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Introduction
The estimation of gene regulatory networks is the reverse engi-
neering for inferring network structures from different gene 
expressed products such as transcribed RNA or translated pro-
teins.1 Many approaches in previous studies were proposed for 
learning gene regulatory networks. Bayesian networks (BNs) 
reveal directed acyclic graph structures of networks, in which 
nodes represent random variables and directed edges indicate 
causal probabilistic conditional independencies,2 and therefore, 
they have often been applied to gene expression data for infer-
ring causal gene regulatory networks.3-6 Considering the fact 
that BNs are unable to reflect feedback loops existing in real 
biological networks, the dynamic Bayesian networks were pro-
posed and applied to gene expression data for inferring causal 
interaction relationship of genes.7-10 However, the primary 
practical problem with the BNs is their computational com-
plexity. It has been demonstrated that learning BNs from data 
is an NP-complete problem. Algorithms for learning BNs 
from data include 2 main components: a scoring metric and a 
search procedure. The search procedure is used to identify net-
work with high scores, and the article by Chickering11 shows 
that the search problem of identifying a BN is NP-complete. 

However, simple correlation matrices have been applied in sev-
eral fields for analyzing the correlation of variables and used as 
another instrument to extract correlation patterns between 
genes that are presented in gene expression data.12 Many 
researchers have proposed using correlation matrices for the 
analysis of gene interaction networks.13-19

The Gaussian graphical models (GGMs), unlike BNs, 
define undirected graph structures of networks that represent 
the conditional dependence between variables. The GGM has 
been widely applied to gene expression data for analyzing gene 
interactions. Several techniques were reported for GGM model 
parameter selection; among them are the standard greedy step-
wise forward selection20,21 and the improved model selection 
approach.22 Using the fact that a gene regulatory network is 
typically sparse, a lasso-based method23 was introduced to 
improve the accuracy by shrinking the nonzero values that 
might just be noise in the precision matrix representing a 
GGM. An increasing number of algorithms have since been 
proposed to estimate the precision matrix, such as gradient 
directed regularization for sparse Gaussian concentration 
graphs,24 neighborhood selection with the Lasso,25 the penal-
ized likelihood method,26,27 the stability approach to 
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regularization selection for GGM,28 the novel Bayesian 
method for building the GGMs,29,30 and the joint graphical 
lasso.31 However, these algorithms for analyzing gene interac-
tions focus on relatively small data sets that include a small part 
of the genes. As a result, some potentially highly significant 
gene interactions in a large-scale study could be omitted by 
those small-scale algorithms. Also, these approaches are com-
putationally costly, making them ineffective to be applied to 
large data sets, such as genome-wide gene expression data sets. 
Other recent methods on inference of GGM are as follows: an 
integrated statistical framework based on the graph lasso which 
is applied to learning gene networks under single-nucleotide-
polymorphism perturbations using eQTL data sets was devel-
oped.32 A novel regression-based method was proposed to 
obtain asymptotically normal estimation of a large GGM,33 
and it provides both P values and confidence intervals for each 
edge in the graph. Based on the penalized likelihood inference, 
a bias correction approach was applied to make inference of 
each edge.34 A high-dimensional inference of Gaussian copula 
graphical model35 was developed based on a novel decorrelated 
score test statistic.36 A bottom-up GGM algorithm was devel-
oped for constructing multilayered hierarchical gene regulatory 
network on RNA-seq data sets.37 However, these methods also 
encounter expensive computation issue when they are applied 
in real biological application.

In this study, an effective network learning model that inte-
grates traditional GGM with the Monte Carlo method 
(MCGGM) was developed for learning a global network from 
genome-wide gene expression data. Monte Carlo Gaussian 
graphical model was applied and verified on a relatively small, 
real data set of RNA-seq gene expression levels, and the esti-
mated results indicate its strong ability of identifying the inter-
actions with high conditional dependences. Monte Carlo 
Gaussian graphical model was then applied to a genome-wide 
data set of RNA-seq gene expression levels. The results validate 
the ability and reliability of the approach in identifying strong 
conditional dependences among genes. The contributions of 
this study are (1) the proposed MCGGM algorithm speeds up 
the GGM in estimation of large-scale data set and makes it 
feasible to infer genetic networks under the framework of 
GGM at a genome-wide scale and (2) the estimated interac-
tions in genome-wide expression data sets provide insights for 
biologists to explore the complicated molecular interactions.

Model and Methods
A GGM is characterized through the precision matrix, rather 
than the covariance matrix, of the random variables involved.

