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successful field within the last two decades yielding sev-
eral Food and Drug Administration (FDA) approved drugs, 
many more clinical candidates and a significant number of 

Introduction

Fragment-based drug design (FBDD) has emerged as a 
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Abstract
A novel crystallographic fragment screening data set was generated and used in the SAMPL7 challenge for protein-
ligands. The SAMPL challenges prospectively assess the predictive power of methods involved in computer-aided drug 
design. Application of various methods to fragment molecules are now widely used in the search for new drugs. How-
ever, there is little in the way of systematic validation specifically for fragment-based approaches. We have performed a 
large crystallographic high-throughput fragment screen against the therapeutically relevant second bromodomain of the 
Pleckstrin-homology domain interacting protein (PHIP2) that revealed 52 different fragments bound across 4 distinct sites, 
47 of which were bound to the pharmacologically relevant acetylated lysine (Kac) binding site. These data were used to 
assess computational screening, binding pose prediction and follow-up enumeration. All submissions performed randomly 
for screening. Pose prediction success rates (defined as less than 2 Å root mean squared deviation against heavy atom 
crystal positions) ranged between 0 and 25% and only a very few follow-up compounds were deemed viable candidates 
from a medicinal-chemistry perspective based on a common molecular descriptors analysis. The tight deadlines imposed 
during the challenge led to a small number of submissions suggesting that the accuracy of rapidly responsive workflows 
remains limited. In addition, the application of these methods to reproduce crystallographic fragment data still appears 
to be very challenging. The results show that there is room for improvement in the development of computational tools 
particularly when applied to fragment-based drug design.
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guide crystallographic model building and/or complement 
traditional electron density maps. This process yields high-
resolution fragment-bound 3D structures that can later be 
employed in the process of fragment elaboration.

Computational modelling is now an essential and omni-
present component of the whole drug discovery pipeline. 
This is also true for fragment-hit identification and hit-to-
lead development where expensive screening experiments 
are now being replaced by modelling procedures that have 
incomparably higher throughput. The generated hypoth-
esizes are then validated experimentally therefore offering 
a cheaper alternative to a purely laboratory-based work-
flow. Computational approaches also have the advantage of 
not being constrained by experimental limitations such as 
ligand solubility and synthesizability. Typically, computa-
tional drug discovery campaigns start with the screening of 
a large library of compounds against a target receptor with 
the aim of identifying a pool of best molecule candidates. 
This step normally relies on computationally cheap methods 
that can go through large libraries in a minimum amount of 
time [7]. Experimental data can also be incorporated in the 
workflow to guide the predictions. For example, crystallo-
graphic fragment screening identifies binders, and the asso-
ciated bound structures can be used to constrain docking or 
generate pharmacophores.

In the early 2000s, much effort was dedicated to screen-
ing drug-like molecules as might be done in a drug re-posi-
tioning campaign. However, this suffers from the fact that 
the compounds composing the library may not be specific 
enough for the target and this may be particularly true for 
previously unexplored types of binding sites [8]. Further-
more, the smaller size of fragments means they are able to 
explore a much larger range of chemical space compared to 
larger molecules, which are more constrained by the bind-
ing site geometry. However, computational screening with 
fragments presents different challenges. Fragments have 
reduced chemical complexity and potency and therefore 
higher similarity between them when compared with larger 
drug-like molecules [9]. This implies that discriminating 
binders from non-binders or stronger from weaker binder 
is likely to be even more error prone. In addition, there is 
the complication that fragments can sometimes change 
their binding poses as chemical elaboration is performed. 
Whether this occurs or not depends on the result trade-off 
between enthalpy and entropy contributions as the fragment 
is expanded. This of course adds another layer of complex-
ity to structure-based elaborations [10].

The Statistical Assessment of Proteins and Ligands 
(SAMPL) challenges are a series of computational predic-
tion trials where participants are given the task of predict-
ing the results of experiments in a fully blinded fashion. 
Thus, the true predictive power of the submitted methods 

chemical probes. FBDD relies on the identification of low 
molecular weight molecules, typically between 150 and 350 
Da, that bind to a protein target at a low affinity, ranging 
from low millimolar to low micromolar. Hits are normally 
identified through a biophysical assay that provides starting 
material for the chemical elaboration of the fragments into 
more potent compounds [1]. Throughput is an important 
aspect in FBDD as screening a larger quantity of fragments 
increases the number of hits identified therefore providing a 
larger number of opportunities for follow-up and optimiza-
tion. The requirement for high-throughput means some of 
the slower biophysical approaches such as surface plasmon 
resonance (SPR), isothermal titration calorimetry (ITC) or 
nuclear magnetic resonance (NMR) spectroscopy are opti-
mal methods in this scenario. In addition, these methods 
tend to be limited by the solubility of the fragment because 
large quantities of the (low affinity) fragment must be dis-
solved and exposed to the target to obtain a reliable bio-
physical signal.

X-ray crystallography has emerged as a leading technique 
in FBDD as it allows higher throughput and sensitivity than 
other biophysical fragment hit identification methods [2]. 
Multiple crystallographic fragment screening facilities have 
been created around the world and are based within or near 
synchrotrons to facilitate access to beamlines. The XChem, 
which is located within The Diamond Light Source (Did-
cot, U.K), is one of the world’s leading facilities and pro-
vides an automated and high-throughput crystallographic 
fragment screening pipeline with unprecedented speed and 
sensitivity. A highly reproducible and well-diffracting crys-
tal system must first be obtained [3], then fragments dis-
solved in organic solvent are acoustically dispensed into the 
wells where suitable crystals have been observed [4]. Crys-
tal harvesting is helped by the use of a shifter [5] and the 
resulting samples are shot in one of the beamlines equipped 
with robotic arms that facilitate automatic X-ray diffraction 
experiments leading to the acquisition of hundreds of elec-
tron density maps.

The low affinity of the fragments for the target implies 
that most proteins within the crystal are not fragment-bound, 
which results in no or incomplete electron density maps and 
therefore prohibits proper model building. The Pan-Dataset 
Density Analysis (PanDDA) takes advantage of the high 
number of electron density maps by creating a ground-
state model that can be seen as an average electron den-
sity map from which outliers can be readily identified [6]. 
Since the majority of the datasets do not harbour fragment 
binding events, the ground state model will be representa-
tive of the unbound state and the identified outliers of the 
fragment-bound state. Subtraction of the ground-state from 
the electron density maps of outliers produces event maps 
that reveal additional densities that can be used to further 
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narrow range of experimental binding affinities. Other com-
putational chemistry blinded trials exist, such as the D3R 
Grand Challenges, and can serve to supplement the SAMPL 
series [22]. This SAMPL7 challenge edition focused on 
fragment screening, binding pose prediction and follow-up 
generation from a database against a novel and pharmacol-
ogy relevant bromodomain target, PHIP2.

PHIP was first found to interact with the Pleckstrin 
homology (PH) domain of the insulin receptor substrate-1 
(IRS-1). IRS-1 is a tyrosine kinase involved in the signal-
ing of many insulin-mediated processes such as mitogenesis 
and glucose transport [23]. Later, a larger PHIP isoform was 
localized in the nuclei of pancreatic beta-cells where it posi-
tively regulates cell growth and survival [24]. In addition, 
PHIP deficiency severely delays body growth and causes 
anaemia in young mice highlighting its important physi-
ological function [25]. These findings associate PHIP to the 
insulin signalling pathway, therefore implicating this protein 
in tumorigenesis. Studies later confirmed that an increased 
PHIP copy number positively regulates metastasis in mela-
noma tumors that lack mutations in the 3 most frequently 
occurring oncogenic genes [26]. This opened a new avenue 
for specific therapies targeting BRAF-negative melanomas 
that account for a significant amount of all human mela-
nomas and lack effective treatments. This strategy received 
further support when a study showed that the suppression of 
PHIP inhibits “driver-negative” melanoma, breast and lung 

is assessed in a prospective, unbiased manner. The partici-
pants come from both industrial and academical settings, 
and the nature of the tasks varies but they are always related 
to computer-aided drug design (https://www.samplchal-
lenges.org/). The SAMPL challenges have been running 
since 2008 and many physico-chemical properties have 
been examined over the years, including the solvation free 
energies of small molecules [11], partition coefficients, 
[12–14] distribution coefficients [12, 15] and pKa predic-
tions [12, 16, 17] or host-guest system binding affinities [18, 
19]. Early SAMPL challenges (1 and 2) were not reported 
on, but later SAMPL challenges have been summarized for 
the community to help direct future research in these areas. 
SAMPL3 involved fragment screening and binding affin-
ity predictions against trypsin where good enrichments and 
correlations were obtained for these tasks respectively [11]. 
SAMPL4 was divided into 3 stages: small molecule virtual 
screening, binding pose and binding affinity predictions 
which were carried out against the catalytic core domain of 
the HIV integrase [20]. This system has 3 different binding 
sites: the Y3 site, the Fragment and the LEDGF pockets. This 
added another difficulty to the predictions since participants 
had to determine which molecule binds to which site [21]. 
Overall, all 3 stages appeared quite challenging, although 
some methods achieved good enrichment for screening and 
good binding pose prediction. Binding affinity predictions 
were however difficult to rigorously assess because of the 

Fig. 1  Molecular structure of a typical bromodomain fold and PHIP2 binding site. The left panel (A) shows the α-helical bundle fold (PDB-
ID: 5RJI). The αZ, αA, αB and αC indicate the Z, A, B and C alpha helices, in pink, yellow, cyan and teal, respectively. ZA, AB and BC show the 
connecting loops of same name, in fuchsia, orange and purple, respectively. The right panel (B) shows the PHIP2 binding site in complex with 
H4K5acK8ac-like peptide (PDB-ID: 7BBP). The conserved bromodomain 4 water-network is showed in red spheres with the additional PHIP2 
water in orange. The atypical threonine 1396 and acetylated lysine (Kac) are displayed in purple and lilac sticks, respectively
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conserved asparagine between the αB helix and the BC-
loop is in this case a threonine (Fig. 1B). Such amino acid 
substitution is only observed in about 21% of known human 
bromodomains [31]. The substitution to threonine results in 
a less bulky side chain, therefore making space to accom-
modate an additional water molecule named the PHIP2 
water (Fig. 1B).

