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Abstract
Protein domains are functional and structural units of proteins. They are responsible for a particular function that contributes to protein’s overall
role. Because of this essential role, the majority of the genetic variants occur in the domains. In this study, the somatic mutations across 21
cancer types were mapped to the individual protein domains. To map the mutations to the domains, we employed the whole human proteome
to predict the domains in each protein sequence and recognized about 149 668 domains. A novel Perl-API program was developed to convert the
protein domain positions into genomic positions, and users can freely access them through GitHub. We determined the distribution of protein
domains across 23 chromosomes with the help of these genomic positions. Interestingly, chromosome 19 has more number of protein domains
in comparison with other chromosomes. Then, we mapped the cancer mutations to all the protein domains. Around 46–65% of mutations were
mapped to their corresponding protein domains, and significantly mutated domains for all the cancer types were determined using the local false
discovery ratio (locfdr). The chromosome positions for all the protein domains can be verified using the cross-reference ensemble database.

Database URL: http://dcmp.vit.ac.in/

Key Points

• DCMP is a web-based resource for protein domains,
providing chromosome positions and cancer mutation
counts.

• DCMP provides the protein domain distribution across 23
chromosomes.

• DCMP allows the user to explore significantly mutated
domains across the 21 cancer types.

Introduction
Cancers are triggered by collective changes in genetic and non-
genetic materials, which are induced by environmental factors
that elicit inappropriate activation or inactivation of specific
genes (1). It started by way of disrupting the pathways of cel-
lular proliferation as well as differentiation leading to neoplas-
tic transformations or abnormal cell growth (2). It is a large
family of diseases that can invade or spread to other parts of
the body. Analyses of well-studied cancers, such as colorec-
tal cancer and retinoblastoma, have suggested that only three
or fewer mutations are sufficient for cancer initiation (3–5).
Most researchers have carried out detailed studies that focus
on how to stop this deadly disease in its tracks. One such
study includes the application of genomics and proteomics
in cancer biology, which holds great potential for identifying
the mechanisms that lead to malignancy and the development
of therapeutic strategies (6). Several cancer genomes were
sequenced and documented thousands of DNAmutations and

other genomic alterations (7–9). Efforts were made by the
team of The Cancer Genome Atlas, the International Cancer
Genome Consortium and Catalogue of Somatic Mutations in
Cancer (COSMIC) (10–12). In recent years, mutational land-
scapes of several cancer types have been revealed. However,
the extracting process of knowledge from immense sequence
resources has just begun. Each cancer can contain thousands
of somatic mutations that exemplify challenges to therapy and
provide a basic understanding of the cancer disease.

Therefore, genomic sequence, with the chromosomal map-
ping data, has dramatically enhanced the ability to isolate
specific genes involved in heritable cancers, such as those
responsible for predisposition to breast cancer, BRCA1 and
BRCA2 (13, 14). These are considered as potential muta-
tion driver genes (15, 16), and also, few enzymes like histone
deacetylases were identified as potential therapeutic targets
(17). Targeted therapy is a newer cancer treatment that tar-
gets proteins that control how cancer cells grow, divide, and
spread (18, 19), like kinases are mainly focused on these
systems, either as downstream regulators in signaling path-
ways or as receptor molecules. A few best examples for these
studies are human epidermal growth factor receptors such as
EGFR and HER2 (20). Since genomic profiling for all kinds
of tumor has been increased eventually, the overexpression of
HER2 was identified in several tumor types, including cervi-
cal (2.2%), bladder (3.6%), salivary (3.9%), vaginal (3.6%),
endometrial (3.4%) and colorectal cancers (1.3%). Similarly,
6.02% of altered EGFR is observed in several cancer types,
including lung, breast and colon. Hence, molecule inhibitors
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Table 1. Illustration of predicted domains from the Pfamscan tool with an e-value ≤0.01. Each line contains the following information: 1—seq id, 2—
alignment start, 3—alignment end, 4—envelope start, 5—envelope end, 6—hmm acc, 7—hmm name, 8—type, 9—hmm start, 10—hmm end, 11—hmm
length, 12-bit score, 13—e-value, 14—significance and 15—clan