Given gene expression data Y Rn
T n p= … ∈ ×[ , ]y y1  for n  

samples and p  genes, the gene expression profile of each  
sample, yi i i

p Ty y= …[ , ]1 , is assumed to be independent and 
follows a Gaussian distribution N ( , ),u Σ  where u  is the mean 
and Σ  is the p p×  covariance matrix. The precision matrix 
Θ Σ= −1  is a positive definite and symmetric matrix and pre-
sents a model for an undirected graph G V E= ( , ) , where V is 

a set of p  vertices corresponding to the p  genes and the edge 
set E = { },ei j  describes the conditional dependences among 
the p  genes. ei j, ≠ 0  indicates that gene i  and gene j  are 
conditionally dependent, whereas ei j, = 0  states the 2 genes i  
and j  are conditionally independent of each other, given all 
other genes. Each entry θi, j  of the precision matrix signifies 
the strength of the dependence relation. Therefore, learning 
genetic network is equivalent to estimating the precision 
matrix, ie, to maximize the log-likelihood with L1  norm pen-
alty on its precision matrix

 log trace Sdet( )Θ Θ Θ− ( ) −ρ 1
 (1)

where S is the sample covariance matrix, ρ  is a non-nega-
tive penalty parameter which controls the sparsity of the inverse 
covariance matrix Θ  and || || | |,Θ 1= ∑∑ θ i jji  represent 

the L1  norm of Θ .27,38 Clearly, the larger the parameter ρ  is, 

the sparser the estimated ρ  would be. If ρ = 0 , this problem 
is reduced to the typically maximum likelihood estimation 
problem, whereas when ρ →∞ , Θ = 0  regardless of what 
sample data sets are used in estimation.

To apply graphical lasso to infer the graphical model, 1 
important issue is to choose the optimal penalty parameter ρ , 
which controls the sparsity level of the estimated Θ  and 
ensures its stability. Any network to be learned from experi-
mental data could unavoidably include some irrelevant and 
unexpected interactions resulting from the intrinsic “noise” in 
the experimental data. An estimated network is expected to be 
robust with respect to different sample data. Therefore, models 
with some degree of stability require ρ  to be at a level so that 
the “noisy” edges in the estimated precision matrix are filtered 
out. Furthermore, genetic networks are typically considered to 
be sparse,39 and therefore, the estimated network is expected to 
be sparse as well. To select an optimal value of the penalty 
parameter ρ , the subsampling-based approach28 was imple-
mented and tested in this study.

The Monte Carlo method (MC) refers to a series of statisti-
cal methods that are essentially used to find solutions to com-
putationally expensive problems.40,41 The core of this method is 
to use stochastic sampling techniques to solve intractable prob-
lems that are too complicated to deal with analytically.42 The 
Monte Carlo method typically includes 2 major components: 
(1) random sampling and estimation and (2) estimation inte-
gration. Random sampling is used to run an estimation, and 
the estimates from multiple runs will then be integrated to 
improve the estimation. This technique has been used in devel-
oping algorithms for solving different problems in multiple 
fields, including computational biology,43 applied statistics,44 
and artificial intelligence.45 All the algorithms with MC share 
the concept of using random sampling to compute a solution to 
a given problem.46

An integrated approach that uses the Monte Carlo random 
sampling technique is introduced to obtain large-scale GGMs. 
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First, the large set of genes is randomly divided into subsets of 
equal size. In this way, the large data set is divided into multiple 
small subsets, making it feasible to directly apply the Gaussian 
graphical lasso to those subsets for analyzing gene-gene rela-
tionships. However, if a large set of genes is simply divided and 
estimated like this, only some isolated subnetworks are 
obtained. Some strong gene interactions that connect the sub-
networks could be omitted and go undetected. To increase the 
probability of each gene pair having an opportunity to be sam-
pled in the same subset, the process of random sampling (with 
replacement) and estimation in the first step will be repeated. 
Researchers expect that each pair of genes has some opportu-
nity to be in the same subset so that the dependence of each 
pair of genes may be estimated. Monte Carlo Gaussian graphi-
cal model sets a threshold to terminate the iterations when the 
probability of any pair of genes not being sampled in at least 1 
subset is less than or equal to the threshold. The estimated 

subnetworks are then integrated into a larger network that 
includes all genes under consideration. During the iterations, 
each random sampling is tracked and the number of pairs of 
genes sampled in a subset is recorded in a matrix. Each esti-
mated subnetwork along with the edge weight corresponding 
to each pair of genes is recorded. The average edge weight of a 
pair of genes is considered the estimated strength of their 
dependency. Owing to noise in the data as well as sampling and 
rounding errors, it is inevitable that there are “noisy” values in 
the estimates. Because the focus is on finding those genes that 
are highly conditionally dependent, edges with small weights 
are filtered if the weights are less than a threshold calculated 
based on the SD of the edge weights or less than a threshold 
calculated based on the estimated global network.