In what follows, we first describe our analysis of the 
PHIP2 and the results of fragment screening itself before 
we then discuss how we set up the three stages of this par-
ticular SAMPL challenge; Stage 1 – discrimination of bind-
ers from non-binders, Stage 2 - Prediction of binding poses 
given known binders, and Stage 3 – Suggestions of follow-
up molecules that might improve affinity.

Methods

Protein expression, purification, crystallization and 
X-ray screening

BL21 cells containing a pNIC28-Bsa4 vector coding for 
PHIP2 were taken from a glycerol stock (kindly provided 
by Dr. Tobias Krojer). 2 mL of Luria Broth pre-culture with 
50 µM kanamycin were inoculated into 1 L Terrific Broth 
media with 2% glycerol (v/v), 0.01% (v/v) of 10% (v/v) 
sigma Antifoam 204 in ethanol, 50 µM FeCl3, 20µM CaCl2, 
10 µM MnCl2, 10 µM ZnSO4 and 2 µM of CoCl2, CuCl2, 
NiCl2, Na2MoO4, Na2SeO3 and H3BO3, 2 mM CaCl2, 25 
mM ammonium sulfate, 2.77mM glucose and 50 µM kana-
mycin. The cultures were grown for 6 h at 37 °C at 250 rpm. 
PHIP2 expression was induced overnight at 18 °C with 0.1 
mM IPTG.

Cultures were centrifuged at 4000 g for 30 min at 4 °C. 
Pellets were resuspended in lysis buffer (10mM HEPES, 
500mM NaCl, 5% Glycerol, 0.5mM TCEP, 0.5  mg/mL 
Lysozyme, 1 g/mL Benzonase, pH 7.5). The solution was 
vortexed and left at room temperature for 30 min before. 2% 
triton-X and 20 mM imidazole finale concentrations were 
added to the mixture before being centrifuged at 4000 g for 
30 min at 4 °C. The supernatant was applied onto a 1 mL His 
GraviTrap columns (GE healthcare) fitted with a LabMate 
extender. The columns were washed twice with wash buf-
fer (10 mM HEPES, 500 mM NaCl, 5% Glycerol, 0.5 mM 
TCEP, 20 mM Imidazole, pH 7.5). The columns were slotted 
PD10 columns fitted with LabMate extenders. The proteins 
were eluted by applying 2.5 mL of elution buffer (10 mM 
HEPES, 500 mM NaCl, 5% glycerol (v/v), 0.5 mM TCEP, 
500 mM Imidazole, pH 7.5) onto each GraviTrap column. 
3.5 mL of wash buffer was applied onto each PD10 column 
and elutions were collected. 1 OD280 unit of TEV protease 
per PHIP2 10 OD280 units was added to the elutions and 

tumor proliferation and invasion [27]. PHIP also enhances 
tumor cell mobility in glioblastoma cancer cells by acting 
on the focal adhesion complex [28], which is an important 
regulator of the actin cytoskeleton organization and dynam-
ics. However, the precise molecular and structural mecha-
nisms by which the multi-domain protein operates remain 
obscure despite the accumulating body of evidence that 
highlights its significant role in lethal cancers.

Overall, PHIP is a versatile protein that has multiple func-
tions and subcellular locations. It is composed of 8 WD40 
repeats and two bromodomains; PHIP1 and PHIP2. WD40 
repeat domains are involved in a wide variety of cellular 
processes through molecular recognition events such as 
protein-protein or protein-DNA interactions [29]. Bromodo-
mains are also part of larger multidomain proteins which are 
normally involved in transcriptional regulation or chromatin 
remodelling. They have a conserved α-helical bundle fold 
consisting of 4 α-helices namely, αZ, αA, αB, αC which are 
connected via more flexible loops named the ZA, AB and 
BC loops (Fig. 1).

Interestingly, bromodomains have a conserved net-
work of four water molecules that sits at the core of the 
fold and facilitates the binding of an acetylated lysine 
(Kac) (Fig. 1B). These post-translationally modified amino 
acids are generally found on histone tails where they act 
as epigenetic markers. Thus, bromodomains act as specific 
“readers” where Kac is the central element of more com-
plex peptide interactions where neighboring residues can 
also harbor other post-translational modifications such as 
methylation or phosphorylation. Through this interaction, 
bromodomains recruit other factors necessary for cellular 
function. From a pathological perspective, bromodomain-
containing proteins are involved in many types of cancers. 
However, the role of the well-defined Kac binding site as 
a key mediator of protein-protein interactions defines them 
as attractive drug targets. An abundance of bromodomain 
inhibitors has been reported with several ongoing clinical 
trials [30]. In addition, chemical probe development offers 
an alternative to laborious laboratory work, such as engi-
neered animal models, required to understand the cellular 
function of bromodomain-containing proteins.

Thus, a probe molecule that is specific to PHIP could 
open the way towards novel and broad-based chemo-
therapy against non-targetable tumors and/or facilitate the 
understanding of the biology behind these cancers. Com-
putational, biochemical and proteomic data have indicated 
that the second bromodomain of PHIP (PHIP2) binds to the 
acetylated lysine 91 on histone 4 (H4K91ac) confirming the 
view that PHIP2 operates as an histone reader in the context 
of epigenetics [27].

PHIP2 is a member of the third bromodomain family 
and has an atypical Kac binding site because the highly 
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files and their α-carbons were then aligned onto the ones 
of the experimental structure with MDAnalysis [38, 39], 
therefore shifting the fragment along with the transforma-
tion. The docked vs. experimental fragment RMSDs were 
then calculated with spyrmsd (v0.3.4) [40], which takes into 
account molecular symmetry.

All the experimental data, participant submissions, 
analysis and codes can be found here: https://github.com/
samplchallenges/SAMPL7/tree/master/protein_ligand.

Fragment network

Datasets with candidate molecules were generated by que-
rying data from the fragment network [41], which is graph 
database that allows a user to efficiently search chemical 
space around a compound of interest and has been reim-
plemented at the Diamond Light Source using Python and 
RDKit [37]. The source data comprises a subset of ~ 40 mil-
lion molecules from the Enamine REAL database [42] from 
2018 that had similarity to the DSI poised library [31] used 
in fragment screening at Diamond as well as ~ 7.5 million 
molecules from the Molport “All stock compounds” data 
set. The fragment network data was available in a Neo4j 
database queried using the Cypher language for each of the 
52 source molecules. Results for each of the 52 queries were 
aggregated and written in SMILES format along with the 
supplier identifiers. Both chiral and achiral molecules are 
present. The aggregated queries containing follow-up com-
pounds can be found at https://zenodo.org/record/3576140#
YSVJhXVKjmx.

Results

Crystallographic fragment screening of PHIP2 
reveals novel binders

PHIP2 was crystallized in a C2 space group that diffracts 
to a resolution of approximately 1.2 Å. This crystal form 
is easily reproducible making it ideal for an XChem screen 
[3]. The DSI-poised [31] and FragLites [43] libraries were 
screened against the C2 crystals. The former library is com-
posed of 768 fragments and was designed to ease follow-up 
chemistry. FragLites is composed of 31 halogenated frag-
ments, all of which have a paired H-bond donor/acceptor 
motif to probe minimal interaction doublet in the binding 
site while the halogen atoms assist electron density fitting. 
Out of these 799 fragments, no binding was observed for 
707 of them despite the acquisition of adequate diffraction 
data sets. To minimize to the number of false negatives, each 
Fraglites fragment was screened in duplicate. The remaining 

incubated at 4  °C. The solutions were run back over His 
GraviTrap columns as mentioned above. The fractions were 
concentrated by 20-fold and applied onto a Yarra Sect. 2000 
pre-equilibrated with wash buffer. The fractions containing 
the protein were collected using either a biorad C-9 or a 
Cytiva ALIAS. The fractions were concentrated to about 
15 mg/mL of protein and flash-frozen in liquid nitrogen.

PHIP2 was crystallized in space group C2 at 4  °C by 
vapour diffusion in 230 nL sitting drops, by mixing 100 nL 
protein in wash buffer with 100 nL reservoir buffer (20% 
PEG8000 and 40 mM potassium phosphate) and 30 nL 
seeds of the same composition than reservoir. The final pH 
was measured to be ~ 5.6.

