
Citation: Crofts, N.; Hareyama, K.;

Miura, S.; Hosaka, Y.; Oitome, N.F.;

Fujita, N. Effect of Heading Date on

the Starch Structure and Grain Yield

of Rice Lines with Low Gelatinization

Temperature. Int. J. Mol. Sci. 2022, 23,

10783. https://doi.org/10.3390/

ijms231810783

Academic Editors: Jinsong Bao and

Jianhong Xu

Received: 25 August 2022

Accepted: 13 September 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Effect of Heading Date on the Starch Structure and Grain Yield
of Rice Lines with Low Gelatinization Temperature
Naoko Crofts, Kaito Hareyama, Satoko Miura, Yuko Hosaka, Naoko F. Oitome and Naoko Fujita *

Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi,
Shimoshinjo-Nakano, Akita City 010-0195, Japan
* Correspondence: naokof@akita-pu.ac.jp

Abstract: Early flowering trait is essential for rice cultivars grown at high latitude since delayed
flowering leads to seed development at low temperature, which decreases yield. However, early
flowering at high temperature promotes the formation of chalky seeds with low apparent amylose
content and high starch gelatinization temperature, thus affecting grain quality. Deletion of starch
synthase IIa (SSIIa) shows inverse effects of high temperature, and the ss2a mutant shows higher
apparent amylose content and lower gelatinization temperature. Heading date 1 (Hd1) is the major reg-
ulator of flowering time, and a nonfunctional hd1 allele is required for early flowering. To understand
the relationship among heading date, starch properties, and yield, we generated and characterized
near-isogenic rice lines with ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 genotypes. The ss2a Hd1 line showed
the highest plant biomass; however, its grain yield varied by year. The ss2a Hd1 hd1 showed higher
total grain weight than ss2a hd1. The ss2a hd1 line produced the lowest number of premature seeds
and showed higher gelatinization temperature and lower apparent amylose content than ss2a Hd1.
These results highlight Hd1 as the candidate gene for developing high-yielding rice cultivars with the
desired starch structure.
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1. Introduction

Heading date is one of the most important agricultural traits, particularly for rice
(Oryza sativa L.) cultivars cultivated in high-latitude areas, because early flowering ensures
seed development at optimum temperature during the short summer, thus maximizing
yield [1]. Cultivars with different heading dates have been selected at different latitudes
through natural and artificial means [1–3]. Several genes governing heading date have
been identified in rice [4–15] and are shown in Figure 1. Heading date 1 (Hd1) encodes a
zinc-finger protein and is the major determinant of heading date [4]. Hd1 represses the
expression of florigen, Hd3a, under a long-day photoperiod but promotes its expression
under short days [5,14,16]. Once heading is initiated, flowering generally occurs within
a couple of days. Therefore, the nonfunctional hd1 allele is required for early flowering
under long-day conditions. Different rice cultivars have acquired several single nucleotide
polymorphisms (SNPs) in Hd1 during the process of domestication [2,3,17,18].

Starch, the major component of rice grain, is composed of glucose polymers of essen-
tially linear amylose and precisely, but highly, branched amylopectin [19,20]. The ratio
of amylose to amylopectin as well as the length and frequency of amylopectin branches
affect the physicochemical properties of starch and transparency of grains, thus affecting
the quality of rice [21–23]. The amylose found in rice endosperm is exclusively synthesized
by granule-bound starch synthase I (GBSSI); thus, the expression level of GBSSI determines
the amylose content of rice grains. Polymorphisms at the last nucleotide of the first intron
of the GBSSI gene are commonly seen in japonica rice (O. sativa L. ssp. japonica) [24–27]
and are known to reduce the splicing efficiency of GBSSI mRNA, especially under high
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temperature during seed development, which decreases GBSSI protein production and
consequently amylose content [28–30].

Amylopectin is synthesized in the rice endosperm by the synergistic and balanced
actions of multiple isozymes of starch synthases (SSs), branching enzymes (BEs), and
debranching enzymes by forming multiprotein complexes [31,32]. Chromosomal loca-
tions of genes encoding these isozymes are summarized in Figure 1. According to the
current understanding of amylopectin biosynthesis, SSIIIa synthesizes long glucan chains
(amylopectin backbone) with degree of polymerization (DP) > 30, and BEI generates long
branches. BEIIb generates short amylopectin branches with DP 6–7, and SSI elongates
these short branches to DP 8–12. SSIIa further elongates these branches to DP 12–24 in
most indica rice (O. sativa L. ssp. indica) cultivars, but the SSIIa isozyme of japonica rice
is less active than that of indica rice and produces fewer intermediate chains with DP 12–
24 [33]. Unnecessary branches are trimmed off by debranching enzymes such as isoamylase
1 [31,34]. Rice lines lacking BEIIb exhibit fewer short amylopectin chains, greater long
amylopectin chains, and consequently higher gelatinization temperature than the wild
type [35–38]. High temperature during seed development also impacts the expression
level and activity of BEIIb [39–42], which increases the long amylopectin branch chains,
gelatinization temperature, and chalky seed frequency and decreases the palatability of
cooked rice [39,42].

The effects of SSIIa loss on amylopectin structure are opposite to those of BEIIb loss,
although loss of either one of these enzymes has the same effect on amylose content. A ss2a
null mutant rice line, EM204, was previously isolated from the N-nitroso-N-methylurea
(NMU)-treated mutant panel of the japonica rice cultivar Kinmaze [43]. EM204 harbors a
point mutation at the last nucleotide of the intron 5 of SSIIa, resulting in the loss of exon 6
and no detectable SSIIa activity in developing seeds [43]. Loss of SSIIa activity increased
short amylopectin branches with DP < 11 and lowered the gelatinization temperature by
5 ◦C compared with the parental line (Kinmaze), although Kinmaze and other typical
japonica rice cultivars exhibit lower SSIIa activity than typical indica rice varieties [33,43].
In addition, loss of SSIIa activity increased the apparent amylose content to 24%, which
was considerably higher than that of Kinmaze (20%) [43]. Both Kinmaze and EM204 flower
in early September in Akita, Japan (39.7◦ N, 140.1◦ E). Although the starch of EM204 shows
great potential as an anti-retrogradation agent, the agricultural traits of this mutant line,
such as heading date and yield, need further improvement since nighttime temperature
sharply declines in September, which drastically reduces grain yield, depending on the
harvest year. Thus, EM204 was backcrossed twice with a high-yielding elite rice cultivar,
Akita 63 [44], which flowers in early August. Although more than half of the backcrossed
lines flowered in early August, some flowered in September because the SSIIa and Hd1
genes are located in close proximity to each other on chromosome 6 (Figure 1).