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ENST00000615270.1 128 181 128 222 PF13927.1 Ig_3 Domain 1 36 75 17.7 0.0037 1 CL0011
ENST00000616914.1 128 181 128 222 PF13927.1 Ig_3 Domain 1 36 75 17.7 0.0037 1 CL0011
ENST00000615996.1 128 155 128 224 PF13927.1 Ig_3 Domain 1 28 75 16.3 0.01 1 CL0011
ENST00000611873.1 128 181 128 222 PF13927.1 Ig_3 Domain 1 36 75 17.7 0.0037 1 CL0011
ENST00000339924.12 128 181 128 222 PF13927.1 Ig_3 Domain 1 36 75 17.7 0.0037 1 CL0011
ENST00000391729.1 128 181 128 211 PF13927.1 Ig_3 Domain 1 36 75 17.8 0.0034 1 CL0011
ENST00000621713.1 128 181 128 222 PF13927.1 Ig_3 Domain 1 36 75 17.7 0.0037 1 CL0011
ENST00000610808.1 128 181 128 222 PF13927.1 Ig_3 Domain 1 36 75 17.7 0.0037 1 CL0011

and therapeutic drugs are being developed for HER2 and
EGFR with more excellent selectivity, specific to HER2 and
EGFR mutations (21–23).

Currently, vast data of cancer genome sequences increase
with the number of tumor samples, where the prediction of
driver mutations in these genomes reflects false positive rate
data (24, 25). Hence, determining the effects of mutations
on the structure and function of the protein remains chal-
lenging (26). Recent computational structural studies have
revealed that this gene-based approach usually does not con-
sider the position of the mutation within the gene or provides
the functional context of the position of the mutation. Com-
putational structural studies have explored mutational effects
on specific regions of a protein (e.g. the binding site) (27–29).
In this study, the somatic mutations of 21 different cancers
were mapped to the individual protein domains to identify
the significantly mutated domains (SMDs) across the cancer
types. For mapping mutations, the protein domains were pre-
dicted from the human proteome, and the domain positions
were converted into their nucleotide or chromosomal loca-
tion. Thus, turning the peptide into a nucleotide position
offered a reliable method of mapping mutations to protein
domains. The top 10 significant protein domains were deter-
mined using the local false discovery ratio. The users can
access the protein domain position in the chromosome with
the help of a developed database.

Materials and methods
Human protein sequences
The human protein sequences were retrieved from Ensembl
using genome assembly GRCh38.p13 (Genome Refer-
ence Consortium Human Build 38), INSDC Assembly
GCA_000001405.28, December 2013 (30). The protein
domains from each protein sequence were predicted using
the Pfam scan tool, and we considered the domains with an
e-value ≤0.01 (31).

Prediction of protein domains from the human
proteome
The homo sapiens proteome containing 109 095 sequences
was obtained from the Ensembl database using genome
assembly GRCh38. The PfamScan search tool is locally
installed, incorporating HMMER and BLAST to search
against Pfam domain libraries. The individual protein
sequence of the target species was searched against Pfam
libraries, and the total estimate of 169 745 protein domains

Table 2. Cancer primary types and their mutation counts

S. no. Cancer primary site No of mutations

1 Adrenal 10 868
2 Biliary 69 570
3 Bone 34 139
4 Brain 129 130
5 Breast 285 712
6 Cervix 55 642
7 Endometrium 282168
8 Eye 2085
9 Kidney 112 577
10 Large interstine 1 039 252
11 Liver 409 309
12 Lung 670483
13 Esophagus 214 073
14 Ovary 70 245
15 Pancreas 126 512
16 Prostate 151 061
17 Skin 921 194
18 Stomach 276849
19 Testis 1179
20 Thyroid 258 180
21 Urinary 235 499

was predicted. We considered 149 668 domain hits with an
e-value of ≤0.01, and Table 1 represents the example out-
put from the Pfamscan program. The PfamScan program
searches a set of protein sequences in FASTA format against
Pfam’s library of HMMs, and it requires the standard Perl
library modules and the HMMER programs (31, 32). The
following steps are necessary to install and run the PfamScan
program.