Crystals suitable for fragment screening were located 
in the plates with TexRank [32]. These were soaked with 
20mM final concentration of each fragment and 20%(v/v) 
ethylene glycol using an ECHO acoustic liquid handler 
dispenser. The crystals were incubated for 2 h at 5 °C and 
harvested with a SHIFTER before being plunged into liquid 
nitrogen and shot at the i04-1 beamline located at the Dia-
mond Light Source (Harwell, UK). The XChemXplorer [33] 
was used for crystallographic workflow management and 
paralleling. Molecular replacements and initial refinements 
were performed with DIMPLE [34]. Pandda [6] was used to 
identify low occupancy binding events. Ligands were fitted 
in Coot [35] and the structures refined with Buster [36] and 
deposited on the protein data bank (PDB) with deposition 
ID: G 1,002,162.

Metrics for calculations

The molecular descriptors (molecular weight, logP, topo-
logical surface area, Tanimoto coefficients, H-bond donor, 
H-bond acceptors, rotatable bonds and rings) were com-
puted with RDKit (v2020.03.2.00) [37].

Sensitivity, specificity, and balanced accuracy were cal-
culated with scikit-learn (v0.22.1) where scores were com-
puted against the experimental ground truth array where 
crystallographic fragment hits and non-hits were consid-
ered as definitive. The 40 fragments that did not lead to any 
usable diffraction data were not taken into consideration. 
The smiles strings of the fragments that did not results in 
usable electron densities can be found in SI Fig.  1. This 
resulted in 52 positives and 707 negatives, across all sites. 
47 positives and 712 negative were identified at the Kac 
binding site.

Submissions confidence intervals were estimated by 
resampling submission arrays using bootstrapping with a 
percentile of 0.95 and 10,000 samples. In order to calculate 
root mean square deviations (RMSDs), the docked frag-
ments were merged with their corresponding receptor PDB 
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pattern of interaction around the BC-loop but penetrate 
deeper into the protein to interact with multiple side chains 
simultaneously. Tyr1350 seals the top of the central void, 
whilst Tyr1395 is located on the BC-interface. These side 
chains are positioned in such a way that fragments can only 
form perpendicular pi-stacking. Other hydrophobic groups 
that frequently contact the fragments are Val1345, Ile1403, 
which are in the central void. The PHIP2 water appears to 
be easily displaceable as all fragments that interact at the 
BC interface displace it (Fig. 2 C).

Overall, the C2 crystal form appears to be rigid with 
few fragments inducing protein motions. F760 induces the 
largest protein motions by relaxing the ZA- and BC-loops 
away from the binding site and bringing Tyr1395 closer to 
the core. Interestingly, fragments F95, F503 and F600 cause 
the re-arrangements of Thr1396 into a peptide-bound con-
formation (Fig. 1B) where the side chain hydroxyl groups 
point towards the inside of the binding site. In F95 and 
F503, this is paired with the formation of a water bridge 
between the fragment and Thr1396 whilst F600 directly 
contacts this side chain (Fig. 4). In addition, the 2 former 
fragments rotate Ile1403 away from the binding site in a 
parallel orientation with αC.

fragments were re-screened if the diffraction dataset did not 
display the expected C2 space group or had resolution lower 
or equal to 2 Å or if the Rcryst and Rfree values were lower than 
0.23 and 0.25, respectively. This led to the re-soaking of 202 
fragments that resulted in the identification of 10 additional 
hits including 8 Kac binders. No data was collected for 1 
FragLites (F12) and 39 other fragments solutions led to con-
sistently damaged crystals (despite repeated soaking) result-
ing in the absence of diffraction data for these molecules (SI 
Fig. 1). The exact cause(s) of such degradation remain, in 
this case, unclear and could be diverse but may be due to 
relative crystal tolerance to individual ligands at the soaking 
concentration or defective ligand stock solutions.

52 hits were identified across 4 sites (Fig.  2) therefore 
achieving a global hit rate of 6.51%. 47 fragment hits 
are bound to the pharmacology relevant Kac binding site 
(Fig. 2 A) and are summarized in Fig 3. 7 hits were resolved 
at a small, solvent-exposed cavity located between helices 
C and Z and 4 out of these also bind to the Kac binding site. 
2 additional hits were found, 1 behind the BC-loop and 1 in 
between the helices A and B (Fig. 2). The fragments bind-
ing away from the main Kac binding site are largely solvent 
exposed and contact other protein molecules in the lattice 
and hence may be artifacts of crystal contacts – that is, rep-
resenting binding which would not occur if the protein were 
in solution. Thus, only the Kac binding site hits were con-
sidered going forward.

Chemotypic analysis of the fragments bound to the Kac 
site suggests they tend to be smaller in molecular weight 
and more hydrophobic than the library average and the 
majority of them have 1 and 3 H-bond donors and acceptors, 
respectively. Overall, the hits (and library compounds) have 
relatively low chemical similarity with an average Tanimoto 
coefficient of about 0.23. A more detailed chemotype analy-
sis is summarized in SI Fig. 2.

Visual inspection of fragment binding to the Kac bind-
ing site suggests this pocket can be considered as 4 sub-
sites (Fig.  2B). These were named: (i) The BC interface, 
which includes interactions with αB, αC, and the BC-loop 
(ii) the water cavity, which is defined by the location of the 
4 water-molecule network (iii) the ZA channel, which is the 
part of the ZA loop that forms a semi-circle (iv) the central 
void which lies at the center of the 3 other sub-cavities. The 
subsites and exemplar fragments are displayed of Fig. 2B C, 
respectively. The screen probed the Kac binding site very 
well with fragments contacting almost all side chains com-
posing its surface (Fig.  2 A). The most frequently occur-
ring H-bond forming protein groups were the side chains 
of Ser1392, Thr1396 and Ser1401, all of which are located 
at the BC-interface as well as the backbone nitrogen of 
Asp1346 and the backbone oxygen of Pro1340, which are 
located on the ZA channel. Halogen bonds show the same 

Fig. 2  Overview of the fragment hits against the C2 crystal form. 
(A) Overlay of all structures resulting from the crystallographic high-
throughput screening. The Kac binding is the most populated site. The 
other sites can be seen on the right and left of the Kac binding site. 
An additional fragment hit is located behind the purple BC-loop. (B) 
illustrates the 4 fragment binding subsites with the B1, B2, B3 and B4 
denotating the BC-interface, central void, ZA-channel and the water 
cavity, respectively, as grey spheres. (C) shows selected fragment 
binding poses to illustrate the diverse types of interactions and binding 
regions identified from the results. C1 shows F421 (PDB: 5RK9) that 
forms an H-bond with SER1392 at the BC-interface. C2 shows F126 
(PDB: 5RKE) that forms a halogen bond with THR1396 and SER1401 
at the BC-interface. C3 shows F558 (PDB: 5RJV) which has 2 aro-
matic 6 membered rings that both form perpendicular pi-stacking with 
TYR1350 and TYR1395. C4 shows F393 (PDB: 5RK7) which has a 
morpholine moiety that fills the central void. Finally, C5 shows F368 
(PDB: 5RKN) which forms H-bonds on the ZA-channel with back-
bone nitrogen and oxygen of ASP1346 and PRO1350, respectively
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information provided included the crystallization condi-
tions, the pH, and the final fragment soak concentration. 
The detailed protocol was given so that the participant 
could take into account the chemical conditions surrounding 
the experiment. A submission template was also provided 
which participants were required to use to submit predic-
tions, and entrants were given 1 month to submit entries. 
The participants were asked to categorise each fragment 

5 fragments disrupt the 4-water network to different 
degrees (Fig. 4B-C). F584 is the most remarkable one by 
displacing all 4 water molecules to locate itself deep in 
the binding cavity where its benzene moiety interacts with 
Tyr1353 and its 7-membered ring fills the hydrophobic 
space of the central void. F467, F616, F618 and F760 all 
displace the fourth water of the network. This water was 
predicted to be the least stable of the network by Grand 
Canonical Monte Carlo analysis [44].

SAMPL – Stage 1. Discrimination of binders 
from non-binders at specific sites

The aim of the first stage was to discriminate binders from 
non-binders identified at the Kac binding site from screen-
ing presented above. The participants were provided with 
the isomeric SMILES strings of the 799 fragments compos-
ing the mixed library as a .csv file. In addition, they were 
also provided with a PHIP2 apo-structure in the afore-
mentioned C2 space group. The location of the Kac bind-
ing site was also indicated by the positioning of a dummy 
noble gas atom positioned in the PDB file. The experimental 
screening protocol was also supplied so that the participants 
would have all the information available to computationally 
reproduce the crystallographic results. The experimental 

Fig. 4  Special Kac fragment binder cases. (A) shows fragment poses 
that induce re-arrangement of Thr1396 into a peptide-bound like con-
formation, which is paired with a change of the BC-loop conformation. 
(B) shows the deep binding pose of F584, such that it displaces the 
whole water network. (C) shows four fragments that displace W4 only. 
The PDB codes for each fragment are available in Fig 3

 

Fig. 3  The 47 Fragments 
identified in the Kac binding 
pocket of PHIP2. The fragment 
IDs and corresponding PDB 
accession numbers are showed, 
below each 2D molecular rep-
resentation on the left and right, 
respectively. The Smiles, PDB 
codes and fragment IDs are 
available on the GitHub page 
of the challenge:https://github.
com/samplchallenges/SAMPL7/
tree/master/protein_ligand/
experimental-data/stage-2under 
pdbs_overview.csv
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which we expand on in detail via the individual submission 
identification numbers (SIDs).

SID 33 corresponds to a negative control random sub-
mission where compounds were selected randomly of com-
pounds were selected as binders using an in-house python 
script.

