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Whole grains are a pivotal food category for the human diet and represent an invaluable

source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many

studies have shown that the consumption of whole grains is linked to a reduced risk

of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases.

However, several of their positive health effects seem to disappear when grains are

consumed in the refined form. Herein we review the available literature on whole

grains with a focus on molecular composition and health benefits on many chronic

diseases with the aim to offer an updated and pragmatic reference for physicians and

nutrition professionals.

Keywords: cereals, grains, fibers, cancer, cardiovascular diseases

INTRODUCTION

Grains are a vital food category for many populations of the world and their annual production
exceeds 2,700 tons with an alignment of supply and demand (1).

Grains represent an important source of carbohydrates, proteins, fibers, minerals, vitamins,
and phytochemicals and their regular consumption appears to be associated with many health
benefits (2, 3). Indeed, incidence and mortality of several chronic non-communicable conditions
like cancers, type 2 diabetes, and cardiovascular diseases have been shown to be reduced in people
regularly eating whole grains (3). However, these health benefits might not be replicated by the
consumption of refined grains (RG) which are characterized by lower levels of minerals, vitamins,
fibers, and phytochemicals (4). This represents an important topic of public health since in the
canonical western diet the vast majority of consumed grains are generally in the refined form (5).

Herein we review the available literature on whole grains (WG) with a focus on their molecular
composition and their health benefits with the aim to offer an updated and pragmatic reference for
physicians and nutrition professionals.
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COMPOSITION OF CEREAL GRAINS

Cereals are made of carbohydrates for 50–80% of their weight
and contain a lower but significant amount of proteins (5–
6%), and lipids (1–10%) (Table 1; Figure 1). Whole grains are
an important source of mineral salts (1.5–2.5%) (phosphorus,
calcium, magnesium, potassium, iron, zinc, copper), and
vitamins (thiamine, riboflavin, niacin, pyridoxine, biotin, folic
acid, vitamin E, and vitamin A) (25, 26).

Four different parts are present in cereal grains: bran,
endosperm, germ and aleurone layer. The endosperm is rich
in starch, and reserve proteins (prolamins and glutelin) while
the bran, the aleurone layer, and the germ have more proteins
with essential amino acids, vitamins, minerals, fibers, lipids
(greater presence in the germ), and bioactive substances (e.g.,
phenolic acids, flavonoids, alkylresorcinols, avenantramides,
tannins, carotenoids, lignans and phytosterols) (25, 26).

Whole grains represent a widely consumed food in many diets
and have been linked with healthy effects (see below). These
beneficial effects seem to be, at least in part, attributable to the
presence of dietary fibers which overall amount and types varies
between different cereals. In general, whole grains and pseudo-
cereals are rich in both soluble and insoluble fiber; the most
abundant ones are: cellulose, arabinoxylan-glucan, xyloglucan,
and fructan (27).

Many vitamins are present in cereals: thiamine, riboflavin,
niacin, pyridoxine, biotin, folic acid, pantothenic acid, vitamins
A, E, and K (28). Since they are especially distributed in the
integument and in the germ, the refinement process can remove
a significant amount (29).

In addition, the absolute abundance of vitamins and minerals
is determined by a myriad of factors, including cultivar (30), soil
composition (30), and the degree of refinement (29).

RELEVANT PHYTOCHEMICALS IN
CEREALS AND THEIR EFFECT ON HEALTH

In cereals, as other plant food, an equilibrium exists between
phytochemicals and antinutrients, which could be two aspects
of the same compound. Phytochemicals are bioactive molecules
characteristic of plants, and they are crucial for the human
health by playing a pleiotropic action. Phytochemicals act
as anti-oxidants or might have a role in maintaining DNA
repair, controlling cell proliferation, cell differentiation, cancer
cells apoptosis and DNA metabolism (16, 20). Examples of
phytochemicals in cereal grains include terpenoids, polyphenols,
phenolic constituents, alkaloids, carotenoids, phytosterols,
saponins, and fibers (20, 24) (Table 2).

Polyphenols represent an heterogeneous group of
compounds, constituted by flavonoids and phenolic acids

Abbreviations: BMD, bone mineral density; BMI, body mass index; CAD,
coronary artery disease; CC, colorectal cancer; CD, celiac disease; CKD, chronic
kidney disease; CVD, cardiovascular disease; DM, diabetes mellitus; IBD,
inflammatory bowel disease; IBS, irritable bowel syndrome; IP6, myo-inositol
hexaphosphate; RCT, randomized clinical trial; SCFAs, short-chain fatty acids;
T2DM, type 2 diabetes mellitus; WCRF, World Cancer Research Fund’s; WG,
whole grains.

anthocyanins. They have antioxidant and anti-inflammatory
activity, but their bio accessibility depends on the type of
polyphenol or cereal matrix involved. In the gastrointestinal
ambient, polyphenols can potentially change the gut microbiome
favorably (7). Anthocyanins are pigments of colored cereals:
wheat, rye, millet, barley, rice, maize, and sorghum (6). Several
studies, both in vitro and in vivo, demonstrated that anthocyanins
have positive health effects (6, 74): antioxidant activity (75, 76),
inhibition of cholesterol absorption (77, 78), reduction of starch
digestibility (79), neuro-protection (80), anticancer (81) and
antimetastatic activity (82), anti-hypertension effect (83), retinal
protection (84), body fat reduction (85), hepatoprotection (86),
prevention of metabolic syndrome (31, 87), enhancement of the
immune response (82), anti-aging effect (88).