A previous study analyzed the effects of different Hd1 alleles on agronomic traits and
amylose content using multiple genetic backgrounds, such as glutinous rice, japonica rice,
and indica rice. However, because these rice genotypes harbor different alleles of SSIIa and
GBSSI, in addition to the genes responsible for plant biomass and yield components [18],
the effects of Hd1 alleles on starch properties could not be evaluated properly. Therefore, in
this study, we used Kinmaze (the parental line of EM204) and Akita 63, both of which have
ss2aL, to identify the allele(s) responsible for the differences in heading dates. In addition,
to accurately evaluate the effects of different heading dates on starch properties and agricul-
tural traits in the absence of SSIIa, we backcrossed EM204 (late-heading ss2a mutant) with
Akita 63 (early-heading elite rice cultivar) and generated near-isogenic lines (NILs) with
three different combinations: ss2a ss2a Hd1 Hd1 (ss2a Hd1), ss2a ss2a Hd1 hd1 (ss2a Hd1 hd1),
and ss2a ss2a hd1 hd1 (ss2a hd1). The effects of three Hd1 genotypes on agricultural traits,
apparent amylose content, amylopectin structure, and starch gelatinization temperature, in
the absence of SSIIa, are discussed.



Int. J. Mol. Sci. 2022, 23, 10783 3 of 20

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 20 
 

 

agricultural traits, apparent amylose content, amylopectin structure, and starch gelatini-
zation temperature, in the absence of SSIIa, are discussed. 

 
Figure 1. Chromosomal locations of genes responsible for the regulation of heading date and endo-
sperm starch biosynthesis in rice. Genes controlling heading date are written in black writing (Hd1 
is enlarged) and those involved in starch biosynthesis in the rice endosperm are highlighted in gray. 
Note that Hd1 and SSIIa are located in close proximity of each other on chromosome 6. 

2. Results 
2.1. Nucleotide Sequence of Hd1 in Kinmaze, Akita 63, and Akitakomachi 

The SSIIa and Hd1 genotypes and heading dates of different rice accessions are sum-
marized in Table 1. Genomic DNA sequence of Hd1 was amplified from Kinmaze, Akita 
63, Akitakomachi, and Nipponbare using primers #5 and #12 (Table S1 and Figure S1) and 
compared (Figure 2b–d). Kinmaze is the parental line of EM204, which flowers in early 
September; Akita 63 is the high-yielding elite rice cultivar used for backcrossing and flow-
ers in early August; Akitakomachi is commonly grown in Akita, Japan, and flowers in late 
July (1 week before Akita 63); and Nipponbare is the model japonica rice cultivar that 
flowers in late August in Akita, Japan (Table 1). Locations of SNPs found in Hd1 sequences 
and the resulting amino acid substitutions are summarized in Figure 2a. The results 
showed that the Hd1 sequence of Akita 63 was identical to that of Akitakomachi but dif-
ferent from the Hd1 sequences of Nipponbare and Kinmaze (Figure 2b–d). The Hd1 se-
quence of Kinmaze was also different from that of Nipponbare. In addition, the Hd1 se-
quences of Akita 63 and Akitakomachi were 4807 bp in length, while that of Kinmaze was 
4850 bp. The Hd1 of Nipponbare was 4814 bp in length and contained two exons (1325–
2152 bp and 2790–3149 bp) (Figure 2a) [4]. The Hd1 of Akita 63, Akitakomachi, and Kin-
maze carried a cytosine to thymine polymorphism at the 1640th nucleotide relative to the 
Hd1 of Nipponbare, resulting in a histidine to tyrosine substitution (Figure 2a,b,d). In ad-
dition, the Hd1 of Akita 63, Akitakomachi, and Kinmaze harbored 36 nucleotide insertions 
between the 1657th and 1658th nucleotides, resulting in 12 amino acid insertions between 
the 110th and 111th amino acid residues, compared with Nipponbare (Figure 2 a,b,d). The 
remaining Hd1 sequence in Kinmaze was the same as that in Nipponbare. Therefore, Kin-
maze was predicted to produce a functional Hd1 protein (Figure 2b–d). On the contrary, 
the Hd1 of Akita 63 and Akitakomachi contained 43 additional nucleotide deletions 

Figure 1. Chromosomal locations of genes responsible for the regulation of heading date and
endosperm starch biosynthesis in rice. Genes controlling heading date are written in black writing
(Hd1 is enlarged) and those involved in starch biosynthesis in the rice endosperm are highlighted in
gray. Note that Hd1 and SSIIa are located in close proximity of each other on chromosome 6.

2. Results
2.1. Nucleotide Sequence of Hd1 in Kinmaze, Akita 63, and Akitakomachi

The SSIIa and Hd1 genotypes and heading dates of different rice accessions are sum-
marized in Table 1. Genomic DNA sequence of Hd1 was amplified from Kinmaze, Akita
63, Akitakomachi, and Nipponbare using primers #5 and #12 (Table S1 and Figure S1)
and compared (Figure 2b–d). Kinmaze is the parental line of EM204, which flowers in
early September; Akita 63 is the high-yielding elite rice cultivar used for backcrossing and
flowers in early August; Akitakomachi is commonly grown in Akita, Japan, and flowers
in late July (1 week before Akita 63); and Nipponbare is the model japonica rice cultivar
that flowers in late August in Akita, Japan (Table 1). Locations of SNPs found in Hd1
sequences and the resulting amino acid substitutions are summarized in Figure 2a. The
results showed that the Hd1 sequence of Akita 63 was identical to that of Akitakomachi
but different from the Hd1 sequences of Nipponbare and Kinmaze (Figure 2b–d). The Hd1
sequence of Kinmaze was also different from that of Nipponbare. In addition, the Hd1
sequences of Akita 63 and Akitakomachi were 4807 bp in length, while that of Kinmaze was
4850 bp. The Hd1 of Nipponbare was 4814 bp in length and contained two exons (1325–2152
bp and 2790–3149 bp) (Figure 2a) [4]. The Hd1 of Akita 63, Akitakomachi, and Kinmaze
carried a cytosine to thymine polymorphism at the 1640th nucleotide relative to the Hd1 of
Nipponbare, resulting in a histidine to tyrosine substitution (Figure 2a,b,d). In addition, the
Hd1 of Akita 63, Akitakomachi, and Kinmaze harbored 36 nucleotide insertions between
the 1657th and 1658th nucleotides, resulting in 12 amino acid insertions between the 110th
and 111th amino acid residues, compared with Nipponbare (Figure 2a,b,d). The remaining
Hd1 sequence in Kinmaze was the same as that in Nipponbare. Therefore, Kinmaze was
predicted to produce a functional Hd1 protein (Figure 2b–d). On the contrary, the Hd1
of Akita 63 and Akitakomachi contained 43 additional nucleotide deletions between the
2032nd and 2074th nucleotides compared with the Hd1 of Nipponbare, resulting in a frame
shift at the 236th amino acid and a premature stop codon at the end of exon 1 (Figure 2a–d).
Akita 63 and Akitakomachi theoretically produced only 259 of the 407 amino acids of the
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Hd1 protein (Figure 2d), although the truncated protein could be degraded. Therefore,
Akita 63 and Akitakomachi were speculated to produce a nonfunctional hd1 protein.