SID 56 employed two separated protocols. The fragment-
hits from [31] were listed and used in a PubChem 3D and 

listed with Boolean values: True and False for binders and 
non-binder, respectively. We did not ask for any ranking, 
scoring, or confidence metric to be reported. Submissions 
were requested for all four binding sites seen in the screen. 
However, most participants only submitted solutions for the 
main Kac sites and thus we do not discuss these peripheral 
sites any further. Table 1 provides a summary of submissions, 

Table 1  Overview of Stage 1 virtual screening submissions. 9 sets of predictions were submitted for Stage 1. The first, second, third and fourth 
columns correspond to the submission identification number (SID), the affiliation of the participants, the method’s name and the list of software 
used. The last column shows the ratio of predicted binder over predicted non-binders
SID Participant 

Affiliation
Method Name Method category Software used Non-

Binders 
to bind-
ers ratio

38 Akiyama Lab, 
Department 
of Computer 
Science, Tokyo 
Institute of 
Technology

AutodockVina-VirtualScreening Docking Autodock Vina 1.1.2,
MOE 2019.0102,
Openbabel 3.0.0, AutodockTools 1.5.6

0.001

55 Not provided dock_score Docking, (MD) OpenEye docking toolkit v1.1 7.528
33 SAMPL7 Null Random choice Random predictor 9.397
56 The University of 

Tokyo, Japan
Template docking and similarity 
search

Docking, 
Ligand-based

Molegro Virtual Docker (7.0.0),
Schrödinger suite (2019-3),
PubChem (current)

10.859

52 Institut de Chimie 
des Substances 
Naturelles, 
CNRS, Gif-sur-
Yvette, France

docking-S1-G2-chemscore-top5perc Docking Schrodinger LigPrep v48012, 
CACTVS Chemoinformatics Toolkit 
V3.4.6.26,
CORINA v4.2.0,
CCDC GOLD v5.7.1 (CSDS-2019-1)

17.975

35 University of 
Oxford, UK

Molecular Docking with MM-GBSA 
Scoring

Docking, MD OpenBabel v3.0,
UCSF Chimera v1.12,
PDB2PQR v2.1,
SPORES v1.3,
PLANTS v1.2,
DOCK v6.8,
AmberTools v2019,

20.686

37 Universitat Pom-
peu Fabra, Spain

ECFP4rdkit-RF Ligand-based, ML MOE 2016.08,
python 3.6.9,
rdkit 2019.09.1.0,
scikit-learn 0.21.3,

68.000

43 Institute of 
Systems Bio-
medicine, Peking 
University

Deep Learning; k-deep; docking Docking, ML Python,
RDKIT,

68.000

44 University of Bar-
celona, Spain

DUck-aided Virtual Screening (DaViS) Docking, MD rDock 2013.1,
Amber16,
AmberTools16,
MDmix 0.2.0,
Gromacs version 2018.1,
LigPrep version 46,013,
MOE 2019.0102,
Prime version 5.6 (r012)

25.172

SID 38 used a typical workflow, whereby ligand conformations and protein protonation states were generated by MOE, which was followed by 
docking with AutoDock Vina [45]. A threshold of ≤ 4.0 kcal/mol for the best scoring pose was used to categorize a fragment as a binder
SID 55 used OpenEye Omega Toolkit [46] for conformer generation and docking, respectively with docks being scored with Chemgauss4 scor-
ing function. The participants behind SID 55 did not provide us with their names, affiliations and threshold employed to discriminate binders 
from non-binder
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DSI poised library [31], where they identified a total of 10 
and 448 binders and non-binders, respectively. An additional 
1214 structures were obtained from the PDB by searching 
for other bromodomain family members, the associated 
ligands were extracted and classified as binders. 70,000 
additional molecules were retrieved from ChEMBL and 
classified as binders based on activity measurements. Crys-
tallographic and ChEMBL ligands were protonated at pH 6 
and 7, respectively. Model training was performed against 
chemical descriptors and Morgan fingerprints. Finally, they 
tested their machine-learning model against the provided 
SMILES and molecules were predicted to be binders if their 
probability score was higher than 0.5.

SID 43 did not provide us with their protocol describ-
ing the method employed for predictions despite multiple 
requests. A combination of machine learning and docking 
was seemingly employed.

SID 44 employed different MD-based methods and dock-
ing in their workflow. The stability of the water network 
was, first, assessed with MDmix [52] and the participants 
concluded only water-4 to be easily displaceable. Classical 
MD simulations were then employed against the provided 
Apo state and ligand bound structures identified from [31] 
to evaluate protein motions. They observed that the ZA-loop 
is the most flexible region by visiting opened, semi-opened 
and closed states and that the presence of ligands stabilizes 
that protein in an opened state. Thus, another structure that 
displays a more open state of the ZA-loop was selected for 
further processing instead of the provided Apo state. They 
then used rDock [53] with pharmacophore restraints to gen-
erate poses. 3 different protocols, which used different sets 
of restraints and water molecules, were applied onto the 
provided smiles after tautomers and protomers enumeration 
at pH 5.6 +/- 1. For each fragment, the resulting poses were 
first clustered and then finally selected based on the protein-
ligand interaction score. The docking poses resulting from 

fingerprints similarity searches and hits that were screened 
fragments were considered as binders. Then, the remain-
ing fragments were protonated at crystallographic pH then 
template docking was employed against 2 fragment-bound 
PDBs in a different (P21212) symmetry group. The partici-
pants mentioned that they considered docking scores, simi-
larity scores and ligand efficiency when defining binders 
and non-binders without further explanations.

SID 52 first built a validation set of 1499 active com-
pounds from assay and crystallographic data which includes 
45 fragments belonging to the provided library. 3D conform-
ers for each validation active were generated with Corina 
[47] and protonated at physiological pH with Schroding-
er’s Maestro tool. Gold was used with 4 scoring function 
(GoldScore, ChemScore, ASP and ChemPLP) to dock the 
1499 validation actives onto 3 distinct fragment conform-
ers identified from 8 fragment bound PDB structures [48]. 
They then looked at the ranking of the 45 library validation 
active fragments as well as RMSDs to all 8 fragment-bound 
PDBs. ChemScore and the second of the 3 fragment con-
former structures yielded the best scores. They used those 
parameters to subsequently dock the 799-fragment library 
and defined the top 5% as binders.

SID 35 kept 5 water molecules during the preparations 
step with DockPrep tool [49]. Protein and ligand were pro-
tonated with PDB2PQR and OpenBabel [50], respectively 
before performing docking with PLANTS [51] using the 
ChemPLP as scoring function. The poses were further 
scored using DOCK6 [49], which performs minimization, 
MD simulation and generalized Born/surface area (GB/SA) 
continuum model scoring in Amber.

SID 37 was the only submission that did not employ 
docking at any stage of the predictions. Instead, they built 
a random forest classifier based on data from publications, 
ChEMBL and the PDB. The training set was composed of 
structural data related to PHIP2, directly, obtained from the 

Fig. 5  Performance summary 
of submission to Stage 1 of 
the challenge. The Sensitivity, 
Balanced accuracy and Specific-
ity rates for each submission 
are shown in blue, orange and 
green, respectively. The error 
bars associated which each met-
ric was estimated via bootstrap-
ping of the data and the orange 
horizontal line shows a random 
perfection based on balanced 
accuracy values
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This stage turned out to be extremely challenging with 
all submissions performing approximately randomly with 
an average balanced accuracy across all submissions of 
0.494 ± 0.007 (Fig.  5). Overall, all methods, but SID 38, 
tended to correctly classify a large majority of the fragments 
as non-binders as indicated by their high specificity rates. 
However, these failed to identify most binders with submis-
sions 37, 43 and 44 being unable to identify a single binding 
event and submissions 55, 56, 52 and 35 only correctly iden-
tifying 5 (F95, F199, F558, F579, F740), 4 (F13, F14, F96, 
F488), 3 (F275, F529, F760) and 1 (F362) binding events 
out of 47, respectively (Fig 3). SID 38, however, showed an 
opposite outcome where all fragments were categorized as 
binders therefore leading to a Sensitivity rate of almost 1.

SAMPL - stage 2. Prediction of binding poses 
for known fragment binders

The second part of the challenge built upon the first stage. 
The objective was to correctly predict the 3D binding pose 
for the 47 protein-fragment complexes resolved by X-ray 
crystallography at the pharmacologically relevant Kac bind-
ing site. The participants were provided with the same C2 
apo state structure that was supplied in Stage 1. In addi-
tion, the SMILES strings of the binders were provided in 
a .csv file. It was also specified that the compounds were 
purchased as racemic mixtures and that higher affinity con-
formers should be revealed in the electron density or that 
both stereoisomers could bind, thus resulting in an average 

each 3 protocols were evaluated with a Dynamic Undocking 
(Duck) [54] like procedure which extracts the ligand and 
nearby binding-site environment, performs steered-MD and 
measures the work done to assess the strength of the interac-
tion. A threshold was used to categorize binders from non-
binders with binders scoring lower than 2 kcal/ mol. Further 
refinement was applied to the predicted binders list which 
excluded the ones displaying unstable docking pose through 
the Duck MD windows.