To install the PfamScan program:

1. First, download the tarball ‘PfamScan.tar.gz’ and
unpack the script using ‘tar zxvf PfamScan.tar.gz’
command. The standalone Perl script ‘pfam_scan.pl’
is obtained from http://ftp.ebi.ac.uk/pub/databases/
Pfam/.

2. Second, compile the HMMER3 source code using
the tarball of the HMMER3 beta 3 release from
the HMMER site http://hmmer.org/download.html and
add HMMER3 binaries to your path.

3. Install non-standard Perl dependencies, the Moose
framework and Bioperl 1.4 via CPAN.

4. Finally, add the Pfam Modules to your PERL5LIB
using the ‘export PERL5LIB=/path/to/pfam_scanDir:$
PERL5LIB’ bash command.

http://ftp.ebi.ac.uk/pub/databases/Pfam/
http://ftp.ebi.ac.uk/pub/databases/Pfam/
http://hmmer.org/download.html
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Figure 1. Steps for converting protein domain position to genome position.

To run searches using ‘pfam_scan.pl’:

1. Download Pfam data files, Pfam-A.hmm, Pfam-A.
hmm.dat, Pfam-B.hmm, Pfam-B.hmm.dat and active_
site.dat from the Pfam FTP site http://ftp.ebi.ac.uk/pub/
databases/Pfam/current_release/.

2. Generate the binary files for Pfam-A.hmm and Pfam-
B.hmm by running the following commands: hmmpress
Pfam-A.hmm and hmmpress Pfam-B.hmm.

3. Input the protein sequences in a FASTA-format file
containing your query sequence(s).

4. Run the program using ‘pfam_scan.pl -fasta <fasta_file>
-dir <directory location of Pfam files>’.

Cancer mutations from the COMIC database
The COSMIC database was used to download the muta-
tions for 21 different cancers, using the GRCh38 genome
version, as shown in Table 2. The mutations were obtained
under the COSMIC Complete Mutation Data (Targeted
Screens) that contains the tab-separated table of the com-
plete, curated COSMIC dataset in January 2020 (33). It is
the most comprehensive resource for exploring the impact
of somatic mutations in human cancer. The mutation types,
such as nonsense, missense, coding silent and complex, which
involve multiple insertions, deletions and substitutions, were
included. Intronic and unknown mutations were excluded
from the mutation dataset because those mutations occur
outside the coding domains and mutations with no detailed
information.

Mapping cancer mutation to protein domains
The domains predicted from the protein sequence are reported
in peptide position, whereas the cancer mutations are depicted
in genomic locations. Before mapping the cancer mutations
to their corresponding protein domains, we should change

Figure 2. Flowchart for mapping mutations to the protein domains.

either the mutation or domain positions. In this study, we
choose to change the domain positions to their genomic posi-
tions. A Perl program was written using the ensemble Perl
API module to convert the protein domain positions into
genomic positions, and the steps followed are shown in Figure
1. We did not consider the intron positions and extracted
only the exon positions as this code for amino acids. In
addition to the exon position, we retrieved the 3′ and 5′

UTR positions as they were present in the initial exon and
last exon. Combining all the exon positions results in a
complete coding sequence. Finally, the genomic coding posi-
tions are divided by 3 to represent the actual amino acid

http://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/
http://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/
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Figure 3. The estimate of normalized mutation count for the OSR1_C domain.

count. The users can freely access the Perl-API program from
the GitHub link https://github.com/iarnoldemerson/Protein-
to-genome-position.git, and supplementary file 1 provides the
program instruction.

After converting the domain position into genomic posi-
tion using the Perl API program, cancer mutations are now
ready to map with their protein domains. Figure 2 illustrates
the methodology for mapping the mutation to the protein
domains. Every mutation is searched through all the Pfam
domains. If the mutation position is detected between the
domain start and end, then the mutation count is increased
by 1, else choose the next mutation. Some mutations do not
map to any Pfam domains, and this is because the mutation
is not positioned in the protein domain locations.