Table 1. Summary of the SSIIa and Hd1 genotypes and typical heading dates of rice accessions.

Rice Accession SSIIa Genotype 1 Hd1 Genotype Heading Date 2

Nipponbare ss2aL Hd1 Late August
Kasalath SS2a hd1Kas Early August

Akitakomachi ss2aL hd1 Late July
Akita 63 ss2aL hd1 Early August
Kinmaze ss2aL Hd1 Early September
EM204 ss2a Hd1 Early September

ss2a Hd1 ss2a Hd1 Early September
ss2a Hd1 hd1 ss2a Hd1 hd1 Late August

ss2a hd1 ss2a hd1 Early August
1 Superscript L denotes leaky mutation present in the SS2a allele of wild-type japonica rice. 2 Typical heading
dates from 2017 to 2021 in Akita, Japan. hd1 allele of Kasalath is shown as hd1Kas to distinguish from that of
Akitakomachi, Akita 63, and ss2a hd1.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 20 
 

 

between the 2032nd and 2074th nucleotides compared with the Hd1 of Nipponbare, re-
sulting in a frame shift at the 236th amino acid and a premature stop codon at the end of 
exon 1 (Figure 2a–d). Akita 63 and Akitakomachi theoretically produced only 259 of the 
407 amino acids of the Hd1 protein (Figure 2d), although the truncated protein could be 
degraded. Therefore, Akita 63 and Akitakomachi were speculated to produce a nonfunc-
tional hd1 protein. 

Table 1. Summary of the SSIIa and Hd1 genotypes and typical heading dates of rice accessions. 

Rice Accession SSIIa Genotype 1 Hd1 Genotype Heading Date 2 
Nipponbare ss2aL Hd1 Late August 

Kasalath SS2a hd1Kas Early August 
Akitakomachi ss2aL hd1 Late July 

Akita 63 ss2aL hd1 Early August 
Kinmaze ss2aL Hd1 Early September 
EM204 ss2a Hd1 Early September 

ss2a Hd1 ss2a Hd1 Early September 
ss2a Hd1 hd1 ss2a Hd1 hd1 Late August 

ss2a hd1 ss2a hd1 Early August 
1 Superscript L denotes leaky mutation present in the SS2a allele of wild-type japonica rice. 2 Typical 
heading dates from 2017 to 2021 in Akita, Japan. hd1 allele of Kasalath is shown as hd1Kas to distin-
guish from that of Akitakomachi, Akita 63, and ss2a hd1. 

 

 

 

Figure 2. Cont.



Int. J. Mol. Sci. 2022, 23, 10783 5 of 20Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 2. Comparisons of Hd1 DNA sequences and deduced amino acid sequences in various rice 
lines. (a) Schematic representation of the Hd1 gene structure in Akita 63. The positions of SNPs and 
resulting amino acid substitutions relative to Nipponbare are indicated. Ins, insertion; del, deletion; 
fs*12, frame shift-generated stop codon after 12 amino acids. The letter ‘g’ followed by a number 
indicates the nucleotide position in genomic DNA. Similarly, letters ‘c’ and ‘p’ followed by numbers 
represent the nucleotide position in cDNA and amino acid position in protein, respectively. Num-
bers in brackets indicate the number of nucleotide or amino acid insertions. (b,c) DNA sequence 
alignments of Hd1 from 1598 to 1764 bp (b) and from 2005 to 2117 bp (c). The nucleotide positions 
correspond to the Hd1 sequence of Nipponbare. (d) Full-length amino acid sequence alignment of 
Hd1. DNA and protein sequences different from Nipponbare are indicated with gray boxes, and 
regions missing in Akita 63 and Akitakomachi are indicated by black boxes. Sequences used to cre-
ate the alignments are as follows: Nipponbare (AB041838), Kinmaze (MK449352), Kasalath 
(AB041839), Akitakomachi (MK449350), and Akita 63 (MK449351). Asterisks indicate identical nu-
cleotides (b,c) and amino acid residues (d). 

2.2. Genotyping and Western Blotting of Rice Accessions with Different Hd1 and SSIIa Alleles 
PCR markers for Hd1 have been generated for the selection of the early-flowering 

trait in rice cultivars such as KantoHD1 [45] and Milky Summer [46], which were gener-
ated via the introduction of the nonfunctional hd1Kas allele from Kasalath. It is important 
to note that although both Kasalath and Akita 63 flower at the same time (early August in 
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Figure 2. Comparisons of Hd1 DNA sequences and deduced amino acid sequences in various rice
lines. (a) Schematic representation of the Hd1 gene structure in Akita 63. The positions of SNPs
and resulting amino acid substitutions relative to Nipponbare are indicated. Ins, insertion; del,
deletion; fs*12, frame shift-generated stop codon after 12 amino acids. The letter ‘g’ followed by a
number indicates the nucleotide position in genomic DNA. Similarly, letters ‘c’ and ‘p’ followed by
numbers represent the nucleotide position in cDNA and amino acid position in protein, respectively.
Numbers in brackets indicate the number of nucleotide or amino acid insertions. (b,c) DNA sequence
alignments of Hd1 from 1598 to 1764 bp (b) and from 2005 to 2117 bp (c). The nucleotide positions
correspond to the Hd1 sequence of Nipponbare. (d) Full-length amino acid sequence alignment
of Hd1. DNA and protein sequences different from Nipponbare are indicated with gray boxes,
and regions missing in Akita 63 and Akitakomachi are indicated by black boxes. Sequences used
to create the alignments are as follows: Nipponbare (AB041838), Kinmaze (MK449352), Kasalath
(AB041839), Akitakomachi (MK449350), and Akita 63 (MK449351). Asterisks indicate identical
nucleotides (b,c) and amino acid residues (d).

2.2. Genotyping and Western Blotting of Rice Accessions with Different Hd1 and SSIIa Alleles

PCR markers for Hd1 have been generated for the selection of the early-flowering trait
in rice cultivars such as KantoHD1 [45] and Milky Summer [46], which were generated via
the introduction of the nonfunctional hd1Kas allele from Kasalath. It is important to note that
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although both Kasalath and Akita 63 flower at the same time (early August in Akita, Japan),
the hd1Kas allele of Kasalath is different from that of Akita 63 (Table 1, Figure 2d). Therefore,
such selection markers would not be applicable to Akita 63 (Figure 2d). To distinguish the
hd1, Hd1 hd1, and Hd1 seedlings from the NILs generated by crossing EM204 and Akita 63,
a new molecular marker was generated (Figure 3a, Table S1 and Figure S1). Early-flowering
lines with the hd1 allele (such as Akita 63, Akitakomachi, and ss2a hd1) generated 130
bp PCR products, whereas late-flowering lines with the Hd1 allele (such as Nipponbare,
Kinmaze, EM204, and ss2a Hd1) generated 173 bp PCR products (Figure 3a). Both 173 and
130 bp PCR products were detected in the heterozygous (Hd1 hd1) line (Figure 3a). The PCR
products exhibited clear differences in migration patterns, thus enabling the distinction
among the Hd1, Hd1 hd1, and hd1 lines (Figure 3a). Presence of the ss2a allele was confirmed
via the derived cleaved amplified polymorphic sequence (dCAPS) marker (Figure 3b, [43]);
the 141 bp PCR product amplified from Akita 63 was not digested by BglII, while that
amplified from ss2a Hd1, ss2a Hd1 hd1, ss2a hd1, and EM204 was digested into 111- and
30-bp products by BglII.