Figure 1 illustrates the flowchart of MCGGM. Considering 
a gene to be a random variable, let V y y y yq= …{ , , , , }1 2 3  rep-
resent a set of q  random variables. The undirected graph 

Figure 1. Flowchart of the proposed MCGGM approach for learning global genetic networks on genome-wide gene expression data set. GGM indicates 

Gaussian graphical model; MCGGM, Monte Carlo Gaussian graphical model.



4 Bioinformatics and Biology Insights 

G V E= ( , ),  where E V V⊆ ×  represents the relationship 
between the variables and depicts the dependences of the ran-
dom variables. For genetic networks, the number of genes/vari-
ables under consideration could be in the order of 2000, making 
the direct estimation of E  using the graphical lasso inefficient 
or even infeasible. The MCGGM approach deploys the divide-
and-conquer strategy through the use of stochastic sampling, 
the steps being as follows:

1. Randomly partition V  into n  subsets with equal 
number of b q n= /  genes ( , , , , )V V V V Vn= …{ }11 21 31 1 . 
Then, extract RNA-seq gene expression data Si1  for  
genes in subset V y y y yi

i i i i b
1

1 1 1 11 2 3= …{ , , , , } , i n= …1, , . 
S j ri

i i i
j
i

1 1
1

2
1

3
1 1 1= … = …{ , , , , }, , ,y y y y . 

y j
i

j
i

j
i

j
i

j
iy y y y b1 1 1 1 11 2 3= …{ , , , , }  represents the expression 

levels of genes of the patient j  in the sample of r  
patients. The Gaussian graphical lasso is used to learn 
the dependences among the genes from Si1  to obtain an 
estimate of the network E i 1  of the genes in Vi1. The 
first-round approximation of the network structure/
edge matrix E1  can then be obtained by finding the 
union of the n  estimated subnetworks:

E E i
i

n
� �∪1 1

1

=
=

2. Repeat step 1 m  times to obtain a sequence of approxi-
mations of E , E E E E m   

1 2 3, , , ,… .
3. Each E i  is processed to remove weak connections. A 

threshold of 3 SDs is used to remove the edges whose 
weights are 3 SDs below the mean.

4. Obtain the final estimated edge matrix by integrating the 
m estimates:

E N e
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where N  is a matrix in which each entry nkl =max { ,1  
number of times gene k  and gene l  are in 1 subset during 
the m  round of partitions} and . /  is the right-array division 
operator that divides each element of the first operant by the 
corresponding element of the second operant.

5. The last step of noise reduction is applied to E  in which 
an entry that is 3 SDs below the mean is filtered out.

To ensure a high confidence of the integrated network, the 
number of sampling rounds m  was selected based on a thresh-
old t  so that the probability that a pair of genes is not in any 
subset during the m  rounds is bounded by t

n
n
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m
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In this study, t m= 0 01. ,and  is chosen to be lg
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where   represents the ceiling function.

Results and Analysis
Results on the small data set

The integrated model MCGGM was tested and verified using 2 
RNA-seq gene expression data sets. The first one is a small gene 
expression data set. The genes of the data set were collected from 
the common genes in 15 types of specific cancer pathway maps 
from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG).47 The RNA-seq expression levels of the genes were 
retrieved from The Cancer Genome Atlas (TCGA).48 The data 
set of RNA-seq expression level was cleaned in 2 steps: (1) 
removal of the genes whose expression levels are zeros across all 
samples. It is possible that these genes did express but their levels 
were so low and were not picked up by RNA-seq technology. (2) 
Transformation of the expression data with log function. All 0s 
in the data set were replaced with 1s before transformation. 
Eventually, a cleaned data matrix that includes 515 samples and 
430 genes was obtained. Both traditional GGM and MCGGM 
were then applied to the data set to obtain 2 edge matrices 
EGGM  and EMCGGM . Let EGGM  represent the actual genetic 
network and EMCGGM  represent the estimated one, and the 2 
matrices were compared and analyzed with a variety of metrics.

