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Abstract
Background The European Medicines Agency Good Pharmacovigilance Practices (GVP) guidelines provide a framework 
for pharmacovigilance (PV) audits, including limited guidance on risk assessment methods. Quality assurance (QA) teams 
of large and medium sized pharmaceutical companies generally conduct annual risk assessments of the PV system, based 
on retrospective review of data and pre-defined impact factors to plan for PV audits which require a high volume of manual 
work and resources. In addition, for companies of this size, auditing the entire “universe” of individual entities on an annual 
basis is generally prohibitive due to sheer volume. A risk assessment approach that enables efficient, temporal, and targeted 
PV audits is not currently available.
Methods In this project, we developed a statistical model to enable holistic and efficient risk assessment of certain aspects 
of the PV system. We used findings from a curated data set from Roche operational and quality assurance PV data, covering 
a span of over 8 years (2011–2019) and we modeled the risk with a logistic regression on quality PV risk indicators defined 
as data stream statistics over sliding windows.
Results We produced a model for each PV impact factor (e.g. ’Compliance to Individual Case Safety Report’) for which we 
had enough features. For PV impact factors where modeling was not feasible, we used descriptive statistics. All the outputs 
were consolidated and displayed in a QA dashboard built on  Spotfire®.
Conclusion The model has been deployed as a quality decisioning tool available to Roche Quality professionals. It is used, 
for example, to inform the decision on which affiliates (i.e. pharmaceutical company commercial entities) undergo audit for 
PV activities. The model will be continuously monitored and fine-tuned to ensure its reliability.

Keywords Quality assurance · Pharmacovigilance · Drug safety · Statistical modeling · Good pharmacovigilance practice 
(GVP) · Audit

Background

Preventing harm from adverse reactions in humans arising 
from the use of authorized medicinal products and promot-
ing the safe and effective use of medicinal products are the 
fundamental objectives of pharmacovigilance (PV). Market-
ing Authorization Holders (MAH) are required to implement 
and maintain a quality system to fulfil their PV activities [1]. 
Activities required to monitor the performance and effective-
ness of the pharmacovigilance system and its quality system 
include PV audits. The European Medicines Agency Good 

Pharmacovigilance Practices (GVP) guidelines provide a 
framework for PV audits and emphasize that a risk-based 
approach to PV audits should be applied. Beside the require-
ment to have strategic and tactical PV audit planning, GVP 
Module IV provides very limited guidance on the methods 
to be used for risk assessment [2].

PV audits can be performed for different entities i.e. ven-
dors, central process, business partners and affiliates (i.e. 
pharmaceutical company commercial entity) [2]. PV affiliate 
audits usually represent the majority of audits performed 
by large and medium size pharmaceutical companies, have 
a broad scope, are long (the industry benchmark is around 
3 to 5 days on site) and require significant resources (2–6 
auditors). Hence in this project the focus has been PV in the 
context of an affiliate audit.
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Quality Assurance (QA) teams of large and medium sized 
pharmaceutical companies generally conduct annual risk 
assessments for PV, based on retrospective review of data 
and pre-defined impact factors to plan for PV audits [3–6]. 
Conducting an annual risk assessment requires a high vol-
ume of manual work and mobilizes QA resources. This is 
a reactive process in that audits are executed based on risk 
assessed from past data (from several months up to a year). 
For large and medium sized companies, auditing the entire 
“universe” of individual entities on an annual basis is gener-
ally prohibitive due to sheer volume, placing an even greater 
emphasis on a sound and timely risk assessment strategy to 
ensure QA activities are prioritized to assess the identified 
risks contemporaneously. Further complicating the picture, 
there is not an industry-standard set of parameters for con-
ducting a QA risk assessment of PV entities. As such, the 
impact factors are often defined arbitrarily and should be 
considered as subjective [7].

A risk assessment approach that enables efficient, flex-
ible, focused and targeted PV audits is not currently avail-
able. However, the industry has recently been trying to lever-
age modern developments in data management and the IT 
systems that facilitate the cross-analysis of PV and clinical 
trial data. Clinical statistical analysis can be performed on 
this data to help identify specific areas of risk that can be 
further assessed via a QA activity (e.g. audit) or in some 
instances, highlight areas that would benefit from immediate 
mitigating interventions, with the aim of preventing occur-
rence and/or recurrence of audit findings.

