cl, was used as the solvent; freaction was operated at 0 °C.

model reaction (Table 1, entries 3-8). We were pleased to find
that CDSI-4 gave the most promising result in terms of both
yield and enantioselectivity (64% isolated yield with 73% ee,
Table 1, entry 6). An examination on various arylboronic acids,
solvent, temperature, and catalyst loadings resulted in no
obvious improvement (Table 1, entries 9—15). Among them, the
highest yield of 4a was observed (81%, Table 1, entry 12),
albeit with slightly reduced ee value. This enhancement in cata-
lytic activity could be attributed to the increased Brgnsted
acidity when the strong electron-withdrawing trifluoromethyl

group was placed on the benzene ring of the arylboronic acid.

Removing the boronic acid from the reaction system leads to a
dramatic decrease in both yield and enantiocontrol (Table 1,
entry 16).

The challenge to further improve the enantioselectivity
promoted us to search for other practical solutions. Considering
the poor solubility of 4a in organic solvents, a dissolu-
tion—filtration process with isopropanol was found to be work-
able for increasing the final ee value. This simple procedure
could afford 4a with excellent enantiopurity as a single dia-
stereoisomer (>99% ee, >50:1 dr, Scheme 2). By the aid of the
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NH,
o) COOH-BA CDSI-4 PMP
OH (8 mol %) (5 mol %) A
+
Ar Na,SOy, toluene Ps-DFA 3 Ar\”\“" “CF,S0,Ph
OH OMe rt, 30 min (0.45 mmol) 0
1 (0.3 mmol) 2a (0.33 mmol) 4
PMP
| Me PMP PMP
N N N
[ CF,SO,Ph . I “CF,SO,Ph  Me |~"‘ “CF,S0,Ph
a
64%, 73% ee, 13:1 dr O 4 4c
3 It (40%, >99% ee, >50:1 dr) 66%, 66% ee, 17:1 dr 70%, 69% ee, 16:1 dr
e (46%, >99% ee, >50:1 dr) (35%, >99% ee, >50:1 dr)
Et PMP F PMP
N N
N "CF,SO,Ph I “CF,S0,Ph
O 4a0 O 4
’ 4a 53%, 65% ee, 23:1 dr 44%, 48% ee, 8:1 dr
(32%, >99% ee, >50:1 dr) (27%, 95% ee, >50:1 dr)
al EMP Br. EMP EMP
A A LA
I CF,S0,Ph [ “CF,S0,Ph |““ "“CF,S0,Ph
(@] 4f 49 O 4hb

41%, 49% ee, >50:1 dr
(26%, 97% ee, >50:1 dr)

38%, 35% ee, 8:1dr
(20%, 95% ee, >50:1 dr)

47%, 50% ee, 18:1 dr
(22%, 99% ee, >50:1 dr)

Scheme 2: Substrate scope of chiral CF2-substituted aziridines from PhSO>CFoCHNa. General reaction conditions: Aryl glyoxal monohydrate (1,

0.3 mmol), 2a (41 mg, 0.33 mmol), COOH-BA (4 mg, 0.024 mmol), and NaxSO4 (200 mg) were stirred in toluene (2 mL) at rt for 30 min, then CDSI-4
(12 mg, 0.015 mmol) and Ps-DFA 3 (105 mg, 0.45 mmol) were added and the mixture was reacted at rt for 24 hours unless otherwise annotated. The
yields are those of isolated products, and the dr was determined by '®F NMR analysis of the crude mixture. The results in parentheses are those of
isolated products after the dissolution—filtration process: The corresponding CF»-functionalized aziridine 4 was dissolved in isopropanol

(0.05-0.2 mL/mg) with the help of ultrasound, followed by filtration, and the obtained solution was concentrated to give 4 with increased ee and dr
values. 20.006 mmol of COOH-BA was employed. PThe reaction was operated at 45 °C for 24 h.

developed one-pot aza-Darzens reaction and dissolution—filtra-
tion operation, a series of optically-pure CF,-aziridines 4b—h
were furnished in moderate overall yields with uniformly excel-
lent ee and dr values, including alkyl or halogen-substituted
phenyl and 2-naphthyl ketones (Scheme 2). Unfortunately,
phenylglyoxal monohydrates bearing strong electron-with-
drawing groups were not compatible with the current condi-
tions. X-ray analysis of aziridine 4a confirmed the absolute
configuration of the chiral centers, pointing at a cis-aziridina-

tion process [46].

Scaled-up experiments with model substrate 1a also proved to
be feasible, delivering the chiral CF;-aziridine 4a with compa-
rable results (Scheme 3a). The 4-methoxyphenyl group of 4a
was cleaved smoothly with ceric ammonium nitrate, giving the
free aziridine 5a in 81% yield while maintaining the ee value.