Calculation of normalized mutation frequency and
SMDs
After mapping all the cancer mutations, the mutation count
for each Pfam domain needs to be normalized. In this study,
we normalized the mutation counts by utilizing the cumula-
tive length of all occurrences of the Pfam domain within the
cancer set. Figure 3 depicts an illustration of normalizing the
OSR1_C domain, and it is located in three genes, namely,
WNK1, WNK2 and OXSR1. The accumulated SNP signifies
the sum of mutations that occurred in the OSR1_C domains,
whereas the cumulative domain length is accomplished by
summing their domain length in all those three genes.

To determine the SMDs, we adapted the method to esti-
mate the local false discovery rate in microarray experiments
by Efron et al. The relative frequency is utilized as the
success probability (p). Then, it was normalized using the
Bernoulli distribution signal to noise ratio, which results in
the normalized score, z, as follows:

Z= p/sqrt(p(1−p))

The null distribution is estimated using the ‘locfdr’ package
from R and employed these statistics to identify statistically

significant domains with a local false discovery rate of <0.1.
False Discovery Rate (FDR) controls the number of false pos-
itives that result in a significant result, and it has a greater
ability to find truly significant results. For example, an FDR
of 0.1 implies that 10% of significant tests will result in false
positives. In a gene expression study, when the FDR was fixed
at 0.1, seven genes with a significant difference were found.
However, the number of significant differences decreases to
1, using a more stringent FDR of 0.05. Furthermore, it has
been shown that the number of false positives recovered is
considerably higher than the number expected (34). Thus we
have chosen the FDR of 0.1 to reduce the false positive in the
SMDs. We created a heat map representation of the hierarchi-
cal clustering of SMDs in different cancers using the ‘heatmap’
R package based on the ‘locfdr’ values.

Results and discussion
Conversion of protein to genomic positions
From Figure 1, the protein domains were predicted with
the peptide positions, whereas the cancer mutations were
reported with genomic or chromosome positions. To accom-
plish the mapping of the cancer mutations to the protein
domain, either the peptide positions or the chromosome posi-
tions need to be converted. The most efficient method is to
convert peptide positions to their corresponding chromosome
positions. Thus, it creates a more straightforward way to map
all the cancer mutations to the protein domains. The steps
required for converting peptides to chromosome positions are
described in the ‘Materials and methods’ section (Figure 4).

The peptide to genome conversion program takes pep-
tide start and end as an input (Figure 5—green table), and
it provides their corresponding chromosome positions as
output (Figure 5—blue table). The program output can be
validated using the transcript id in the Ensemble database.
For example, the first transcript id ENST00000377712.3 in
Figure 5, the Aetyltransf_1 domain, starts from 112 to 194,

https://github.com/iarnoldemerson/Protein-to-genome-position.git
https://github.com/iarnoldemerson/Protein-to-genome-position.git
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Figure 4. Predicted protein domains with peptide start and end (blue table) and cancer mutations are represented in genomic positions for the adrenal
gland (pink table).

Figure 5. Input and output features for the peptide to genome program execution. The green table indicates the peptide positions for each transcript id,
and the program’s output provides the genomic locations as depicted in the blue table.

containing 83 amino acids. Since each amino acid contains
three nucleotides, it requires 249 bases. The result shows that
the Pfam domain resides in the second chromosome, and it
starts from 73700972 to 73 700 724 (negative strand). Thus,
the total length is equal to 249 bases, which codes for 83
amino acids. This equality is not the case in many chro-
mosome positions. This transcript contains only one exon
without introns, where the chromosome length is precisely
equal to the peptide length (i.e. 249/3 nucleotides =83 amino
acids).