Western blotting of the total protein extracted from mature seeds using anti-SSIIa
antibody confirmed the absence of SSIIa in ss2a Hd1, ss2a Hd1 hd1, ss2a hd1, and EM204 and
the presence of SSIIa in Kinmaze and Akita 63 (Figure 4). The Hd1 and SSIIa genotypes of
rice accessions used in this study are summarized in Table 1. Differences in protein levels
of SSI, GBSSI, and BEIIb are explained below (Sections 2.4 and 2.5).
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2.3. Effect of Hd1 Alleles on the Agricultural Traits of NILs

The agricultural traits of ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 NILs were examined over
2 years (Figures 5 and 6, Tables S2 and S3). The three NILs were germinated or transplanted
on the same respective dates and grown in the same paddy field under the same growth
conditions. The heading dates of ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 lines were remarkably
different (Figure 5a,b). Although the actual heading dates of NILs slightly differed between
the two years, they showed the same trend (Figure 5b, Table 1). The ss2a hd1 line showed
the earliest heading date (early August; August 4 or 7), followed by ss2a Hd1 hd1 (late
August; August 21 or 26) and ss2a Hd1 (early September; September 2 or 13). The flowering
period of individual plants of the same genotype was well synchronized; plants of the same
genotype flowered within 2–3 days. In addition, the seed development and maturation
period showed the order ss2a hd1 < ss2a Hd1 hd1 < ss2a Hd1, and the ss2a hd1, ss2a Hd1
hd1, and ss2a Hd1 lines took 40, 44–47, and 48–54 days, respectively, to reach maturity after
heading (Figure 5b). Only the ss2a Hd1 line was prematurely harvested on 1 November
2021, since no further seed development was expected because of the arrival of winter
(Figure 5c). The vegetative phase of lines ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 was 104–112,
92–94, and 72–78 days, respectively (Figure 5b), and correlated well with the whole-plant
dry weight, dry straw weight, plant height, and culm length (Figure 6a–d, Tables S2 and S3).
The longer the vegetative period, the longer the culm and the heavier the straw weights.
However, the duration of the vegetative phase did not influence the length and number of
ears (Figure 6e,f, Tables S2 and S3).
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hd1 (black) and ss2a Hd1 hd1 (gray) in 2021. 

Figure 5. Comparison of the heading dates of ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1. (a) Photo of NILs
showing the differences in their heading dates. Note that ss2a hd1 is mature, ss2a Hd1 hd1 is at the
mid-developmental stage, and ss2a Hd1 is still flowering. (b) Differences among rice NILs in the
number of days to heading and to maturity. Numbers (month/day) below the ribbon represent the
actual dates of sowing, transplanting, heading, flowering, and maturity. (c) Average day temperature
during the period from the end of May (transplanting) to the beginning of November (harvesting) in
2020 (gray) and 2021 (black). (d) Minimum temperature for 2 weeks before the heading date of ss2a
Hd1 in 2020 (gray) and 2021 (black). Dashed line indicates the threshold temperature (17 ◦C) that
reduces the fertility rate. (e) Average temperature for 2 weeks before the heading date of ss2a hd1
(black) and ss2a Hd1 hd1 (gray) in 2021.



Int. J. Mol. Sci. 2022, 23, 10783 9 of 20Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 6. Agricultural traits of ss2a Hd1 (black), ss2a Hd1 hd1 (gray), and ss2a hd1 (stripe) NILs. (a) 
Whole-plant dry weight, (b) dry straw weight per plant, (c) culm length, (d) ear length, (e) ear num-
ber per plant, (f) total grain weight per plant, (g) dehulled grain weight per plant, (h) fertility rate, 
(i) percentage of green immature seeds. Data represent mean ± standard error (SE). The three bars 
on the left represent data from 2020, and those on the right represent data from 2021. Data collected 
during the same harvest year were statistically analyzed via the Tukey‒Kramer method (p < 0.05). 
The number of ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 plants was 9, 20, and 8, respectively, in 2020, and 
20 plants of each line were analyzed in 2021. Different lowercase letters above bars indicate signifi-
cant differences. 

The total grain weight and dehulled grain weight of ss2a Hd1 hd1 were greater than 
those of ss2a hd1 (Figure 6f,g). While those of ss2a Hd1 differed between the 2 years, those 
values of ss2a Hd1 were greater than those of ss2a Hd1 hd1 in 2020 but lower than those of 
ss2a hd1 in 2021. Some correlation was detected between plant biomass and grain yield; 
the higher the biomass, the better the yield, as long as the temperature during seed devel-
opment remained optimal (Figures 5c and 6a,b,f,g). Reduction in the grain yield of ss2a 
Hd1 in 2021 was likely caused by low temperature from mid-August to early September 
(Figure 5c,d). This delayed the heading date, which prolonged seed development and re-
duced starch synthesis, thus increasing the number of premature grains (Figure 6i). Low 

Figure 6. Agricultural traits of ss2a Hd1 (black), ss2a Hd1 hd1 (gray), and ss2a hd1 (stripe) NILs.
(a) Whole-plant dry weight, (b) dry straw weight per plant, (c) culm length, (d) ear length, (e) ear
number per plant, (f) total grain weight per plant, (g) dehulled grain weight per plant, (h) fertility
rate, (i) percentage of green immature seeds. Data represent mean ± standard error (SE). The three
bars on the left represent data from 2020, and those on the right represent data from 2021. Data
collected during the same harvest year were statistically analyzed via the Tukey-Kramer method
(p < 0.05). The number of ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 plants was 9, 20, and 8, respectively, in
2020, and 20 plants of each line were analyzed in 2021. Different lowercase letters above bars indicate
significant differences.