We propose a model that will provide insight to QA pro-
fessionals to assess PV quality risks more holistically, timely 
and efficiently, as well as enable more risk-targeted audit 
planning and preparation, with the aim to directly contribute 
to the assurance of patient safety in the post-authorization 
setting. The model is currently intended to supplement 
the previously existing risk assessment approach, which 
includes a review of discrete factors such as time since pre-
vious audit, outcome of previous audit, organizational struc-
ture, self-reported deviations from procedural documents 
and a review of compliance against key PV processes (“key 
PV processes” are identified and defined during strategic and 
tactical planning phases as those processes/process outputs 

that have significant or direct impact to patient safety and 
the ability to maintain a complete and up-to-date benefit-
risk profile for the products). The outputs of the model and 
the review of descriptive data as described above are then 
assessed together to determine the audit program at an indi-
vidual audit level.

The development of a statistical model that can help 
assess PV quality risks requires a deep understanding of data 
science, pharmacovigilance and QA. The project has been 
conducted by the Roche quality analytics and insights team, 
a team of data scientists and business analysts, in collabora-
tion with Roche PV and QA subject matter experts (SMEs). 
The mission of the Roche quality analytics and insights team 
is to build data-driven solutions for QA at Roche to comple-
ment and augment traditional QA approaches to improve the 
quality and oversight of GVP- and Good Clinical Practices 
(GCP)-regulated activities.

Methods

Prerequisites

To estimate PV quality risk for affiliates, we relied on the 
outcomes of previously conducted audits. There was a poten-
tial bias in this approach as affiliate audits were performed 
for each entity at irregular intervals following decisions to 
audit based on varying criteria. However, we had a data set 
covering a span of 8 years where for the years 2013–2014 
each individual affiliate had been audited at least once.

The quality assurance data (i.e. individual quality issues) 
reported through an audit were labeled with categories, 
sub-categories and finding statements. The source database 
was the Roche audit finding management tool. To translate 
the quality issues into areas that could be interpreted across 
sponsors (while directly linking to key GVP requirements), 
we mapped all the individual findings statements to defined 
PV impact factors (PV IF). The consolidated list of PV 
IF considered in our analysis is described in Table 1. See 
Table 2 for examples of mapping of finding statements to 
PV IF.

Table 1  PV impact factors

Area PV impact factor

Safety data acquisition, management and submission Compliance to Individual Case Safety 
Report (ICSR) process

Communication, Implementation and Quality Management of Risk Minimization activities Compliance to risk minimization activities
Communication, distribution and quality management of Direct Healthcare Professional Commu-

nications (DHPC) activities
Compliance to DHPC activities

Communication, implementation, distribution and quality management of reference safety infor-
mation

Compliance to safety updates to local labels
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Quality risk modeling for PV audits has a solid business 
use case, hence it was essential that the resulting model was 
interpretable and that the identified impact factors were 
usable for our stakeholders, i.e. Roche Quality PV Strategy. 
However, considering the availability and quality of the data, 
and the involvement of certain subjective variables such as 
Health Authority (HA) engagement, the team decided to 
exclude the following PV IFs from the modelling exercise 
and utilized the descriptive analytics to support risk assess-
ment decisions:

– Compliance to Post Authorization Safety Study (Inter-
ventional and Non-interventional) requirements for 
locally managed studies

– Compliance to Local HA Commitments
– Adequate implementation of the Corrective Action Pre-

ventive Action (CAPA) process
– Adequate oversight of local business partners to ensure 

compliance with PV requirements

For each PV IF, we conducted in-depth business process 
analysis and specified sub-impact factors and the related data 
topics for further identification of the data sources.

Data

We collaborated with global process owners and data 
SMEs from the relevant Roche safety, regulatory and com-
mercial functions to identify data attributes which are rel-
evant for addressing the identified data topics. This led us 
to gather relevant raw data from Roche safety (Adverse 
Event Management, Pharmacovigilance Agreement Man-
agement, Pharmacovigilance Master File, Risk Manage-
ment System), Clinical Study Management, Commercial, 
Marketing Research and Patient Support Programs, Quality 

Management and Regulatory Labelling Management data-
bases. Our quality data set consisted of 1171 individual 
findings collected over 8 years, which had been reported 
from affiliates audits between the years 2011–2019. On aver-
age, 24 audits and 2 inspections were conducted each year, 
with each individual affiliate being audited 2 times over the 
defined time period. A typical audit or inspection generated 
around 6 findings on average.

Features

We translated the business data topics to quantitative fea-
tures for model fitting. For example, to assess the risk asso-
ciated with the quality of data entered in the Safety Receipt 
System sub-impact factor, we identified how much error was 
captured during Individual Case Safety Report (ICSR) safety 
processing database quality review process which was not 
captured during the earlier review in the receipt system as 
one of the business data topics. This data topic led us to 
further explore the number of cases cycling in the ICSR 
safety case processing database workflow, the number of 
cases updated in the safety case quality review and ratio of 
key data attributes being corrected in the safety processing 
system (for example: seriousness, pregnancy assessment and 
primary source) as features. Following such an approach, we 
generated around 50 data topics and 85 quantitative features. 
See Table 3 for an example on how the PV IF ‘Compliance 
to ICSR process’ has been translated into sub-impact factors, 
data topics and features for the model.