The reduction of the carbonyl moiety with either NaBH,4 or

LiAlHy4 produced hydroxy-substituted CF,-functionalized aziri-
dine 5b in excellent yield with exclusive diastereoselectivity
[47]. Furthermore, the ring-opening of 4a under acidic condi-
tions underwent well and gave rise to CF,-functionalized
a-chloro-B-amino ketone 5c¢ in 89% yield with >99% ee and
>50:1 dr (confirmed by X-ray spectroscopy) [46].

Conclusion

In summary, an array of chiral CF,-functionalized aziridines
was constructed from in situ-formed aldimines and difluorodia-
zoetyl phenyl sulfone under mild conditions by a combined
strong Brgnsted acid system consisting of chiral disulfonimide
and 2-carboxyphenylboronic acid. The optical purity of the ob-
tained CF,-substituted aziridines could be further improved by
a practical dissolution—filtration procedure. Substrate expan-
sion and mechanistic investigation are underway and will be re-

ported in due course.
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NH
a 2 PMP
) O COOH-BA CDsI-4 N
OH (8 mol %) (5 mol %) AN
Ph * P CF,50,Ph
OH Na,S0y, toluene Ps-DFA 3 i 29%2
OMe rt, 30 min (3 mmol) O 4a
53%, 64% ee, 13:1 dr
1a (2.5 mmol) 2a (2.5 mmol) (25%, >99% ee, >50:1 dr)
b) H PMP PMP
Ph_ ™, NH,),Ce(NO Ph. .4, NaBH Ph_ .,
hik cF,50,ph _ (NH4)2CeNO3)s 3 ‘CF,S0,Ph ! 3 CF,SO,Ph
0 0 OH
5a, 81% 4a, >99% ee 5b, 95%

>99% ee, >50:1 dr
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I
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5b, 86%
>99% ee, >50:1 dr

Ph
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Scheme 3: Scale-up experiment to 4a and further synthetic transformations.

Experimental

General procedure for the preparation of chiral CF,-func-
tionalized aziridines 4: To a 25 mL Schlenk tube equipped
with a stirring bar were added 2,2-dihydroxy-1-arylethan-1-one
(1, 0.3 mmol, 1 equiv), 4-methoxyaniline (2a, 40.6 mg,
0.33 mmol), 2-boronobenzoic acid (COOH-BA, 3.98 mg,
0.024 mmol), anhydrous Na,SO4 (200 mg) and toluene (1 mL)
at room temperature under an argon atmosphere. After reacting
for 30 minutes at room temperature, ((2-diazo-1,1-difluo-
roethyl)sulfonyl)benzene (Ps-DFA 3, 104.5 mg, 77.4 uL,
0.45 mmol) was added with a micro syringe and CDSI-4
(12.3 mg, 0.015 mmol) in toluene (1 mL) was added dropwise.
The reaction was allowed to stir for 24 hours at room tempera-
ture under an argon atmosphere until the consumption of sub-
strates was completed (as monitored by TLC). The reaction
mixture was quenched with saturated aqg NaHCO3 and extracted
with ethyl acetate three times. The combined organic layer was
washed with water and brine, and then dried over anhydrous
Na,SOy, filtered and evaporated under vacuum. The residue
was purified by neutral alumina column chromatography
(eluting with dichloromethane/petroleum ether) to give CF;-
substituted aziridine 4. The enantiomeric excess was deter-
mined by chiral HPLC analysis. See Supporting Information
File 1 for the dissolution—filtration procedure for each com-

pound.

Cl

o

>99% ee, >50:1 dr

>99% ee, >50:1 dr

6 N HCI, acetone

CF,SOPh ..

HN‘PMP

5¢c, 89%

Supporting Information

Supporting Information File 1

Experimental procedures, compound characterization,
NMR spectra of all new compounds, and HPLC traces.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-16-60-S1.pdf]

Supporting Information File 2

X-ray data for compound 4a.

[https://www .beilstein-journals.org/bjoc/content/
supplementary/1860-5397-16-60-S2.cif]

Supporting Information File 3

X-ray data for compound Sec.

[https://www .beilstein-journals.org/bjoc/content/
supplementary/1860-5397-16-60-S3.cif]
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reaction might be controlled through an in situ formed chiral boronate
complex from chiral disulfonimide and 2-carboxyphenylboronic acid.
Further efforts to improve the level of stereoselectivity and detailed
mechanistic elucidation are still undergoing in our lab.
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47.The stereochemistry of compound 5b was determined based on the 'H
NMR, '9F NMR, and 2D NOE analysis. In the 2D NOE spectrum, the
correlation between HO (4.83 ppm) and HC—-N (2.7 ppm) was
observed, whereas no correlation between HC-O (3.7 ppm) and
HC-CF» (3.02 ppm) was found.
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