Analysis with confusion matrix and Jaccard coefficient. Confusion 
matrix and receiver operating characteristics (ROC) are useful 
tools to organize and visualize the performance of classifiers.49 
In this study, nonzero values in an edge matrix are classified as 
positive and zero values as negative. An ROC curve was con-
structed to choose an appropriate threshold to filter the noise in 
the estimated edge matrix. Nonzero values in the estimated 
matrix represent edges in the corresponding undirected graph, 
indicating potential interactions in the gene interaction net-
work; however, it does not mean that all the estimated nonzero 
values indicate actual gene interactions. Some nonzero values in 
the estimated matrix might be noise called false positives (FPs). 
Inevitably, some noises (FPs) are present in the estimated gene 
interaction network. To find a tradeoff threshold so that the 
estimated matrix includes the true positives (TPs) as much as 
possible and the FPs as little as possible, the mean and corre-
sponding SD of the nonzero values in the estimated edge matrix 
were computed. In the estimated edge matrix, most estimated 
values fall in the range between the value (mean − 3*SD) and the 
value (mean + 3*SD). The term (mean − 3*SD) represents the 
difference between the mean value and 3-time SD, and the term 
(mean + 3*SD) is the sum between the mean value and 3-time 
SD. To filter the small nonzero values, the values mean − 3*SD, 
mean − 2*SD, mean − SD, and mean were chosen as thresholds, 
and based on the estimated results, other discrete values 0.1, 
0.08, 0.06, 0.04,0.02, and 0.01 were also chosen as thresholds to 
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observe how the corresponding true positive rates (TPRs) and 
false positive rates (FPRs) change. The estimated matrix is 
expected to include more TPs and fewer FPs; the expected 
threshold is the one with a high TPR and a relatively low FPR 
in the ROC curve.

With the threshold list (0.1, 0.08, 0.06, 0.04, 0.02, 0.01, 
mean, mean − SD, mean − 2*SD, mean − 3*SD), the ROC curve 
reflecting the ratio of TPR and FPR of the thresholds is given 
in Figure 2 below. The red curve in Figure 2A reflects the per-
formance of the MCGGM. To clearly observe the close mark-
ers in the red ROC curve, the markers in Figure 2A are enlarged 
and the last 4 marks are highlighted with different color strips 
in Figure 2B. From Figure 2B, clearly, the threshold 
(mean − 3*SD) indicates a high TPR, and therefore, it was 
selected to filter the noises in the estimated networks.

Unlike TPR, which only focuses on the ratio of correctly 
identified gene interactions and all actual interactions, Jaccard 

coefficient50 takes FPs into account to measure the perfor-
mance of MCGGM. To focus on the interactions indicating 
strong conditional dependence, the edge matrices EGGM  and 
EMCGGM  were sorted in the descending order, and their TPR 
and Jaccard coefficient corresponding to different top percent-
ages of the edges in the 2 matrices were compared and ana-
lyzed. The results are shown in Table 1.

From Table 1, first, the MCGGM method correctly identi-
fied 4074 edges of all the 4149 edges in EGGM ; the TPR is up 
to 98%. The TPR corresponding to other percentages of edges 
also shows high and stable values of TPR (around 98%). These 
stable TPR values show that the MCGGM method has strong 
ability of correctly identifying gene interactions. Second, lower 
FPR and higher TNR indicate that MCGGM also has strong 
probability of correctly identifying those gene pairs without 
probabilistic dependences. Third, their Jaccard coefficients 
show lower values (around 0.44). Comparing TPR and Jaccard 

Figure 2. (A) ROC curve with different thresholds in the estimated networks. The red curve reflects the performance of the MCGGM. The blue dash line 

represents the no skill ROC. (B) Zoom-in view of the ROC curve in (A) for FPR < 0.06. The different color strips indicate the corresponding thresholds 

shown in the top left corner in (B). FPR indicates false positive rate; MCGGM, Monte Carlo Gaussian graphical model; ROC, receiver operating 

characteristics; TPR, true positive rate.

Table 1. The estimated TPR and Jaccard coefficient with different proportion of edges.

TOP % OF 
EDGES

| EGGM | | EMCGGM | TP
a

TPR
b (%) FPR

c  (%) TNR
d (%) J(EGGM ,EMCGGM )

e
 (%)