The total grain weight and dehulled grain weight of ss2a Hd1 hd1 were greater than
those of ss2a hd1 (Figure 6f,g). While those of ss2a Hd1 differed between the 2 years, those
values of ss2a Hd1 were greater than those of ss2a Hd1 hd1 in 2020 but lower than those
of ss2a hd1 in 2021. Some correlation was detected between plant biomass and grain
yield; the higher the biomass, the better the yield, as long as the temperature during seed
development remained optimal (Figures 5c and 6a,b,f,g). Reduction in the grain yield of
ss2a Hd1 in 2021 was likely caused by low temperature from mid-August to early September
(Figure 5c,d). This delayed the heading date, which prolonged seed development and
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reduced starch synthesis, thus increasing the number of premature grains (Figure 6i). Low
average day temperature is also known to prolong the seed maturation period [47]. In
fact, the ss2a Hd1 plants did not fully reach maturity in 2021 (Figure 6g, Tables S2 and S3).
Although the effect of this phenomenon was minor, low temperature also led to reduced
fertility rate (Figures 5d and 6h). Studies show that fertility rate declines when the minimum
temperature remains under 17 ◦C for 2 weeks before the heading date [48] and when the
temperature is too high [49]. These findings are consistent with the lower fertility rates
of ss2a Hd1 and ss2a hd1 than that of ss2a Hd1 hd1 (Figures 5e and 6h). Therefore, the
functional Hd1 allele is unsuitable for rice cultivars grown in high-latitude areas for the
maintenance of stable grain quality and yield. However, if an increase in plant biomass is
desired, especially for rice cultivars utilized as feed (straw) or for ethanol production, the
functional Hd1 allele is necessary for prolonging the vegetative phase.

The average weight of one dehulled seed of EM204 was only 16.5 mg [43], which is
approximately 55% of that of ss2a Hd1. Therefore, the yield of ss2a Hd1, ss2a Hd1 hd1, and
ss2a hd1 lines generated in the present study was greatly improved, owing to backcrossing
with the high-yielding parental line Akita 63.

2.4. Effect of Hd1 Alleles on Apparent Amylose Content and GBSSI Expression Level

Apparent amylose content affects texture of cooked rice and rice products [50,51],
and the abundance of GBSSI, which is responsible for amylose synthesis, is affected by
the temperature during seed development [30]. Since the temperature during seed devel-
opment varied considerably among NILs, depending on their heading dates (Figure 5c,
Table S4), the apparent amylose content was measured via gel filtration chromatography
using a series of single HW-55S and triple HW-50S Toyopearl columns (Table 2, Figure S2).
Amylose was eluted in fraction I, and the long and short chains of amylopectin were eluted
in fractions II and III, respectively (Figure S2).

Apparent amylose content of Akita 63 (17–18%) was relatively low (Table 2) compared
with that of Kinmaze (22%) [43,52]. This is partly because Akita 63 flowered in early
August when the temperature was high (average day temperature = 25–30 ◦C) during
seed development, while Kinmaze flowered in early September under lower temperature
(average day temperature = ~20 ◦C). Although the apparent amylose content of EM204
(24%) was higher than that of Kinmaze, both rice accessions flowered at a similar time (early
September; average day temperature = ~20 ◦C). Therefore, the absence of SSIIa resulted in
an increase of apparent amylose content in the Kinmaze background. Similarly, the amylose
contents of all three NILs were significantly higher than that of Akita 63, as determined
using a pairwise t-test (Table 2).

To determine whether the different heading dates of NILs affect apparent amylose
content in the absence of SSIIa in the Akita 63 background, the apparent amylose contents
of ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 were compared (Table 2, Figure S2). The results
showed that the apparent amylose contents of ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 were
27.0%, 25.1%, and 22.1%, respectively, in 2020, and 28.0%, 26.6%, and 24.7%, respectively, in
2021 (Table 2, Figure S2). Thus, the amylose content of ss2a Hd1 was the highest among
the three lines and was significantly higher than that of ss2a hd1. We found that the earlier
the heading date, the higher the seed development temperature and the lower the amylose
content (Tables 2, S2 and S3, Figure S2). The apparent amylose content of ss2a hd1 was 3–5%
lower than that of ss2a Hd1 and 4–8% higher than that of Akita 63 (Table 2). This suggests
that loss of SSIIa mitigates the reduction in amylose content, even if the temperature during
seed development is high.

To determine whether apparent amylose content is correlated with the GBSSI protein
level, we performed western blotting of NILs (Figure 4). The amount of GBSSI protein
showed a strong correlation with the apparent amylose content (Figure 4). Additionally,
the GBSSI protein was the least abundant in Akita 63, and the level of GBSSI in ss2a Hd1
was greater than that in ss2a hd1 (Figure 4).



Int. J. Mol. Sci. 2022, 23, 10783 11 of 20

Table 2. Apparent amylose content and ratio of short to long chain of amylopectin in different
rice accessions.

Rice Accession
Apparent Amylose Content (%) 1 Ratio of Short to Long

Chains of Amylopectin 1

2020 2021 2020 2021

Akita 63 18.1 ± 0.8 17.1 ± 0.4 2.4 ± 0.1 2.7 ± 0.1
ss2a Hd1 27.0 ± 0.6 a* 28.0 ± 0.1 a* 3.1 ± 0.0 a* 3.2 ± 0.0 a*

ss2a Hd1 hd1 25.1 ± 0.6 ab* 26.6 ± 0.6 ab* 2.6 ± 0.0 b 2.9 ± 0.0 b
ss2a hd1 22.1 ± 0.4 b* 24.7 ± 0.6 b* 2.4 ± 0.0 b 3.0 ± 0.0 ab

1 Apparent amylose content and the ratio of short to long chains of amylopectin were calculated from fraction I
and fraction III/fraction II in Figure S2. Data represent the mean ± SE of three replicates. Different lowercase
letters indicate significant differences among ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 (Tukey-Kramer method; p < 0.05).
Asterisk indicates significant differences relative to Akita 63 (t-test; p < 0.05).

2.5. Effect of Hd1 Alleles on Amylopectin Structure

The ratio of short amylopectin chains to long amylopectin chains (eluted in fraction III
and fraction II, respectively, via gel filtration chromatography) was higher in ss2a Hd1 than
in ss2a hd1 (Table 2). Therefore, the detailed amylopectin branch structure was analyzed via
capillary electrophoresis using debranched starch purified from mature rice seeds (Figures 7
and S3). The differences in amylopectin structure were shown as a differential curve.
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Figure 7. Differences in the amylopectin branch structure of NILs. (a,b) Subtraction curves showing
the effects of Hd1 alleles on amylopectin branch structure (a) and the effect of the loss of SSIIa on
amylopectin structure (b). Each panel shows one typical representative data set of at least three
replications. Data shown here were obtained from samples harvested in 2021, and the data of samples
harvested in 2020 are shown in Figure S3.
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To reveal the effect of heading date on amylopectin structure, values of chain length
distribution of ss2a hd1 were subtracted from those of ss2a Hd1 or ss2a Hd1 hd1 (Figures 7
and S3). The results showed that the number of short amylopectin chains (DP < 14) was
larger in ss2a Hd1 and ss2a Hd1 hd1 seeds than in ss2a hd1 seeds harvested in both years.
While the number of long amylopectin chains (DP ≥ 15) was larger in ss2a hd1 than in ss2a
Hd1 and ss2a Hd1 hd1 (Figures 7a and S3a). The degree of difference was greater in ss2a
Hd1 than in ss2a Hd1 hd1 (Figures 7a and S3a). The reason why ss2a hd1 seeds contained
fewer short amylopectin chains and more long amylopectin chains was probably because
of a slight decrease in BEIIb levels in ss2a hd1, as shown via western blotting (Figure 4).