To assess the performance of each submission we com-
puted the sensitivity and specificity, which are the True 
Positive and True Negative rates, respectively. The classi-
fied predictions were compared to the ground truth values 
defined by the outcome of our crystallographic fragment 
screening experiment. Here we defined an experimental 
positive when an interpretable electron density in which 
is fragment can be fitted is observed and a negative where 
such signal is absent. It is difficult if not impossible to dis-
criminate non-binding events that are caused by structural 
(i.e. binding allowed by receptor’s conformation(s) and/ or 
energetics) or chemical factors (such as crystal conditions). 
Negatives therefore correspond to experimental negatives, 
irrespectively of their underlying nature. Since our dataset 
is largely populated of non-binders, we used balanced accu-
racy to evaluate the results. The balanced accuracy is the 
simple arithmetic average of these 2 metrics and is equiv-
alent to the area under the ROC curve. A score of lower, 
equal, or higher than 0.5 indicates a worse than, equal to or 
better than random prediction.

SID Participant 
Affiliation

Method Name Method 
category

Software used

77 Molecular 
Modeling Sec-
tion Lab (Prof. 
Stefano Moro)
University of 
Padova, Italy

HT-SuMD Other, (MD) MOE 2019.01
Acemd3
VMD
Python 3.6
scikit-learn 0.21.3
AmberTools 2016

75 Acellera rDock-rDeep Docking, ML rdkit 2018.03.4
HTMD
Playmolecule proteinPrepare
rDock
rDeep v0

64 Not provided 2d feature model Docking Smina
79 The University 

of Tokyo, Japan
SHaLX Inc.

Template docking Docking Molegro Virtual Docker 
(7.0.0)

80 Institut de Chimie 
des Substances 
Naturelles, CNRS, 
Gif-sur-Yvette, 
France

ranking_stage2 Docking Schrodinger LigPrep v48012 
CACTVS Chemoinformatics 
Toolkit V3.4.6.26
CORINA v4.2.0
CCDC GOLD v5.7.1 
(CSDS-2019-1)

Table 2  Overview of the Stage 2: Bind-
ing pose prediction submissions. 5 sets 
of predictions were submitted for Stage 2. 
The first, second, third and fourth columns 
correspond to the submission identifica-
tion number (SID), the affiliation of the 
participants, the method’s name and the list 
of software used
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per fragment were generated with rDock [53]. which were 
rescored with a seemingly in-house, convolutional neural 
network function and the top 5 non-redundant poses were 
submitted.

SID 64 used a simple docking protocol where they 
AutockVina [45] and docked the fragments into Kac bind-
ing site of the provided apo structure. The participants gave 
little additional information about their protocol.

SID 79 selected 3 ligand-bound PHIP2 PDB structures: 
3MB3, 5ENF and 5ENI. The provided binders were classi-
fied by template matching which resulted in 3MB3, 5ENF 
and 5ENI being associated with 19, 15 and 12 binders, 
respectively. Molegro Virtual Docker [59] was used for 
docking of the binders into the receptors. The provided 
apo structure was only used in one case after alignment of 
3MB3.

SID 80 used a similar method to their Stage 1 submis-
sion. The same validation set of 1499 compounds which 
contained 45 actives was used. The systems were prepared 
as mentioned above and the fragments were each docked 
onto 3 different ligand conformations with 50 poses gen-
erated for each. Again, ChemScore on the second confor-
mation performed best. The provided fragment-hits were 
prepared and docked using the workflow described above 
and the top scoring pose submitted.

The performance of each submission was assessed by cal-
culating the fragment root mean square deviation (RMSD) 
between the docked and the crystallographic poses. The top 
scoring and lowest RMSD poses amongst submitted poses 
for a given fragment, were recorded for success rate evalua-
tion. Calculation of the success rate as a function of RMSD 
shows how a particular submission performs as we change 
the RMSD cut-off defining success rate. However, in line 
with many studies in the literature, a RMSD cut-off of ≤ 2Å 
was chosen to categorized docking pose predictions as suc-
cessful, while all docks beyond this value were categorized 
unsuccessful (Fig. 6). It should be remembered that RMSD 
values beyond 2 Å are quite poor docking poses. The top 1 
correspond to the top ranked pose and best in all to the most 
accurately predicted pose.

electron density [55]. A submission template was also pro-
vided to aid analysis and entrants were given about 2 weeks 
to submit entries. Participants were tasked to submit at least 
one and no more than 5 poses for each of the 47 fragments. 
The poses were also asked to be ranked (from best to worst) 
if more than one was submitted. Finally, participants were 
strongly reminded that predictions should be done consider-
ing the C2 space group as crystallographic screening against 
different crystal forms often leads to differential fragment-
hit identification [56], which may be due to due to solution- 
and solid-state effects such as pH and crystal packing. We 
knew that this is also true for PHIP2 as a previous screen 
against a P21212 form [31] revealed different fragment 
binders than against our C2 form. We, however, decided to 
hide that information to strengthen the blinded aspect of the 
challenge and evaluate how the participant select their sys-
tem. Only 5 submissions were received for this stage of the 
challenge for publication, summarized in Table 2.

All methods but one used some form of docking for bind-
ing pose prediction. Only SID 77 was totally agnostic of 
docking. Instead, they used Supervised Molecular Dynamic 
Simulations (SuMD) [57]. SuMD is a relatively novel MD-
based method that aims to sample binding and unbinding 
paths between a ligand-receptor pair. The algorithm posi-
tions the ligand in an MD box, monitors the translation of 
the ligand towards the binding site and selects frames that 
are closer to the target binding site. Once the ligand is suf-
ficiently close to the binding site (around 5 Å), the engine 
switches to a classical unbiased molecular dynamic simula-
tion of the protein-ligand complex. Finally, the final unbi-
ased production runs are saved, analysed, and scored. Here, 
triplicate SuMD runs were carried out and the relevant con-
formations, for each fragment, were extracted from produc-
tion simulations using a DBSCAN clustering. The different 
clusters were ranked by a consensus approach that accounts 
for the cluster sizes, MMGBSA energies and MOE-Hyd 
estimation of the hydrophobic contributions to binding. 
Finally, the centroid structure for the top 5 scoring clusters 
were selected.

SID 75 kept structural water molecules and prepared 
their system at pH 6.0 in playmolecules.com [58]. 100 poses 

Fig. 6  Success rate variation 
as a function of RMSD cut-off 
value. The left (Top 1) and right 
(Best in all) panels show the 
variation in success rate for the 
best scoring and lowest RMSD 
poses
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translated into an even smaller number of predictions per 
ligand. Qualitative observations could, however, be made. 
F205 was the fragment predicted with the highest success 
rate for the Top 1. F205 was predicted correctly in 3 and 2 
submissions out of 5 for the top 1 and top 5, respectively. 
This relatively polar and flat ligand fills the central void and 
makes an H-bond with Ser1392. F558, F616, F618, F760 
and F763 were correctly predicted twice for the best in all. 
F558 one of the largest of the fragments that binds at 3 out 
of 4 subsites (the BC-interface, the central void and the ZA-
channel) and fills most of the binding site volume. Inter-
estingly, F616, F618 and F760 all displace the 4th water 
molecule from the water network, which highlights how 
correctly accounting for water molecules dynamics and/ or 
positioning can lead to better results in binding pose predic-
tions for particular fragments. F763 has a similar chemotype 
and binding pose to F205. Overall, this stage appeared to be 
particularly challenging.

SAMPL - stage 3. Selection of fragment 
follow-up molecules from a database

The goal of the third and final stage of the challenge was 
to enumerate fragment follow-up compounds from a pro-
vided database. These follow-ups should target the PHIP2 
Kac binding site with higher potency than the original crys-
tallographic fragment hits. The participants were provided 
with the co-crystal structures of the Round 2 fragment hits 
to support their selection process. They were also given a 
library of more than 40 M molecules, which was a combi-
nation of the Molport “AllStockCompounds” (dating from 
July 2019) and a subset of the Enamine Real© library [42]. 
The rationale behind the supply of this particular library was 
that the compounds could simply be purchased from either 
Enamine or Molport for follow-up experiments.

In addition, library subsets generated by the fragment net-
work [42] were also provided in case participants preferred 
to work with smaller numbers of compounds. The fragment 
network provides a convenient way to identify similar com-
pounds. Molecules are fragmented by the removal of sub-
stituents, rings and linkers and a graph database assembled 
with nodes corresponding to molecules and their sub-frag-
ments and edges corresponding to the parent-child relation-
ships between those nodes. The search algorithm requires 
an input molecule and 3 parameters: 1- the number of edges 
to traverse (hops) from the query molecule, 2- number of 
changes in heavy atom count (hac), 3- number of changes in 
ring atoms counts (rac). The fragment hits were used in que-
ries with number of hops, changes in heavy atom count and 
number of changes in ring atoms counts ranging between 1 
and 4, 3 and 5 and 1 and 2, respectively, with the resulting 

There was no difference in success rates between the Top 
1 and Best in All for SIDs 64, 79 and 80 as these participants 
only submitted one pose per fragment. This resulted in a 
better performance of methods 75 and 77 when the low-
est RMSD pose is considered over the best scoring pose 
(Fig. 7).