100 4149 9171 4074 98.19 5.79 94.21 44.06

80 3319 7337 3260 98.22 4.59 95.41 44.08

60 2489 5503 2441 98.07 3.41 96.59 43.97

40 1660 3668 1624 97.83 2.26 97.74 43.84

20 830 1834 814 98.07 1.12 98.88 44.00

aTP: true positive—if the value of the interaction is positive (nonzero) in EGGM  and is also estimated as positive in EMCGGM .
bTPR: true-positive rate = TP total positives inEGGM/ .
cFPR: false-positive rate = FP total negatives inEGGM/ .
dTNR: true-negative rate = TN total negatives inEGGM/ .
eJ(EGGM ,EMCGGM ) : | EGGM EMCGGM | | EGGM EMCGGM |/∩ ∪ .
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coefficient, the major factor resulting in higher TPR, but a 
lower Jaccard coefficient, is that FPs are present in the formula 
for the Jaccard coefficient. In fact, there is a tradeoff: FPs are 
allowed to exist in the estimated networks; however, at the 
same time, more TPs and fewer FPs are expected in the esti-
mated networks so that the real interactions will not be buried 
in massive number of FPs. Based on the evaluated results, con-
sidering the lower FPR shown in Figure 2, MCGGM has 
shown a good performance in learning gene interaction 
networks.

Analysis with correlation coeff icient of strong gene interactions in 
EGGM  and EMCGGM . A stronger indicator of the MCGGM 
approaching the ground truth is the agreement between the 
ranks of the strong interactions in EGGM  and their correspond-
ing ranks in EMCGGM , that is, if an interaction is strong and has 
a high rank in EGGM , this interaction should also have a rela-
tively high rank in the EMCGGM . To assess whether the interac-
tion ranks are consistent between the actual network and 
estimated network, the correlation of edge weights in EGGM  
and EMCGGM  was examined. The edges in EGGM  are first 
sorted in the descending order of their weights, and their ranks 
of the corresponding interactions in EMCGGM  are identified. 
The correlation coefficients of the top-ranked interactions are 
then calculated. Let i  represent the rank of an interaction in 

Figure 3. Correlation coefficient analysis of gene interactions in EGGM  

and EMCGGM . The horizontal axis denotes the number of common 

gene interactions in EGGM  and EMCGGM  and the vertical axis 

indicates the correlation coefficient rt .

Table 2. Identify the missing gene interactions in EMCGGM .

TOP EDGES IN EGGM All EDGES IN EMCGGM
COMMON EDGES NUMBER OF MISSING EDGES

100 9171  98 2

200 9171 197 3

300 9171 296 4

400 9171 394 6

500 9171 494 6

EGGM  and yi  represent the rank of this interaction in 
EMCGGM  and consider the top t interactions Xt  from EGGM  
and their corresponding ranks Yt

 from EMCGGM

X i t i t Y y y yt t i t= … …{ } ≤ ≤ = … …{ }1 1 1, , , , , ,and

The correlation rt  reflects the consistency of the ranks of 
these targeted common interactions in the EGGM  and EMCGGM . 
If they have completely consistent ranks in both EGGM  and 
EMCGGM , the corresponding rt  should be equal to 1. In con-
trast, if they have completely reverse ranks, rt  will be equal to 
−1. A value between 1 and −1 but closer to 1 reflects consist-
ency between the ranks of the common interactions in the 
actual and estimated networks. Figure 3 illustrates how the cor-
relation coefficients change with the increasing number of top 
interactions. The curve in Figure 3 sharply rises to the position 
corresponding to about 0.75 and keeps relatively stable with 
the increasing numbers of interactions. The result indicates 
that the identified interactions have relatively consistent and 
stable ranks in both EGGM  and EMCGGM . That is, the net-
works estimated by traditional GGM and MCGGM have 
high consistency in identifying those strong gene-gene 
interactions.

Analysis of the missing strong gene interactions in EMCGGM . Owing 
to the nature of the random sampling involved in MCGGM, it 
cannot be guaranteed that all pairs of interacting genes are 
sampled in a subset. Therefore, this leaves the possibility that 
some gene pairs might be strongly conditionally dependent in 
EGGM  but cannot be identified in EMCGGM . To explore the 
probability of those interactions, the top 100 to 500 edges, 
respectively, from the sorted EGGM  were extracted to examine 
whether these interactions were identified in EMCGGM . The 
results are shown in Table 2.

Table 2 shows that a total of 6 among the top 500 interac-
tions in EGGM  were missing in EMCGGM . To intuitively com-
pare these missing interactions, EGGM  and EMCGGM  were 
visualized in Figure 4A and B, respectively.

For the sake of easy and clear observation, these gene pairs 
and their interactions were magnified and marked with differ-
ent colors. Obviously, the direct interactions between gene 
pairs PLCG2 and FLT3, PDGFB and NOTCH4, SHH and 



Zhao et al 7

GLI1, E2F2 and CCNA2, SHH and E2F3, and PGR and 
BIRC5 of EGGM  in Figure 4A were not identified in the esti-
mated EMCGGM  in Figure 4B.