To reveal the effect of the loss of SSIIa on amylopectin structure, values of chain length
distribution from Akita 63 were subtracted from those of ss2a Hd1, ss2a Hd1 hd1, or ss2a hd1.
All three NILs, which lacked SSIIa, showed similar trends, i.e., a considerable increase in
short amylopectin chains with DP 5–10 and a decrease in intermediate amylopectin chains
with DP 12–24 (Figures 7b and S3b). These results are consistent with the role of SSIIa,
which synthesizes intermediate chains [43].

2.6. Effect of Hd1 Alleles on the Thermal Properties of Starch

The gelatinization temperature of starch depends on the number of amylopectin
branches with DP ≤ 24 [53,54]. An increase in short amylopectin branches lowers the
gelatinization temperature [43], while an increase in long amylopectin branches raises the
gelatinization temperature [52]. Therefore, we measured the gelatinization temperature
of starch in ss2a Hd1, ss2a Hd1 hd1, or ss2a hd1 using differential scanning calorimetry and
compared the results with the gelatinization temperature of starch in Akita 63 (Table 3).

Table 3. Peak gelatinization temperature (Tp) of starch purified from rice grains harvested in 2020
and 2021, as analyzed via differential scanning calorimetry.

Rice Accession
Tp (◦C) 1

2020 2021

Akita 63 63.1 ± 0.0 a 62.0 ± 0.1 a
ss2a Hd1 50.3 ± 0.1 d 52.3 ± 0.2 d

ss2a Hd1 hd1 58.8 ± 0.1 c 55.5 ± 0.1 c
ss2a hd1 61.8 ± 0.1 b 57.2 ± 0.1 b

1 Data represent the mean ± SE of three replicates. Different lowercase letters indicate significant differences
(Tukey-Kramer method; p < 0.05).

The gelatinization temperature of lines lacking SSIIa (ss2a Hd1, ss2a Hd1 hd1, and ss2a
hd1) was lower than that of Akita 63. To precisely evaluate the effect of the absence of SSIIa
on starch gelatinization temperature, the gelatinization temperatures of starch in ss2a hd1
and Akita 63 were compared since both rice accessions flowered in early August. The peak
gelatinization temperature of ss2a hd1 was 1.3–4.8 ◦C lower than that of Akita 63, although
the heading dates of both these accessions were essentially the same. This is because ss2a
hd1 (owing to the loss of SSIIa) contained a higher number of short amylopectin chains
with DP < 10 and lower number of chains with DP ≥ 10 than Akita 63 (Figure 7b). This
suggests that the loss of SSIIa lowers the gelatinization temperature of starch, even under
high temperature during seed development.

In addition, the peak gelatinization temperature of NILs followed the order ss2a hd1
> ss2a Hd1 hd1 > ss2a Hd1, although exact values of each line differed between the years
(Table 3). This trend of the peak gelatinization temperature of NILs may be explained by
differences in the chain length distribution of amylopectin among the NILs: the number
of amylopectin chains with DP < 15 showed the order ss2a Hd1 > ss2a Hd1 hd1 > ss2a hd1
and that of amylopectin chains DP > 15 followed the order ss2a Hd1 < ss2a Hd1 hd1 < ss2a
hd1 (Figure 7a). This suggests that gelatinization temperature is affected by the heading
date: the higher the temperature during seed development, the higher the gelatinization
temperature of starch, even in the absence of SSIIa (Figure 5, Tables 3 and S4).
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3. Discussion
3.1. SNPs in Hd1

In this study, SNPs responsible for the differences in the heading dates of Kinmaze (the
parental line of the ss2a null mutant EM204), Akita 63, and Akitakomachi were identified.
Furthermore, the precise effects of different heading dates, determined by Hd1, Hd1 hd1, and
hd1, on the agricultural traits and starch properties of rice were evaluated in NILs (lacking
SSIIa) generated using Akita 63, an elite rice cultivar, as the recurrent parent. Sequencing
analyses revealed that Akita 63 carries a loss-of-function hd1 allele, while Kinmaze harbors
a functional Hd1 allele. The heading date of ss2a hd1 was the earliest and 72–78 days after
transplanting. Heading dates of ss2a Hd1 hd1 and ss2a Hd1 were 14–19 and 26–40 days later
than those of ss2a hd1, respectively. These differences in the heading dates of ss2a Hd1, ss2a
Hd1 hd1, and ss2a hd1 were likely caused by the different Hd1 alleles, although several other
genes are also involved in determination of the heading date (Figure 1).

In addition, analyses of Hd1 gene sequences using the basic local alignment search
tool (BLAST; https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 20 June 2019) and the
alignment of Hd1 amino acid sequences revealed that the hd1 allele of Akita 63 and
Akitakomachi is identical to that of the HS66 mutant (AB041841; [4]) and Sasanishiki
(AB433218) (Figure S4a) but different from that of Kasalath (AB041839; [4], Figure 2d),
Ginbouzu (AB041840; [4]), and Koshihikari (AB375859; [6]) (Figure S4b). The Hd1 allele
of Koshihikari is identical to that of Nipponbare, while Ginbouzu shares the same Hd1 se-
quence as Kinmaze (MK449352; this study), Hoshinoyume (AB353276; [7]), and Hayamasari
(AB353275; [7]) (Figure S4c). The PCR marker generated in this study (Table S1, Figure S1)
as well as other PCR markers generated by Mo et al. [18] will serve as useful tools for
determining the different types of Hd1 alleles, which will accelerate the breeding of new rice
cultivars with different heading dates. Different Hd1 alleles have already been utilized to
distribute the workload of the peak harvesting hours. For example, low-amylose rice lines
harboring the Wxmq gene, such as Milky Summer, Milky Queen, and Milky Autumn, are
grown in the central to southern parts of Japan (https://www.naro.go.jp/publicity_report/
press/laboratory/nics/079175.html, accessed on 28 June 2022). The choice of different Hd1
alleles should be carefully considered, depending on the application (yield increase, starch
property, or workload distribution).