Overall, the performance of the methods was disappoint-
ing (Fig. 7). The method that was the most capable to repro-
duce binding poses at an RMSD of 2 Å or lower was SID 
77, which performed best for both ranking methods. SID 77 
predicted correctly 11 and 7 fragment poses out of 45 for the 
top 1 and top 5, respectively. SID 77 treated the whole sys-
tem dynamically, which resulted in binding site conforma-
tions different to the one observed in the provided C2 crystal 
form. However, this did not prevent them correctly identify-
ing the binding pose of 16% and 24% of the binders for the 
Top 1 and Best in all, respectively. The success of submis-
sions 75 and 77 was significantly enhanced when looking at 
the Best in all over the Top 1 which was 9 and 13% higher, 
respectively. Thus, the SID 75 success experienced the most 
dramatic drop between best in all and top 1. For the top 5, 
SIDs 75 and 77, however performed better than the others 
that did not submit 5 poses implying that, in this case, the 
best scoring pose is not necessary the one with the lower 
RMSD. Submissions 79 and 80 performed relatively poorly 
with success rates of 2% and 0%, respectively. These poor 
results might reflect the fact that the provided C2 apo state 
was not used in the dockings. Instead, other, ligand-bound 
structures were used as receptors, which have different 
binding site conformations. Evidently, the scoring/rescoring 
scheme used in submissions 79 and 80 were targeted toward 
different and static binding site states that prevented the 
identification of the correct binding poses. Contrarily, sub-
missions 64 and 75 did employed the provided C2 structures 
which led to an improvement in the results when compared 
to submissions 79 and 80.

When looking at the success rates for individual frag-
ments (Fig. 7) no clear correlation could be robustly estab-
lished given the small number of submissions, which 

Fig. 7  Submission’s success rate assuming and RMSD cut-off of 2 
Å. (A) compares overall success rate between SIDs. SID 77 is the best 
performer, but even there the success rate is still low. (B) Success rate 
per fragment ID. Only 3 fragments are predicted correctly by more 
than one group
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docking/ scoring schemes and that was a machine-learning 
based approach. No submissions employed an MD based 
method (likely reflecting the time constraint). Only sub-
missions 85 and 87 submitted docking poses despite our 
encouragement to do so. We had encouraged such submis-
sions because we felt that plausible poses might provide 
human experts (those making predictions or those selecting 
compounds for experiments) with additional incentive to 
select compounds for follow up, and that implausible poses 
could lead such experts to rule compounds out.

SID 82 failed to provide a complete description of the 
method employed for follow-up identification. However, the 
method appears to have filtered the library using an Xboost 
classifier built as part of Stage 1. The database molecules 
were represented as MACC fingerprint and the classifier 
achieved a mean area under the curve of 0.73 with 10-fold 
cross validation. The top 200 scoring molecules were taken 
forward for docking with GNINA [60] into all the provided 
crystal structures. The molecules were ranked by their final 
mean affinities.

SID 85 used the provided database subset corresponding 
to 2, 5 and 2 number of hops, hac and rac, respectively. They 
justified that those parameters would provide a good bal-
ance between similarity to the co-crystallized compounds 
and increased molecular size of the follow-ups which is 
necessary to increase the number of favourable contacts. 
They further filtered out compounds that have a Dice 
Similarity over Morgan Fingerprints of the co-crystallized 
compounds smaller than 0.7. Finally, they removed com-
pounds lacking large enough common substructures which 
resulted in a final set of > 8000 molecules. They then used 
SkeleDock [58] to generate follow-up poses. This software 
uses maximum common substructure constrained docking 
over provided protein-ligand structure which were, here, 

molecules typically corresponding to variants of the query 
with substituents, rings and linkers added and, deleted and/
or replaced.

Participants were asked to suggest between 10 and 100 
follow-up compounds from the provided library, along with 
a confidence score, for each follow-up, between 0 and 10, 
with the former and the latter meaning a low and high con-
fidence in the follow-up binding and increasing potency, 
respectively. We also (re)emphasised that the experimental 
setup and binding assay (here crystallography) must be kept 
in mind when making predictions. The participants were 
encouraged to submit poses if using MD- or docking-based 
methods. The entrants were given 1 month to submit their 
follow-ups.

Initially, the fragment follow-up compound would have 
been purchased and experimentally validated against the C2 
crystal form at the XChem by X-ray crystallography. The 
follow-ups and generation methods would have been exam-
ined by medicinal and computational chemists to assess 
whether the molecules were worthy of being bought. For 
these reasons, only one submission and no null models were 
allowed. A total of 50 to 100 compounds were expected to 
be purchased given our budget at the time of setting up stage 
3. Unfortunately, the COVID-19 pandemic resulted in a 
diversion of funds before this follow-up could be done, and 
the challenge terminated at this point. Here, instead, we will 
critique the top 10 submitted follow-ups and comment on 
their value as likely molecules for purchase. Only 4 submis-
sions were received in total, summarized in Table 3.

Overall, this stage was divided into 2 implicit subparts: 
database filtering and ligand selection. 3 submissions did 
indeed apply some form of filter whilst 1 did not. Then, all 
methods employed a docking protocol to score the ligands. 
Only 1 method employed an alternative to their usual 

SID Participant 
Affiliation

Method Name Method 
category

Software used

82 Peking 
University

XGboost_gnina_Yu Docking, 
ML

rdkit
xgboost
gnina

85 Acellera SkeleDock-rDock Docking SkeleDock
RDKit
HTMD
rDock

86 Institut de 
Chimie des Sub-
stances Naturel-
les, CNRS, 
Gif-sur-Yvette, 
France

ranking_stage3 Docking Schrodinger LigPrep v48012 
CACTVS Chemoinformat-
ics Toolkit V3.4.6.26
CORINA v4.2.0
CCDC GOLD v5.7.1 
(CSDS-2019-1)

87 The University of 
Tokyo, Japan
SHaLX Inc.

Template filtering then 
template docking

Docking RDKit (2018.09.1)
Molegro Virtual Docker 
(7.0.0)

Table 3  Overview of the Stage 3 follow-
ups enumeration submissions. 4 sets of 
predictions were submitted for stage 3. 
The first, second, third and fourth columns 
correspond to the submission identifica-
tion number (SID), the affiliation of the 
participants, the method’s name and the list 
of software used
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the co-crystallized fragments. The poses were scored with 
rDock [53] and the top 100 compounds were selected and 
manually inspected.

SID 86 used did not filter the database in their workflow. 
All compounds were generated from the provided smiles 
with CORINA [47] and protonated at physiological pH with 
Schrodinger LigPrep. Single docking poses were gener-
ated in GOLD and scored with ChemScore using a ligand 
efficiency of 30% (against 200% in Stage 1). The top 100 
scoring compounds were selected without further filtering 
or validation.

SID 87 applied a custom filter based on common chemi-
cal descriptors to the whole database to select follow-up 
compounds. Selected compounds should have between 10 
and 34 heavy atoms, more than 2 hydrogen bond donors, 
between 50 100% of the heavy atoms in a SP3 hybridization 
form, between 3 and 10 rotatable bonds, between 2 and 3 
aromatic rings, 1 or more aromatic heterocycle, between 1 
and 2 aliphatic rings, no more than 4 rings and a molecular 
weight between 360 and 440 Da. They further filtered out 
compounds containing amide bonds were excluded except 
tertiary amides and lactams. They built a pharmacophore in 
Molegro Virtual Docker [59] by merging the poses of F367, 
F389, F558 and F584 which cover all areas of the Kac 
binding site. The pharmacophore was used to apply tem-
plate filtering to the selected compounds and the top 10% of 
those were selected. Finally, the poses were scored against 
the C2 apo crystal structure and the top 16 structures were 
submitted.

Unsurprisingly, all submissions show an increase in all 
molecular descriptor counts (SI Fig. 4), with respect to the 
original Kac fragments, which is paired with an increase in 
molecular weight. Similarly, the distribution of Tanimoto 
coefficients for each submission are shifted toward 1 show-
ing that the submitted follow-ups are more similar to each 
other than the native fragments are. The intrinsic molecular 
size bias of the Tanimoto coefficient may also participate in 
the shift. The larger the molecules the larger number of fea-
tures present in the binary array and is reflected by a higher 
similarity [61]. The top 10 molecules for each submission 
are displayed in Fig 8.

SID 82 increased the number of rotatable bonds and 
molecular weight. However, the other descriptors were only 
moderately raised. This implies that these molecules would 
be relatively flexible for a low number of H-bond donor and 
acceptors implying a high entropic penalty of binding for a 
low enthalpic compensation. Some molecules also showed 
a high degree of chemical similarity to each other with a 
Tanimoto coefficient higher than 0.8. All molecules com-
posing the top 10 were, nonetheless, rule of 5 compliant. 
Molecules ranked 2 to 9 are to flexible to be selected for 
biophysical validation. Molecules ranked 1 and 10 could 

Fig. 8  Chemical structures of the top 10 compounds submitted in Stage 
3 follow-ups enumeration submissions. The column and row labels 
indicate the SID and ranks, respectively. The Molport or Enamine Real 
identifiers are shown below each 2D molecular representation. Th full 
rankings can be accessed on the github page of the challenge:https://
github.com/samplchallenges/SAMPL7/tree/master/protein_ligand/
Analysis/Analysis-outputs-stage3under stage3_submission_collec-
tion.csv
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Discussion