To further explore a reasonable explanation why those 
direct interactions are not identified in EMCGGM , the sam-
pled matrix N that tracks and records the number of gene 
pairs sampled in a subset through all the trials is examined. 
The value 0s for those gene pairs in the matrix N  indicate 
that those gene pairs are never sampled in a subset through 
all the trials. This is why their direct interactions could not 
be found in EMCGGM . However, in Figure 4B, although direct 
interactions are missing, their indirect interaction relation-
ships through other genes in the shortest paths still can be 
found.

The aforementioned analysis results indicate the fol-
lowing facts. First, the proposed MCGGM has a strong 
ability of and high reliability in correctly identifying gene 
interactions, especially for strong conditional dependences. 
Second, there is a small probability that few direct interac-
tions of gene pairs might not be identified because they 
were never sampled in 1 group during the estimation pro-
cess. However, this possibility has an acceptable probabil-
ity, even if a few direct interactions are occasionally 
missing; actually, the results reveal that their indirect inter-
actions may be found with high probability in a short path 
through only a few genes (sometimes 1 gene), and this fur-
ther reduces the probability of losing strongly condition-
ally dependent interactions among genes. Also, not all the 
missing gene pairs have high conditional dependences. 
Considering such factors, the actual probability of missing 
high conditional dependences is far less than the set 
threshold (0.01 in this study). Third, the MCGGM 
method infers some FPs in the estimated results. 
Considering high TPR and the biological context, some 
FPs involved in the estimated network are tolerated and 
accepted.

Results on Genome-Wide Gene Data sets
Fifteen genome-wide data sets of RNA-seq expression levels 
corresponding to 15 types of specific human cancer from 
TCGA were collected and processed, respectively. The same 
cleaned methods were applied to the genome-wide data sets. 
As a result, 15 cleaned data matrices are obtained and shown in 
Table 3.

In this study, b = 500 genes were randomly sampled as a sub-
set. However, in practical experiments, the genome-wide data 
set might not be exactly divisible by n subdatasets, in which 
case, the remaining genes at the end (whose number is fewer 
than b) were randomly and equally assigned to the n subdata-
sets. In this study, the threshold was set to be 0.01 to filter the 
“noise” in the estimated gene interaction networks. Ultimately, 
by applying MCGGM to the 15 genome-wide data sets, 15 
global networks were estimated. It is a huge challenge to 
explore biological information hidden in these global networks. 
In this study, considering the sparsity of KEGG pathways (the 
ratio of genes to edges being 1.5:1), those edges with high edge 
weights from the corresponding global networks were extracted 
to construct 15 subedge matrices as shown in Table 4. To fur-
ther verify the performance of MCGGM, the common edges 
which are present in at least 8 extracted subedge matrices were 
further analyzed.

Analysis of the common interactions in the extracted 
subedge matrices

For observing interaction patterns and further analysis, those 
common interactions between genes which connect to at least 
3 other genes (3 scores) were visualized in Figure 5. The gradi-
ent color ranges from blue to red, illustrating the frequency of 
the edge’s appearance across the estimated cancer networks; 
blue indicates the edge is shared among 8 networks and red 
indicates the edge is common to all 15 networks. The thickness 
of an edge represents the median weight of the edge in the 

Figure 4. Comparison of the interactions of missing gene pairs. (A) The interactions of missing gene pairs in EGGM . (B) The interactions of missing 

gene pairs in EMCGGM .
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Table 3. Genome-wide data sets of the 15 types of specific human cancers.

TCGA CANCER TyPE CANCER TyPE (ABBREvIATIONS) NUMBER OF 
GENES

TUMOR 
SAMPlE SIZE

Bladder urothelial carcinoma BlCA 16 235 408

Breast invasive carcinoma BRCA 16 253 1094

Colon adenocarcinoma COAD 16 084 284

Kidney renal clear cell carcinoma KIRC 16 248 533

Kidney renal papillary cell carcinoma KIRP 16 222 290

Brain lower grade glioma BlGG/lGG 16 239 515

liver hepato cellular carcinoma lIHC 16 160 371

lung adenocarcinoma lUAD 16 201 515

lung squamous cell carcinoma lUSC 16 242 502

Pancreatic adenocarcinoma PAAD 16 098 178

Prostate adenocarcinoma PRAD 16 236 496

Skin cutaneous melanoma SKCM 16 122 102

Stomach adenocarcinoma STAD 16 264 415

Thyroid carcinoma THCA 16 195 504

Uterine corpus endometrial carcinoma UCEC 16 182 176

Abbreviation: TCGA, The Cancer Genome Atlas.

Table 4. The summary of subedge matrices.