3.2. Effect of Hd1 Alleles on Grain Yield

Differences in the heading date impacted the agricultural traits of NILs (Figure 6,
Tables S2 and S3). The total grain yield of ss2a Hd1 hd1 tended to be higher than that of
ss2a hd1, although it was statistically insignificant due to a statistics outlier, while the total
grain yield of ss2a Hd1 varied depending on the year (Figure 6, Tables S2 and S3). The
percentages of green immature grains were lowest in ss2a hd1 and highest in ss2a Hd1
(Figure 6, Tables S2 and S3). Presence of the hd1 allele enabled efficient grain filling by
promoting flowering at the appropriate temperature for starch biosynthesis during seed
development, thus minimizing the time required for seed maturation and desiccation.
However, because of the short vegetative period, the amount of stored photosynthetic
products to be translocated from the culm might be decreased, which may lead to reduced
yield. Thus, the heading date of ss2a Hd hd1 seemed the most suitable for cultivation in
Akita (Japan) as it showed stable high-level production of grains, judging from the limited
data obtained under the extreme temperature conditions in 2020 and 2021, although the
heterozygous allele (Hd1 hd1) would not be appropriate for commercial rice production
as it would segregate in subsequent generations. The ss2a hd1 NIL is also suitable for
cultivation in northern Japan because the percentage of green immature grains of this
genotype was the lowest, although its yield could be improved further. Increase in grain
yield while maintaining seed quality should be possible by finetuning the combinations
of other genes involved in the determination of the heading date, to ensure that the rice
flowers in mid-August.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.naro.go.jp/publicity_report/press/laboratory/nics/079175.html
https://www.naro.go.jp/publicity_report/press/laboratory/nics/079175.html
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The ss2a Hd1 NIL was not suitable for grain production because the heading date was
too late and risked the early arrival of winter during seed development, which could lead
to large yield differences between years. Moreover, if the heading date is delayed because
of low temperature in August, there is a high chance that seed development may not be
completed in time, resulting in drastic yield losses. However, ss2a Hd1 showed the highest
culm length and straw dry weight. Therefore, use of the Hd1 allele would be beneficial
for increasing the plant biomass, which could be used as feed for livestock or as a raw
material for bioethanol production. Farmers generally prefer to grow rice varieties with
relatively shorter culm length to avoid lodging. Short culm produces less waste, requires
less fertilizer, and improves work efficiency. Therefore, cultivars with suitable Hd1 alleles
should be carefully considered, depending on whether the ultimate goal is to harvest grains
or whole plants. The latitude and altitude of the planting area should also be taken into
account when selecting rice cultivars with different Hd1 alleles. Since Hd1 functions by
repressing heading under long days and promoting heading under short days [5,14,16],
the effects of Hd1 at different latitudes are expected to differ. The presence of the hd1 allele
likely prevents premature heading of rice plants grown near the equator and helps increase
the tiller and ear numbers before transitioning to the reproductive phase. Growing ss2a
Hd1, ss2a Hd1 hd1, and ss2a hd1 genotypes at different latitudes and temperatures will
provide additional useful information for achieving high yields in the respective regions.

3.3. Effect of Hd1 Alleles on Starch Structure

High temperature during seed development reduces apparent amylose content by
reducing the abundance of GBSSI and increases the gelatinization temperature of starch by
decreasing the abundance of BEIIb, thus affecting the quality of rice [28,30,40,42]. Compared
with the effects of high temperature, the loss of SSIIa activity has opposite effects; the ss2a
mutant shows higher apparent amylose content and lower gelatinization temperature
compared with its parental line [43]. To reveal whether the loss of SSIIa can mitigate
the above-described effect on starch under high temperature during seed development,
the starch properties of ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 NILs were evaluated since
temperatures during the seed development of these lines were low, medium, and high,
respectively, because of differences in their heading dates (Figure 5c and Table S4). The
apparent amylose content of ss2a hd1 was 22.1–24.7%, which was lower than that of ss2a Hd1
hd1 (23.2–26.6%) and ss2a Hd1 (27.0–28.0%) but higher than that of Akita 63 (17.1–18.1%)
(Table 2). Nonetheless, both ss2a hd1 and Akita 63 flowered at almost the same time
and possessed an identical genetic background, except SSIIa. Therefore, the loss of SSIIa
increased the apparent amylose content even if seed development occurred under high
temperature. Increasing the apparent amylose content of rice grains can be used as one of
the breeding strategies for increasing the health benefit of rice, since high apparent amylose
content elevates the resistant starch content [52,55]. The Hd1 hd1 and Hd1 alleles are
beneficial for increasing the apparent amylose content because these alleles delay flowering
and facilitate seed development under cooler temperatures. However, to achieve high yield
and avoid the risk of the early arrival of winter, heading dates should be no later than late
August, especially if the rice is grown in the northern area of Japan.

3.4. Effect of Hd1 Alleles on Starch Gelatinization Temperature

The ss2a hd1 NIL possessed a higher number of short amylopectin chains (DP < 15)
than Akita 63, and its gelatinization temperature (57 ◦C) was lower than that of Akita 63
(62.0 ◦C) but higher than that of ss2a Hd1 hd1 (55.5 ◦C) and ss2a Hd1 (52.3 ◦C) (Figure 7,
Table 3). One of the reasons why the gelatinization temperature of ss2a hd1 was higher
than that of ss2a Hd1 hd1 and ss2a hd1 might be the relatively lower abundance of the
BEIIb protein under high temperature, which increased the number of long amylopectin
branches (Figure 4). The balance between amylopectin branch generation and removal
is important for controlling amylopectin structure, and loss of BEIIb can be mitigated by
the additional loss of isoamylase 1 [56]. Therefore, reduction in the isoamylase 1 level
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may be one way to counterbalance the reduction in BEIIb level under high temperature
during seed development. Alternatively, delaying the heading date of ss2a hd1 offers a
more practical way. Possible target genes for delaying the flowering time of ss2a hd1 are
Ghd7 and OsPRR37, since combinations of the presence or absence of these genes and that
of Hd1 alleles allow the heading date of rice to be further finetuned [57,58]. Rice with a low
gelatinization temperature is expected to retrograde slowly and be tasty. Thus, introduction
of the ss2a allele into rice lines cultivated near the equator (with high temperature during
seed development) may improve the quality of rice and rice products produced in tropical
regions. Analysis of the retrogradation properties of ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1
lines will provide additional information for the use of these NILs in the food industry.

4. Materials and Methods
4.1. Plant Materials

Rice (Oryza sativa L.) ss2a mutant, EM204, was previously isolated from the NMU-
mutagenized populations of the wild-type japonica cultivar, Kinmaze, which flowers late
(early September) at high latitude [43]. EM204 harbors a mutation at the last nucleotide of
intron 5, which inhibits splicing and results in the deficiency of 15 amino acids [43]. EM204
was backcrossed twice with the early-flowering, high-yielding elite japonica rice cultivar,
Akita 63 [44]. The resulting F1 seedlings were grown and self-pollinated to obtain the F2
progeny. DNA was isolated from F2 seedlings, and genotyping was performed as described
previously [43]. The ss2a Hd1 hd1 line was self-pollinated to obtain ss2a Hd1, ss2a Hd1 hd1,
and ss2a hd1 NILs. Theoretically, 87.5% of the genome in these three NILs was derived
from Akita 63. Akitakomachi was obtained from Akita Prefectural Agricultural Experiment
Station, Akita, Japan, and Kasalath and Nipponbare were obtained from the Genebank,
National Agricultural and Food Research Organization, Tsukuba, Japan. All rice lines were
grown in an experimental paddy field of Akita Prefectural University during the summer
under natural light conditions.