In most cases, the transcript will have multiple exons
and introns, and the protein domain starts and ends in
different exons. One such example is the last transcript

id ENST00000621118.4 (Figure 5), in which the GST_N
domain begins from 10 to 75, comprising 66 amino acids
and requires 198 (66 × 3) nucleotide bases. Whereas this
GST_N domain is present in the 22nd chromosome between
23 980 225 and 23982 652 (forward strand), the total length
is equal to 2427 bases. Instead of 198 bases, the program
provides 2427 bases; this is because the transcript contains
six exons and five introns. The initial chromosome position
23 980 225 resides in the first exon, and the last chromosome,
position 23 982652, ends in the third exon. Between these
two exons, there are two introns of size 638, and 1592 bases
are located, which equals 2230 bases. The program output
is 2427 bases, and the intron length is 2230 bases. Thus, if
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Figure 6. Transcript with multiple exons and introns. The Pfam domain GST_N length is 66aa, where the actual bases are obtained by subtracting the
intron length (blue) from the genomic positions (orange).

Figure 7. Distribution of genes, transcripts and protein domains within human chromosomes.

we subtract the intron length from the total length (2427 −
2230=198 bases), the actual 198 bases that code 66 amino
acids are remaining, as shown in Figure 6.

Protein domains in human chromosomes
Pfam domains with ≤0.01 were selected for higher accuracy,
and subsequently, we examined around 149 668 domains
from the human proteome. Each chromosome contains hun-
dreds to thousands of genes, which carry the instructions for
making proteins. Each of the estimated 30 000 genes in the
human genome makes an average of three proteins. A single
gene can produce multiple different RNAs, i.e. transcripts.
The actual transcript observed will depend on the tissue,
developmental time point, environmental factors, etc. The
number of coding genes and protein-coding transcripts in each
chromosome was determined and compared with the number

of protein domains across 23 chromosomes, as shown in
Figure 7. In our study, the estimated number of unique genes
is around 15096, and these genes account for 73 311 tran-
scripts, and thus, the average number of transcripts per gene is
4.85%. Figure 7 represents the distribution of Pfam domains
across 23 chromosomes. Interestingly, the 19th chromosome
had more Pfam domains, and it was estimated as 16 091; on
the contrary, chromosome y had fewer domains, which is
314. The chromosome positions of each protein domain can
be verified using the cross-reference ensemble database; see
step 1 with the help manual for more details (Supplementary
file 2). The user can obtain the chromosome details for
any given protein domain, including chr_no., chr_start
and chr_end position, and strand (positive or negative)
details, under the ‘Domain genomic positions’ menu in the
database.
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Table 3. Percentage of mutations mapped to the protein domains

Cancer type COSMIC mutation data No. of mutated protein domains No. of mutations mapped to domains Percentage

Adrenal 10 868 1322 6020 55.39
Biliary 69 570 3377 34141 49.07
Bone 34 139 2594 16957 49.67
Brain 129 130 3791 66615 51.58
Breast 285 712 4901 140430 49.15
Cervix 55 642 3280 26009 46.74
Endometrium 282168 4952 139785 49.53
Eye 2085 209 1376 65.99
Kidney 112 577 4117 56746 50.40
Large interstine 1 039 252 5327 518025 49.84
Liver 409 309 5093 195589 47.78
Lung 670483 5190 340620 50.80
Esophagus 214 073 4423 106436 49.71
Ovary 70 245 3402 36772 52.34
Pancreas 126 512 3771 67563 53.40
Prostate 151 061 4286 73305 48.52
Skin 921 194 5217 453763 49.25
Stomach 276849 4822 137911 49.81
Testis 1179 198 668 56.65
Thyroid 258 180 4195 122263 47.35
Urinary 235 499 4714 114324 48.54

Figure 8. Mutation counts across 21 cancer types.

Mapping mutations to individual protein domains
We utilized the developed Perl API program to transform all
the Pfam domain positions into their chromosome positions.
Thus, the mutation and domain positions became precisely
equivalent in their locations (i.e. chromosome position). The
next step is to map the mutations into each protein domain,
and this step requires more computation time since the muta-
tion position is compared with all the domain positions.
Mapping of mutations was carried out for all 21 cancer types,
and Table 3 represents the percentage of mutations mapped
to the protein domains. The percentages of mutations range
from 46 to 65, suggesting that the non-mapped mutations
are not in the protein domain location. In addition, mutated
domains were also calculated and depicted in Table 3. After
the mutations were mapped to individual protein domains,
we calculated the number of mutations in each cancer type.