CANCER 
TyPE

NUMBER 
OF GENES

NUMBER 
OF EDGES

SUBEDGE 
MATRICES

BlCA 3430 5145 Esub-BLCA

BRCA 3693 5539 Esub-BRCA

COAD 2774 4161 Esub-COAD

KIRC 2979 4468 Esub-KIRC

KIRP 3217 4825 Esub-KIRP

BlGG/
lGG 1850 2775 Esub-BLGG

lIHC 3084 4626 Esub-LIHC

lUAD 3663 5494 Esub-LUAD

lUSC 3738 5607 Esub-LUSC

PAAD 2889 4333 Esub-PAAD

PRAD 997 1495 Esub-PRAD

SKCM 3382 5073 Esub-SKCM

CANCER 
TyPE

NUMBER 
OF GENES

NUMBER 
OF EDGES

SUBEDGE 
MATRICES

STAD 3910 5865 Esub-STAD

THCA 725 1087 Esub-THCA

UCEC 3553 5329 Esub-UCEC

Abbreviations: BlCA, bladder urothelial carcinoma; BlGG/lGG, brain lower 
grade glioma; BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; 
KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell 
carcinoma; lIHC, liver hepato cellular carcinoma; lUAD, lung adenocarcinoma; 
lUSC, lung squamous cell carcinoma; cell, pancreatic adenocarcinoma; PRAD, 
prostate adenocarcinoma; SKCM, skin cutaneous melanoma; STAD, stomach 
adenocarcinoma; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial 
carcinoma.

 (Continued)

Table 4. (Continued)

crossed cancer networks. From Figure 5, some genes are con-
nected to form different cliques in which many genes are from 
the same family with a within-group homogeneity, or the 
expressed products of the genes might function as a biologi-
cally significant module in molecular networks; some genes 
interact with multiple genes in cliques to form highly con-
nected clusters. The genes involved in these interactions poten-
tially play important biological roles. For example, the family of 
genes C1QA, C1QB, and C1QC that are present as strongly 
interactive in all 15 estimated networks can be found in Figure 
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5. C1QA, C1QB, and C1QC are protein-coding genes that 
encode A polypeptide chain, B polypeptide chain, and C poly-
peptide chain of serum complement subcomponent C1q, 
respectively.51 The structure of C1q indicates that those 3 genes 
(C1QA, C1QB, and C1QC) are highly connected.52 In addi-
tion, the function of the C1q complex which plays a key role in 
initiating the classical complement system53 also indicates 
strong interdependence of the 3 genes. Their high conditional 
dependences have been captured in the form of a clique con-
sisting of the C1QA, C1QB, and C1QC genes in genetic net-
works estimated using their RNA-seq expression levels. This 
provides further evidence for the ability of the MCGGM to 
reliably identify high conditional dependence in genome-wide 
expression data sets.

In addition, to explore the common subnetwork that shows 
strong connections and is present in multiple estimated net-
works, the largest component from the common interactions 
was extracted and visualized as shown in Figure 6A. The num-
bers shown on the edges indicate exactly the number of cross-
ing cancer networks. For close observation, the part included in 
the black rectangle in Figure 6A was further enlarged as shown 
in Figure 6B. The results clearly show the interactions within 
the 3 gene families and the interaction among those 3 gene 
families, such as the interaction among the ribosomal protein 
(RP) gene family in the green dotted curve, the eukaryotic ini-
tiation factors (EIF) gene family in the yellow dotted rectangle, 

and the eukaryotic elongation factors (EEF) gene family in the 
gray rectangle.

It is reasonable that there are some interactions within RP, 
EIF, and EEF gene families as well as the interactions between 
those gene families. It has been revealed that those 3 gene fami-
lies are involved in protein synthesis and play critical roles in 
eukaryotic translation.54,55 Also, some studies indicated that 
some of the genes involved in the estimated interactions play 
certain important roles in different human cancers. Some evi-
dence has indicated the misregulation of EIF3 gene is associ-
ated with cancers and its progression.56,56-58 In this study, several 
EIF3 genes (EIF3D, EIF3L, and EIF3K) involved in highly 
conditional dependent interactions are highlighted in Figure 
6B. The overexpression of EIF3D was demonstrated to pro-
mote the development of gallbladder cancer by stabilizing 
GRK2 and activating phosphatidylinositol 3-kinase-AKT 
signaling pathway.59 Also, the overexpression of EIF3D was 
reported to be related to the lung adenocarcinoma.60 In addi-
tion, it was indicated that the expression levels of EIF3D, 
EIF3L, and EIF3K were highly associated with mutant status 
of gliomas.61 EEF1A has been demonstrated to have a transla-
tion-independent role in various biological processes, such as in 
senescence, oncogenic transformation, cell proliferation, apop-
tosis, and degradation,62-65 and its overexpression has been 
reported in multiple human cancers, including melanomas, 
pancreas, breast, lung, prostate, and colon.66-71 EEF1A was 