The application of computational methods to the design 
of fragment-based inhibitors is now an essential part of 
almost all fragment-based drug discovery pipelines. These 
computational methods are, however, better suited for 
larger, drug-like molecules and there is a general lack of 
prospective validation/evaluation in fragment space. Such 
evaluation and validation studies may identify pitfalls that 
could be later improved to ultimately lead to more efficient 
workflows in fragment-based drug discovery. To that end, 
a unique opportunity arising from our work on PHIP2 pre-
sented itself. To the best of our knowledge, no such inhibitor 
has been yet discovered against PHIP, despite it being impli-
cated in cancers [27]. Our crystallographic fragment screen-
ing resulted in the identification of 52 binders across 4 sites 
(Fig. 2 A), 47 of which were bound to the pharmacologically 
relevant Kac binding site (Fig 3). As such, this presented 
an ideal scenario to set up a SAMPL challenge to explore 
the capability of rapid computational tools for exploring 
fragment binding. Our screening campaign resulted in hit 
rates of 5.88% and 6.50% at the Kac binding site and across 
all sites, respectively. Crude analysis of our in-house data 
shows that hit rates at the Xchem vary between approxi-
mately 2% and 15% with an average of 7%, per protein tar-
get. Thus, our crystallographic results fall within expected 
hit rates. It must be remembered that there are caveats with 
the experimental approach – crystallization conditions and 
the constraints of the lattice may all be things that confound 
predictive technologies. Indeed, in the case of PHIP2, there 
are apo protein structures alternative to our C2 form in dif-
ference space groups, namely P212121 (PDB-ID: 7AV8) 
and P21212 (PDB-ID: 7BBO). Differences in the rotamer 
of a key threonine in the binding site can be observed. The 
P212121 structure was not deposited whilst the P21212 had 
associated fragment-bound structures in the PDB at the time 
of the challenge. Crystallographic space groups define the 
arrangement of protein units composing the crystal lattice. 
Thus, when proteins are crystallized in different space group 
the packing effects (such as contact points between units) 
can lead to structural variation. In this case, the PHIP2 Kac 
binding was not exempt of such effect and several residues 
display different arrangement between crystal forms. The 
precise effects on fragment screens are not fully known in 
this regard but one might expect some differences in frag-
ment binding. Nevertheless, this scenario presents a very 
challenging scenario to test current high-throughput frag-
ment docking approaches.

The challenge was initially divided into 3 stages: (1) 
virtual screening, (2) binding pose prediction and (3) enu-
meration of fragment follow-up compounds from a data-
base. Virtual screening aims to identify molecules that bind 

potentially have good scaffold sampling all areas of the 
binding site while maintaining reduced flexibility relatively 
to other compounds in that submission.

SID 85 increased relatively largely the H-bond donors 
and acceptors whilst maintaining the number of rings and 
molecular weight relatively low which had a positive and 
negative impact on the topological surface area and logP, 
respectively. Reducing hydrophobicity in that fashion may 
be a suitable strategy, however, PHIP2 and bromodomain 
in general have a hydrophobic binding cavity implying 
that more hydrophobic compounds are likely to have an 
increased affinity. In addition, some compounds still have 
low feature counts, which keeps them in a fragment-like 
category. The compounds are also relatively diverse when 
compared to other submissions and were all rule of 5 com-
pliant. No molecules from that submission would have been 
selected for biophysical validation and they are too small 
and/ or too similar to the fragment hits and we would not 
expect them increase binding affinity significantly enough. 
For example, molecules 2, 3, 4, 5 and 7 are almost exactly 
similar to fragments 579, 217, 709, 217 and 710, respec-
tively and the other submitted compounds remain smaller 
than the largest fragment.

SID 86 increased the most the number of rings without 
a similar increase in polar features in the follow-ups which 
resulted in large logP and molecular weight against a low 
topological polar surface area indicative of greasy com-
pounds. Only 4 out of the top 10 were rule of 5 compliant. 
Although those compounds would probably sample well the 
predominantly hydrophobic binding site, they would aggre-
gation problems in solution. Only compounds 5, 7 and 9 
have an acceptable predicted logP. 5 and 7 are extremely 
similar to each other so one of the two would be selected 
along with compound 7 for further testing.

Finally, the molecules submitted by SID 87 have rela-
tively large and varied numbers of H-bond donors and rotat-
able bonds while the count of ring and H-bond acceptors 
remain low and non-diverse. These designs result in a set 
of relatively high chemical similarity and were all rule of 
5 compliant. They are almost all based on a central ring 
that expands into 3 different directions to sample the whole 
binding site. This appears to be suitable strategy, but care 
should be given to keeping molecules flexibility to a mini-
mum. For example, molecules 2, 8 and 10 display a high 
number of rotatable bonds. Molecules 1 and 3 would not be 
able to sample the water cavity. Thus molecules 4, 5, 6 and 7 
would have been selected for biophysical validation.
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because the D3R tasks fall in the category of binding free 
energy prediction [22, 65–67].

It is hard to precisely rationalise the poor results of the 
Stage 1 submissions. One notable difference between this 
task and SAMPL3 and SAMPL4 is that the classification 
was solely based on crystallographic binding. We empha-
sised this, when setting up the stage, by suggesting that 
participants should aim to reproduce the crystallographic 
screening results. This may be a more important consider-
ation than first assumed as there is the possibility that our 
fragments do not necessarily bind in solution, whereas scor-
ing functions are almost always calibrated and validated 
against solution and structural data [68]. Work is currently 
underway to ascertain in-solution binding affinities (via iso-
thermal titration calorimetry). Similarly, MD based work-
flows tend to estimate solution like states, which of course 
will differ from a crystal state. This is, however, hard to 
generalise as docking protocol performances often vary 
between targets.

Stage 2 was a binding pose prediction exercise - a task 
that is more frequently assessed than virtual screenings. 
Only 5 ranked submissions were received for this stage 
of the challenge (Table  2). This surprisingly low number 
of participations was likely due to the short timeframe 
imposed; only 2 weeks (due to internal pressures on Stage 
3). Although this stage was shorter than we would have 
liked, the small number of submissions highlights the lack 
of flexible, fast and fully automated workflows available. 
The 5 submissions received did not perform well, stressing 
the difficulty and potential scope for improvement regard-
ing fast 3D binding pose prediction for fragments (Fig. 7). 
In addition, not all participants submitted 5 poses per ligand 
despite highlighting in the guidelines that they could do so 
(Fig. 6). The best performance was SID 77 and employed a 
biased MD-based protocol. This provides an example where 
protocols that treat the protein and water as flexible can 
outperform rigid dockings when trying to reproduce static 
crystallographic data. The second and third best performing 
methods docked the compounds into the provided apo struc-
ture. The two worst performing methods picked different 
fragment-bound receptors from the PDB. This shows that 
docking-based binding pose predictions of crystallographic 
fragments against a particular receptor conformation is 
highly sensitive to the choice of receptor conformation and 
that the presence of alternative ligand-bound structures 
does not always improve the prediction quality (Fig.  7). 
Another challenging aspect of docking to PHIP2, and bro-
modomains in general, is that only some fragments retain 
the conserved water network. This implies that the choice 
of retaining or removing these waters will have an adverse 
impact on some predictions. For example, SID 75, kept all 
structural waters in their protocol, which made impossible 

to a target and can be important if such information is not 
available.

Stage 1 assessed the ability of submitted methods to dis-
criminate crystallographic binders and non-binders. Exclud-
ing the null submission (SID:33), all submissions but one 
(SID: 37), used protein-ligand docking for virtual screening 
purposes. A variety of protocols were, however, submitted 
with techniques involved ranging in computational expense 
and complexity. For example, SID 38 used a plain dock-
ing protocol while SID 35 and 44 and used a more elabo-
rated MD-based workflows (Table  1). Despite the variety 
of method employed, none managed to perform better than 
random, which highlights the difficulty of the task, but is also 
disappointing (Fig. 5). Some methods, however managed to 
apply the correct bias strategy. All submissions but 35 pre-
dicted a large excess of non-binders. which is in accordance 
with the experimental binder to non-binder ratio, a strategy 
that, despite being correct, reduces the probability of iden-
tifying true positives. Such strategy was effectively decided 
by the users by determining a cut-off that would bias the 
results in this fashion (Fig. 5). Another, challenging aspect 
of such a task was that the fragments have a limited range of 
descriptors (SI Fig. 2), which would ultimately make them 
similar in binding modes and therefore discrimination at the 
scoring stage would also be challenging [62].

Few studies have prospectively assessed virtual screen-
ing of both fragment-like and larger molecules. Notably, 
SAMPL3 focused on trypsin binders and built a dataset of 
544 fragments against which some bound structures were 
resolved, and affinity measurements were collected by ITC 
and SPR [63]. 20 of these 544 fragments were considered 
as true binders. SAMPL3 virtual screening performance 
was better than with our PHIP2 fragments with a submis-
sion achieving an area under the curve of up to 0.8 [64] by 
employing a similar docking protocol to SID 52. SAMPL4 
focused on fragment follow-ups that bind to the HIV inte-
grase. They built a library around 4 fragments in an attempt 
to design a more potent inhibitor. This implies that the sub-
sequent follow-ups share a similar core and therefore have 
some degree of chemical similarity [64]. Compounds that 
resolved with X-ray crystallography but did not bind better 
than 2 mM, based on SPR measurements, were classified as 
inactives. A total of 305 compounds, including 56 actives, 
were put forward for the challenge. 5 submissions out of 26 
achieved an area under the curve equal or better than 0.6 
which is, again better than our PHIP2 fragments [20]. The 
D3R grand challenges also blindly assess computational 
method in a similar fashion to SAMPL but many focus on 
affinity rankings of more drug-like compounds instead of 
a binary binder/non-binder classification. This makes the 
comparison of performances between these tasks harder 
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The Kac binding site being divided into four subsites 
(Fig. 2.) presents an additional level of complexity by fur-
ther widening the energy landscape and rendering sampling 
more difficult when comparing to simpler binding sites 
such as that found in T4 lysozyme. Three of these subsites 
(namely the central void, the water cavity and the BC-inter-
face) contain hydrophobic residues implying that search 
method must be able to differentiate between similar envi-
ronments. Thus, correct identification and discrimination of 
the subsite(s) for particular fragments is essential in obtain-
ing correct predictions and this may and will influence the 
prediction quality for virtual screening and binding pose 
predictions. Furthermore, the fragments also have similar 
physico-chemical characteristics (SI Fig. 2.) implying that 
precise methods will be needed to discriminate binders from 
non-binders.