Modeling Approach

To model risk, we followed the GVP guidelines (Sec-
tion IV.B.2), “where risk is defined as the probability 
of an event occurring that will have an impact on the 

Table 2  Individual finding statements (already utilized in the company’s audit and finding management system) mapped to the PV IF

PV impact factor Example of individual finding statements

Compliance to ICSR process ICSR receive dates were inaccurately determined and/or recorded
Follow-up on ICSRs was not performed, untimely and/or not documented
Processes and/or procedures for case identification and collection of potential AEs were 

not defined, inadequate and/or not followed
Reconciliation/case transmission verification with all relevant internal functions was not 

performed, untimely, inadequate and/or not documented
Compliance to risk minimization activities (RminAs) Communication and/or submission of Risk Management Plans (RMPs) or additional 

RMinAs to the regulatory authority was not completed, untimely and/or not docu-
mented

There was a lack of oversight for local implementation of PV activities or RMinAs
Compliance to safety updates to local labels Procedures and/or processes for updating reference safety information were not defined, 

inadequate and/or not followed
Promotional material was not updated with new safety information or not updated in a 

timely manner
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achievement of objectives, taking account of the severity 
of its outcome and/or likelihood of non-detection by other 
methods” [2]. These events are typically recorded as audit 
and inspection findings or self-reported deviations. The 
main challenge is the subjectivity in these procedures, for 
instance two auditors might have different assessments of 
a finding being minor or major, and it is hard to decide if 
an audit that results in five or six minor findings is worse 
than one that results in a single major finding. For these 
reasons, we decided to focus the modeling on the binary 
outcome of an audit, finding vs. no finding, and leave it to 
the PV Quality professionals to further assess the situation 
among the affiliates flagged as potentially at risk.

In the binary outcome modeling approach, the risk is 
defined as the probability p of getting a finding, should 
one conduct an audit, and past audits provide data on the 
realizations of these binary random variables (techni-
cally a Bernoulli(p) random variable). The risk is never 
observed, though, unlike the actual outcome of an audit, 
so we needed a model to estimate it. One way to do so 
is to specify risk covariates based on the input of qual-
ity professionals, as described in ‘Prerequisites’, and fit 
a logistic regression on these risk covariates to the audit 
outcomes. The output of the regression then provides an 
estimate of the risk.

Quality strategists traditionally base their assessment 
of PV processes on PV data collected in the past 12 to 
18 months. This data usually takes the form of streams of 
individual events such as the reception of an adverse event 
report, from which strategists extract risk metrics in the 
form of summary statistics. We automated this process 
on historical data by computing these statistics on sliding 
windows, much like when computing a moving average, 
and we obtained a multivariate time series of risk covar-
iates for every affiliate. We still had to apply a logistic 
model on these time series to get time-varying risk levels. 
To determine the parameters of such a model, we used the 
fact that past audits correspond to single points in these 
time series, so we fitted a logistic regression on the values 
of the risk levels at these time points.

Finally, we had to choose the resolution of the model. 
At the two ends of the spectrum, we could have picked a 
single model to predict the occurence of any finding, or 
we could have built one model per standard finding state-
ment. The former would not have been very informative, 
by mixing information from unrelated categories, and the 
latter would have lacked statistical robustness due to the 
rarity of certain findings. We thus decided to build one 
model per impact factor (or sub-impact factors in the case 
of impact-factors involving larger numbers of findings) 
introduced in ‘Prerequisites’, and include in the model of 
a given impact factor only the features related to it.

Example

We illustrate this methodology with the PV IF “Have we 
identified AEs which should have been reported to Roche 
from all sources?”. For every affiliate, we constructed the 
time series of related risk covariates listed in Table 3. To 
find the values of these time series at a given timestamp, we 
collected relevant data points in a 24 months window prior 
to it and computed various summary statistics. The ratios of 
certain categories of reported AEs to all reported AEs in that 
window can indicate different patterns of safety reporting 
among affiliates and across time. In these special categories, 
we considered spontaneous AEs, AEs from literature, AEs 
from clinical studies and AEs from non-interventional stud-
ies. The ratios of reported AEs to sales volumes can indicate 
if safety reporting volume follows drug usage, and compar-
ing these statistics to the same ones collected in a 6 months 
window can indicate a change of reporting patterns. Finally, 
the ratio of invalidated AEs to all reported AEs can be indic-
ative of how stringent an affiliate is at reporting suspicious 
cases. The use of ratios in these statistics rather than exten-
sive values allowed to compare affiliates of different sizes 
to each other.