4.2. Sequencing of the Hd1 Gene

Genomic DNA was isolated from leaves of Akita 63, Akitakomachi, and Kinmaze.
Approximately 3 cm of young leaf was powdered with liquid nitrogen using a Multi-beads
Shocker (Yasui Kikai, Osaka, Japan). The powder was extracted with 400 µL of 200 mM
Tris-HCl, pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS. After centrifugation, 300 µL
of the supernatant was mixed with an equal volume of isopropanol, let stand for 20 min
or longer, and centrifuged. The DNA pellet was rinsed with 70% ethanol, dried, and
resuspended in 25 µL of TE buffer containing 25 µL of 10 mM Tris-HCl, 1 mM EDTA. 1 µL
of DNA was used for 10 µL PCR reaction. PCR amplification was carried out using the
Quick Taq HS dye mix (TOYOBO, Osaka, Japan), dimethyl sulfoxide (DMSO; 5% final
concentration), and sequence-specific primers (Table S1) under the following conditions:
94 ◦C for 2 min, and 38 cycles of 94 ◦C for 20 s, 50 ◦C for 20 s, and 68 ◦C for 20 s. The
PCR products were sequenced at the Biotechnology Center in Akita Prefectural University,
and the obtained sequences were aligned with that the Hd1 gene of Nipponbare using
Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 20 June 2019)
and analyzed using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 20 June
2019). The identified Hd1 sequences were deposited in the NCBI GenBank database (https:
//www.ncbi.nlm.nih.gov/, accessed on 25 January 2019) under the following accession
numbers: MK449350 (Akitakomachi), MK449351 (Akita 63), and MK449352 (Kinmaze).

4.3. Genotyping of Hd1 and SS2a Alleles

The SSIIa gene was genotyped as described [43]. To genotype the Hd1 gene, PCR
was performed using the Quick Taq HS dye mix (TOYOBO, Osaka, Japan), 5% DMSO,
and sequence-specific primers (5′-GGCATGTATTTTGGTGAAGTCG-3′ and 5′-GTTGT
CGTAGTACGAATTGTACCCGAC-3′) under the following conditions: 94 ◦C for 2 min,
and 30 cycles of 94 ◦C for 20 s, 60 ◦C for 20 s, and 68 ◦C for 20 s. This enabled successful

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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amplification, since the region was enriched in guanine and cytosine. PCR products were
separated via electrophoresis on 15% acrylamide gel in 1× TBE buffer. The expected sizes
of the PCR products were 170 bp for Hd1 and 130 bp for hd1.

4.4. Field Experiments and Agricultural Traits

All rice lines were sown and transplanted on the same day, with a spacing of 20 cm
between plants and 25 cm between rows. A total of 35 plants each of ss2a Hd1 and ss2a
Hd1 genotypes, 100 plants of the ss2a Hd1 hd1 genotype, and 20 plants each of the parental
lines were grown according to the local agricultural practices. Heading date was recorded
when 50% of plants of a given genotype initiated heading. Maturation date was recorded
when 90% of the panicles turned yellow. Plant height and ear length were measured prior
to harvesting. After 2 weeks of desiccation, whole-plant dry weight and total grain weight
were measured, and dry straw weight was calculated by subtracting the total grain weight
from the whole-plant dry weight. Total grain weight was measured including empty seeds.
Grains were dehulled and sieved through a mesh with 1.9 mm pore size using a sieving
machine, TEST Grain Selector (TWSB, Satake, Tokyo, Japan), and the weight of grains
above 1.9 mm thickness and width was measured as total dehulled grain weight. Fertility
rate was calculated by counting and subtracting the number of empty seeds from the total
number of seeds. Quality of brown rice was analyzed using the VIRGO Rice Grain Selector
(ES-V; Shizuoka Seiki, Shizuoka, Japan) by detecting the green premature seeds. Data were
obtained in 2020 and 2021.

4.5. Meteorological Data

Meteorological data for 2021 were obtained from the Japan Meteorological Agency.
Daily temperature data were extracted, and average temperature during seed development
was calculated.

4.6. Western Blot Analysis

Three mature seeds of each rice genotype were ground to a fine powder, and total pro-
tein was extracted using 20 volumes (w/v) of buffer containing 125 mM Tris-HCl (pH 6.8),
8 M urea, 4% (w/v) SDS, 5% (v/v) β-mercaptoethanol, and 0.05% (w/v) bromophenol
blue. After centrifugation, proteins in the supernatants were subjected to sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on 7.5% acrylamide gel and blotted
onto a membrane. Membranes were incubated with the following primary antibodies:
anti-SSI (1:3000 dilution [59]), anti-SSIIa (1:1000 dilution [60], anti-GBSSI (1:5000 [59]), and
anti-BEIIb (1:5000 [35]). Subsequently, secondary antibody incubation and protein detection
were performed as described previously [60].

4.7. Measurement of Apparent Amylose Content and Short to Long Chain Amylopectin Ratio

Starch was purified using the cold-alkaline method as described previously [61,62].
Purified starch was debranched using Pseudomonas isoamylase (Hayashibara, Okayama,
Japan) and analyzed via gel filtration chromatography (Toyopearl HW-55S and HW-50S×3;
Tosoh, Tokyo, Japan) [63–65]. Amylose (fraction I), long amylopectin chains (fraction II),
short amylopectin chains (fraction III), and apparent amylose content were quantified as
described previously [63–65].

4.8. Analysis of Amylopectin Structure

Debranched purified starch was fluorescently labeled and analyzed via capillary
electrophoresis (P/ACE MDQ Plus Carbohydrate System; AB Sciex, Framingham, MA,
USA), as described [66].

4.9. Measurement of Gelatinization Temperature

The thermal properties of purified starch were analyzed via differential scanning
calorimetry (Seiko Instrument 6100; Seiko, Chiba, Japan) as described previously [59,67].
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5. Conclusions

This study precisely evaluated the agricultural traits and starch properties of rice
NILs (ss2a hd1, ss2a Hd1 hd1, and ss2a Hd1) lacking SSIIa and showing different heading
dates, although the data were limited to two harvest years. These NILs were generated by
crossing the elite rice cultivar Akita 63 (as the recurrent parent) with the ss2a null mutant
EM204. Sequencing analyses revealed that Akita 63 carries a loss-of-function hd1 allele,
while Kinmaze (the parental line of EM204) possesses a functional Hdl allele. The ss2a
hd1 NIL was the first to initiate heading (early August), while the heading dates of ss2a
Hd1 hd1 and ss2a Hd1 were approximately 2 and 4 weeks later, respectively, than that of
ss2a hd1. The time required to reach maturity was the shortest in ss2a hd1, which reached
maturation in mid-September, while the harvesting dates of ss2a Hd1 hd1 and ss2a Hd1 were
approximately 4 and 6 weeks later, respectively, than that of ss2a hd1. Although ss2a hd1
showed the lowest whole-plant dry weight, it also produced the lowest number of green
immature seeds. Analyses of starch properties showed that the amylose content of ss2a hd1
was lower than that of ss2a Hd1, but its gelatinization temperature was higher. Overall, this
study provides useful information about the different heading dates, agricultural traits,
and starch properties of rice accessions.
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