Interestingly, we found that the “large intestine” cancer
acquired more mutations for 518 025, as shown in Figure 8.

Significantly mutated domains
The locfdr was used to determine the statistically significant
domains for all the cancer types. The top 10 protein
domains in each cancer type are shown in Supplemen-
tary file 3. The total number of SMDs across 21 cancer
types is 3431 out of 79 181, accounting for ∼4.33% of
protein domains. The list of SMDs (3431) and the list
of mutated domains (79 181) are provided in Supplemen-
tary files 4 and 5, respectively. In addition, these mutated
domains for 21 cancers can also be obtained through our
developed database under the ‘Mutated Domains’ menu
(http://dcmp.vit.ac.in/mutated_domains/). The distribution of
SMDs varies across cancer types, as depicted using heatmap

http://dcmp.vit.ac.in/mutated_domains/
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Figure 9. Clustering of significantly mutated domains (SMDs) across different cancer types. The heatmap reveals the importance of cancer-specific
SMDs in various cancers. The sidebars in the same color represent the domain instances belonging to the specific cancer type.

in Figure 9. Among cancer-specific SMDs, most were only
significantly mutated in a single cancer type. Thus, each
column represents cancer, and the same color indicates the
SMDs belong to the particular cancer type. Moreover, the P53
was the only domain observed in the significantly mutated
domain of the “testis” cancer type, and we excluded it in the
heatmap.

Interestingly, the p53 protein domain has been found in
the top 10 list of all cancer types. The TP53 gene is a gene
that is mutated in many cancers, and it is the most common
gene mutation found in cancer cells. A tumor-suppressor
gene, TP53, codes for a protein that inhibits the development
and growth of tumors. Since over 50% of human cancers
carry loss of function mutations in the p53 gene, p53 has

been considered one of the classical type tumor suppressors.
There are three protein domains, namely, PI3Ka, Nebulin and
zf-H2C2_2, which occur in >10 cancer subtypes. PI3Ka is
believed to be one of the significant therapeutic targets for
cancer treatment (35). Hyperactivity of PI3K signaling is sig-
nificantly associated with human tumor progression and inva-
sive potential of cancer cells.NEBL (nebulette) gene is located
on chromosome 10p12.31 and encodes the nebulin-like pro-
tein, and studies indicate the role of NEBL as an oncogene
and tumor suppressor in cancer (36). The ZF domains are
significant determinants of human regulatory networks, as
they are contained in nearly half of human transcription fac-
tors. Studies establish that mutation in ZF genes is expressed
at levels comparable to other cancer-relevant genes (37).
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Access to the database
The database facilitates users to explore mutated protein
domains for different cancer types, and it consists of the
following three primary menus: domain genomic positions,
SMDs and mutated domains. The initial one represents the
chromosome positions for any given protein domain with
references to the ensemble. The second menu displays the
top 10 SMDs with references to the Pfam database. The last
menu provides a complete list of mutated protein domains
for any given cancer type. The front-end was designed
using PHP scripting language with MySQL as the database,
and the interactive graphs were plotted using CanvasJS.
The DCMP database can be reached through the weblink
http://dcmp.vit.ac.in/.

Conclusions
Mutation in the protein contributes specific information than
a normal protein. It can cause cells to multiply uncontrollably
and become cancerous. Identification of mutated proteins in
the cell is an essential part of developing novel therapeutic
targets. The whole human proteome was used to determine
the mutated domains in 21 different cancer types. Somatic
mutations were mapped to the protein domains, and the
SMDs were selected using statistical methods. Users can visu-
alize the genomic positions of any protein domain and the
list of mutated domains in 21 cancer types using the DCMP
database.

Supplementary data
Supplementary data are available at Database Online.
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