Results

We built a visual and interactive dashboard using  Spotfire®. 
Figure 1 displays the estimated risk for a given PV IF across 
Roche affiliates from January 2014 to May 2019. Each unit 
on the y-axis represents a Roche affiliate and each unit on the 
x-axis represents a month. A cell on the heatmap represents 
the estimated risk for a given PV IF for the selected Roche 
affiliate and month. The gradient color is automatically dis-
played based on the cell value and color scheme which has 
three anchor points: Min, Average, and Max automatically 
calculated for each PV IF. The colors at these points are set 
to green, yellow, and red respectively, which means that the 
color gradient shifts from green to yellow to red, dynami-
cally based on the cell value. This visualization enables 
Roche Quality professionals to quickly assess the overall 
risk for a given PV IF across affiliates and to observe any 
obvious change overtime.

Due to data availability and quality limitations in some 
continuously developing process areas, we were not able to 
generate all desired features for the identified data topics. 
For example, we identified a number of data topics related to 
Compliance to Direct Healthcare Professionals Communica-
tions (DHPC) activities Impact Factor. After further analy-
sis, we were only able to produce one feature to assess the 
timeliness of DHPC distribution to healthcare professionals. 
To address challenges like this when we could not gener-
ate enough indicative features for modelling, we visualized 
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the available features across affiliates and time windows to 
assist Roche Quality professionals to evaluate the risk for 
the related PV Impact Factors together with other sources 
of intelligence.

Discussion

The output and performance of the model were satisfactory 
for our use case. The model outputs were used as part of 
a comprehensive risk assessment strategy to determine the 
Affiliate audit sample. Due to the replacement of part of 
the manual risk assessment to the model-based approach, 
a primary benefit has been enabling Roche Product Devel-
opment Quality to run the risk assessment on a quarterly 
basis (vs. annual basis), with an added benefit of reallocating 
FTEs to other strategic priorities and greater sustainability 
from a resourcing perspective. As noted above, the model 
output is not the sole driver for audit selection, but rather 
contributes to a wider set of data points that drive the sample 
selection. As such, the model is best classified as Quality 
Decision Support Tool—part of a broader effort to use data 
and statistics to enhance quality assurance activities [8, 9]. 
In addition, the temporal nature of the model outputs enables 
a quality assurance program that is more targeted toward 

the current/future potential compliance issues rather than a 
retrospective approach.

Limitations

As data came from various systems and had different stand-
ards (see also ‘Data’), the process for collection, cleansing 
and wrangling was time consuming but in line with typical 
data science projects [10]. We could not produce a model 
for certain PV IF (see ‘Prerequisites’) due to incomplete 
data (e.g. no data to reflect qualitative information such as 
AE reporting "culture") or because the signal to noise ratio 
was low. In such circumstances, using descriptive statistics 
was more informative, hence we made tradeoffs (with the 
guidance of our PV SME) between the value of developing 
a model versus deriving insights from visualizing the data.

As mentioned in ‘Prerequisites’, there was a potential 
bias in our approach as not every affiliate had been audited 
at the same frequency, with the exact same scope and the 
same number of times. Thus, any risk that we could esti-
mate excludes risks that had not been regularly detected in 
the past.

Our model was developed using data that were generated 
according to the Roche processes and standards. The data 
(e.g. volume of ICSRs) were also reflective of the Roche 
product portfolio. Further validation (using high level 

Fig. 1  Model output for a given IF visualized with  Spotfire®
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principles of our model) on other pharmaceutical compa-
nies data could be feasible but would require cross-company 
collaborations and data sharing like in the GCP arena [11].

We had planned for a periodic review of audit outcomes 
versus model predictions in order to fine tune the model. 
However, due to COVID-related restrictions impacting the 
ability to conduct audits in the early-mid part of 2020, we 
have not yet had the opportunity to initiate this analysis.

Last but not least, we would like to caution that it is a tool 
to support decision making hence not replacing human judg-
ment and Roche QA colleagues remain fully accountable for 
selecting a particular entity to audit.

Conclusion

In this paper, we proposed a statistical model to enhance 
the risk-based approach for PV affiliate audits. Using a 
straight forward modeling approach (i.e. logistic regres-
sion), descriptive statistics and user-friendly visualiza-
tion, we developed a holistic, efficient and objective risk 
assessment tool. It has been implemented and is used by PV 
Strategy within the Roche Product Quality organization for 
quality decisioning in the affiliate audit PV space. Of note, 
the model will be continuously monitored and fine-tuned to 
ensure its reliability. This project is part of a broader effort 
at Roche Product Quality to leverage advanced analytics to 
augment and complement traditional QA approaches.
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