Stage 3 of this challenge was atypical. It consisted in 
selecting compounds from a large database that would 
likely bind with increased potency to our PHIP2 target. 
The participants were provided with cocrystal structures 
and tasked to filter the database to select binders with a 
method of their choice. To the best of our knowledge, this 
was the first ever challenge of the kind and compounds 
would have been screened by X-ray crystallography at the 
XChem facility. Unfortunately, we did not proceed with this 
stage because of the COVID-19 pandemic. The participants 
were given 1 month to submit up to 100 molecules, and we 
received only 4 submissions which, like stage 2, indicates a 
lack of responsive workflow despite this unique opportunity 
to test follow-up enumeration methods in a truly prospec-
tive way (Table 3). One striking submission from the top 
10 compounds was within SID 86 where the library was not 
filtered, and all compounds docked. This resulted in large 
molecules with larger logP values that in most cases vio-
lated the rule of 5 (Fig  8). Such molecules would not be 
viable candidates for screening and would likely not have 
been tested experimentally even if COVID had not inter-
vened, and as such illustrates that appropriate filtering of 
the library or post-filtering of the docking results is almost 
certainly necessary when such an approach is used in order 
to identify viable compounds. The other methods employed 
diverse forms of pre-filtering. In 2 cases the filtering crite-
rions (based on chemical descriptors) were explicitly intro-
duced while in one case the filtering was applied based on a 
machine learning selection process. 2 out of 4 submissions 
provided docking files, but in different formats, which pre-
vented systematic analysis of these results. The workflows 
employed in this stage were quite computationally cheap 
compared to what is available and more routinely applied 
such MD-based screening or free energy calculations. 
Reviewing and contrasting common screening strategy falls 
beyond the scope of this work. A larger-scale but similar 

the correct prediction of water-displacing fragments such as 
F584 (Fig. 4). The importance of waters ligand binding and 
docking is however a known fact and has been described 
elsewhere [69, 70]. More advanced protocol such as Grand 
Canonical Monte Carlo analysis of water stabilities may 
also guide modellers in choosing which molecules should 
be kept in the receptor structure [44, 71].

SAMPL4 also assessed binding pose prediction of a simi-
lar number of ligands. This challenge had the additional dif-
ficulty of the target having several binding sites, which led 
to relatively high RMSD in cases where the incorrect site 
of a particular compound was predicted [20]. Similarly, to 
this challenge, only one third (3 out 15) of the submissions 
correctly predicted the binding pose at their given sites. 
The performance of these best submissions was overall bet-
ter than the predictions presented here. Here most ligands 
were incorrectly predicted in all submissions as opposed 
to SAMPL3 where most ligands were correctly predicted 
in at least 1 submission, but this is likely due to the rela-
tively higher number of submissions in SAMPL3. D3R 
grand challenges also assess blinded predictions of binding 
pose as well as other meaningful quantities to drug discov-
ery. D3R grand challenge 4 submissions achieved excellent 
results for binding pose predictions of macrocycles against 
BACE1. The good performances were partially attributed 
to the presence of many ligand-bound crystal structures in 
the PDB which could guide docking results [22]. The most 
obvious difference with our data is the size of ligand, thus 
suggesting, that docking of larger ligand may be an easier 
task than smaller fragment-like molecules although correct 
sampling of the ligand conformation may present issues.

Future challenges may benefit from participants sub-
mitting the scores associated with different molecules and 
poses for virtual screening and binding pose prediction 
respectively. This would allow the investigation of the 
energy surface, for example by plotting screening rank 
or RMSD against docking score. For fragment-like mol-
ecules, we expect these slopes to be relatively shallow and 
noisey. Fragments typically have low potencies, in the µM 
to mM ranges, implying that their free energy surfaces are 
relatively flat with shallow minima associated with many 
alternative binding poses and therefore rendering discrimi-
nation much more difficult. This is especially true in solu-
tion where protein degrees of freedom are unrestrained (cf. 
the crystalline state, where lattice packing may be a factor). 
Lead and drug-like molecules generally have nM poten-
cies implying that their free energy surfaces have more 
pronounced energy minima from which actives could more 
readily be discerned. SAMPL4 [72], D3R 2 [65] and D3R 
4 [22] treated larger (non-fragment) molecules and binding 
pose predictions were generally much better, this lending 
support to the postulation above.
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as the important water networks, likely also participate in 
making this SAMPL7 challenge difficult. Overall, perfor-
mance of those that did enter illustrates that this is difficult 
to apply computational predictions on fragments in a pro-
spective way at least in the case of this particular target.

Despite the relatively poor performance of the predic-
tions, this work illustrates that there is plenty of scope of 
improvement in this area. This also implies that experimen-
tal workflows are still heavily needed to identify crystallo-
graphic fragment binders. The small number of submissions 
received, particularly for Stage 2 and 3 also highlights the 
lack of responsive workflows although our short timescales 
were designed to reflect real-world conditions. Despite the 
relatively poor performance of in silico methods in this 
challenge, the work has highlighted key areas of develop-
ment that researchers can focus on in the coming years and 
it should be remembered that there have been many other 
examples of where computational methods have made sig-
nificant contributions to fragment-based drug design [73].

The potential avenues to improve such predictions may 
include better treatment of water molecules. This could be 
done by using MD-based methods, selecting strongly inter-
acting water by Grand Canonical Monte Carlo analysis [44, 
74] or creating an ensemble of receptors that include all 
possible combinations of water networks within and sur-
rounding the binding site. Identification of relevant con-
formational changes may also be achieved via MD-based 
methods or flexible docking. Inclusion of crystal symmetry 
mates around the binding site may also improve prediction 
by mimicking more precisely crystal conditions. Fragments 
make few but usually “high-quality” interactions and thus 
an explicit stage that captures that might well improve con-
fidence. This could be done via hotspot or pharmacophore 
rescoring/ selection of the poses for example. The creation 
of tailored scoring functions trained on fragments and or 
crystallographic data only may yield better results [75]. All 
of those improvements may also be applied to fragment 
follow-up selection, which would also benefit from better 
library filtering and mining tools.
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enterprise was the COVID-moonshot that crowdsourced an 
anti-COVID-19 MPro inhibitor from fragment screening 
data [20]. The organizers gathered hundreds of scientists 
who voluntarily submitted molecules which were synthe-
sized and tested biophysically with the aim of producing an 
IP-free oral antiviral.

All stages of this SAMPL edition were clearly chal-
lenging. What have we learned from this? Most submis-
sions did not directly aim to reproduce experimental results 
by mimicking crystallographic conditions and binding 
although this was strongly emphasised during the chal-
lenge. Chemical factors were not taken into consideration 
despite the detailed experimental protocol being provided. 
For example, some participants protonated the protein and 
ligands assuming a physiological pH of 7.4 although we 
highlighted that our PHIP2 crystals were grown around pH 
4.6. No ligand-bound structural information with this C2 
crystal form was available prior to the start of the challenge. 
Thus, participants employed fragment-bound PHIP2 struc-
tures crystalized in other space groups to guide their pre-
dictions. Given that using various ligand-bound structures 
showed improved predictions in previous challenges this 
was a sensible move. However, previous challenges con-
sidered larger, non-fragment molecules. In this challenge, 
using other fragment-bound structures appeared to have 
had a negative effect on binding pose predictions, likely, 
because experimental screening was performed by soaking 
the compounds onto already-made crystals. This implies 
that the proteins composing the lattice are already folded 
in a particular conformation, and thus prediction of binding 
to this particular crystal lattice may well be different from 
might be observed in other crystal forms or in solution. 
Overall, the binding site conformations between the C2 and 
P21212 crystal forms show the most variation in the binding 
site, at the BC- and ZA-loops (Fig. 1 A), where amino acids 
important in binding, such as tyrosine 1350 or threonine 
1396 have different orientations. These differences would 
explain the impact on docking performances as they have a 
direct impact on binding site volume and interaction avail-
abilities. Thus, we perceive that, in this case, using different 
fragment-bound crystals was a mistake and computational 
identification of crystal binders should be preferably per-
formed against the targeted crystal form (which we did pro-
vide here as the apo-structure) (Fig. 7).

Another factor that may be important here is that scor-
ing and rescoring methods are normally calibrated based 
on existing structures paired with affinity data, whereas our 
PHIP2 fragments benchmark was only based on crystallo-
graphic results, and we are presently unaware if these bind 
into solution. Thus, commonly used methods may not be 
able to detect nor reproduce such weak crystallographically 
observed events. Other target specific considerations, such 
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