Figure 5. Three-score common interactions in at least 8 cancer networks. The genes in the interactions connect with at least 3 other genes. The color of 

an edge indicates the frequency of the edge crossing the estimated cancer networks. The thickness of an edge represents the median weight of the edge 

in the crossed cancer networks.
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Figure 6. (A) The largest component of the common interactions. Similarly, the color of an edge indicates the number of cancer networks which the edge 

crosses. The thickness of an edge represents the median weight of the edge in the cancer networks, indicating the degree of conditional dependence between 

2 genes. (B) Zoom-in view of the part included in a black rectangle in Figure 6A. The main family genes are highlighted with the dash curve or rectangles.
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indicated to interact with P53 and P73 and inhibit p53-, p73-, 
and chemotherapy-induced apoptosis.72 In fact, the evidence 
strongly supports that the estimated interactions among the RP 
genes, EIF genes, and EEF genes in multiple tumors are associ-
ated with human cancers with high probability. The common 
interactions centering on the RP gene family, EIF gene family, 
and EEF gene family in Figure 6B were identified in the esti-
mated global cancer network, and this further testifies to the 
ability of MCGGM in estimating gene interaction network.

Time analysis on genome-wide gene data set

To estimate the running time of the graphical lasso on a high-
dimensional gene expression data set, the graphical lasso was 
applied to a real data set of RNA-seq expression levels. The run-
ning time was collected through 10 experiments of different 
sample sizes. Figure 7 below illustrates how the running time 
increases along with the increasing number of genes involved in 
the experiments. The results indicate the time increased expo-
nentially with the increasing genes involved in the experiment. 
Based on the curve of running time in the experiment, the pre-
dicted time for finishing the estimation is more than 10 years if 
graphical lasso is directly applied to a genome-wide gene expres-
sion data set of 16 000 genes, assuming the space complexity is 
not a concern. However, on the same sever, the proposed 
MCGGM method completed the estimation of the network of 
16 000 genes in approximately 64 hours. The result indicates the 
MCGGM effectively speeds up the estimation of GGM in 
learning global genetic network at a genome-wide scale.

Discussion
Undoubtedly, a global network including all genes provides 
additional information for the analysis of human diseases and 
will be more helpful for biologists to acquire insights into the 
genetic interactions than a subnetwork. Owing to the nature of 
Monte Carlo sampling, the sampled subdatasets are independ-
ent, and therefore, the estimated subnetworks are also inde-
pendent. The MCGGM model can also be effectively deployed 
on a parallel computing platform to infer global networks.

The proposed MCGGM is based on GGM and speeds up 
the estimation of GGM in learning global genetic networks at 
a genome-wide scale. The challenge is that MCGGM intro-
duces “false positive” interactions between genes during the 
estimation. Although the threshold was set to filter the “false 
positive” gene interactions, some “false positive” gene interac-
tions could not be eliminated from the estimated networks. 
However, moderate FPs may be tolerated. Also, because of the 
intrinsic attribute of random sampling, there is a small proba-
bility that some gene interactions might not be estimated 
because those gene pairs might not be sampled in the same 
subset. But the possibility of losing highly dependent gene 
interactions can be reduced by setting up a statistically accept-
able threshold. The estimated results show that, even if the 
interactions between some gene pairs are never estimated 

directly, if they are highly conditionally dependent, their undi-
rected interactions can be identified via a short path with a 
high probability. Actually, the probability of losing highly 
dependent gene interactions will be far less than the statisti-
cally acceptable threshold.

Despite the existing challenges and minor limitations, the 
proposed method has been proven to be efficient in learning 
global gene networks on genome-wide data sets.

Conclusions
The proposed MCGGM model integrates traditional GGM 
and Monte Carlo simulation technique to make learning a 
global genetic network from genome-wide data set practical. 
The integrated model MCGGM was tested and verified using 
several RNA-seq gene expression data sets. The results demon-
strate that MCGGM is an efficient and robust model to be 
deployed to learn global genetic networks from genome-wide 
gene expression data sets. The estimated interactions in 
genome-wide expression data sets provide insights for biolo-
gists to explore the complicated molecular interactions and also 
shed light on exploring new mechanisms of pathways which 
are involved in different biological activities.
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