Among the several properties of phytochemicals, the
beneficial interaction with the intestinal microbiota represents
an open area of research (89). Jayachandran et al. (90) explained
as the “fiber gap”, i.e. a diet with low consumption of fibers,
could interfere with gut microbiota equilibrium reducing its
healthy metabolites. Some of its positive effects on human
health are due to the gut microbiota production of short chain
fatty acids (SCFAs), such as butyrate, acetate, propionate: these
molecules act as anti-inflammatory and anti-oxidant agents,
insulin sensitivity modulators, epigenetic modulators (89).
SCFAs are the result of fibers degradations by gut microbiota,
which contribute to digest soluble fibers, which otherwise
would not be metabolized in the bowl. So that, gut microbiota
homeostasis is linked to dietary fibers variety, which influences
SCFAs production (89, 91, 92). Myhrstad and colleagues analyzed
the results of 16 trials conducted to investigating the role of
dietary fiber in modulating gut microbiota and human metabolic
regulation (92). Despite of heterogeneity in the microbiota
analyses, the reviewed studies considered the different types of
SCFA-producing bacteria (i.e., Bifidobacterium, Ruminococcus,
Dorea, ecc.), in particular Prevotella/Bacteroides ratio. Authors
reported as gut microbiota rich in Prevotella spp. could be linked
to fibers-enrich diet, but its association with improved metabolic
regulation is still unclear. Besides, a fibers-enrich diet was
associated with increased presence of SCFA-producing bacteria,
however changing in gut microbiota not always corresponds to
host metabolic changes.

Antinutrients reduce nutrient bioavailability, sometimes
causing some adverse interference. In fact, this heterogenous
group has an important role in cereals composition: phytates,
lectins, saponins, enzyme inhibitors, tannins, goitrogens,
oxalates, and phytoestrogens. Among antinutrients, we could
include also mycotoxins, in particular aflatoxins, since cereals
contamination represents a relevant concern for human health
in several countries (93). Moreover, the plant microbiome
composition could also impact on the amount and the types of
compounds present in the grains; however, the exact role on
health has yet to be elucidated (94).

Phytic acid, also known as phytate or myo-inositol
hexaphosphate (IP6), represents an energy and antioxidant
agent in seed germination (44). IP6 binds mineral cations (Fe3+,
Cu2+, Zn2+, and Ca2+) (95), creating insoluble complexes
not digestible by human enzymes, with a consequential

Frontiers in Nutrition | www.frontiersin.org 2 May 2022 | Volume 9 | Article 888974

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


G
a
ru
ttie

t
a
l.

C
e
re
a
ls,

M
o
le
c
u
la
r
C
o
m
p
o
sitio

n
,
a
n
d
H
e
a
lth

TABLE 1 | Nutrients of cereals and pseudocereals.

Cereals Kcal CHO Pro Fat FTOT FSOL Vitamins Micros Phytochemicals Antinutrients

Barley (Hordeum

vulgare)

354 73.5 12.5 2.3 17.3 / Thiamine 0.646mg Manganese 1.94mg FibersU, anthocyanins (6),

polyphenols (7)

Tannins

(Proanthocyanidins) (8),

phytate (9, 10),

oxalates (9)

Riboflavin 0.285mg Zinc 2.77mg

Niacin 4.6mg Copper 0.498mg

Pantothenic acid 0.282mg Iron 3.6mg

Vitamin B6 0.318mg Phosphorus 264mg

Vitamin A 0.007mg Magnesium 133mg

Calcium 33mg

Potassium 452mg

Sodium 12mg

Buckwheat

(Fagopyrum

esculentum

Moench)

343 71.5 13.2 3.4 10 / Thiamine 0.6mg Iron 2mg FibersU Tannins

(Proanthocyanidins) (8)

Niacin 4.4mg Phosphorus 330mg

Calcium 67mg

Potassium 311mg

Sodium 1mg

Potassium 450mg

Calcium 110mg

Iron 4mg

Emmer (Triticum

dicoccum, Triticum

spelta)

353 69.3 14.6 2.4 6.5 0.96 Niacin 8.511mg Phosphorus 387mg Polyphenols (11, 12), fibersU NA

Magnesium 128mg

Calcium 35mg

Potassium 407mg

Zinc 4.79mg

Copper 0.39mg

Manganese 2mg

Iron 1.53mg

Einkorn (Triticum

monococcum)

354 62.5 13 2.9 9.8 / Thiamine 0mg Magnesium 125mg Polyphenols (11–13), fibersU

[β-glucan, lignin, fructans (13)]

NA

Riboflavin 0.212mg Calcium 83mg

(Continued)
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TABLE 1 | Continued

Cereals Kcal CHO Pro Fat FTOT FSOL Vitamins Micros Phytochemicals Antinutrients

Niacin 4.167mg Sodium 0mg

Vitamin B6 0.417mg Iron 4.5mg

Vitamin A 0.062mg Phosphorus 417mg

Zinc 4.69mg

Manganese 3mg

Fonio (Digitaria

exilis)

378 86.67 4.44 1.11 2.2 / Iron 1.6mg Fibers (14) Phytate (15)

Kamut (Triticum

turgidum subsp.

turanicum Jakubz.)

337 70.6 14.5 2.13 11.1 / Vitamin A 0.003mg FibersU Phytate (9), oxalates (9)

Thiamine 0.566mg Potassium 403mg

Riboflavin 0.184mg Sodium 5mg

Vitamin B6 0.259mg Zinc 3.68mg

Niacin 6.38mg Selenium 0.815mg

Pantothenic Acid 0.949mg Copper 0.506mg

Vitamin E (alpha-tocopherol)

0.61mg

Phosphorus 364mg

Vitamin K (phylloquinone)

0.018mg

Magnesium 130mg

Manganese 2.74mg

Iron 3.77mg

Calcium 22mg

Maize (Zea mays

L.)

357 75.1 9.2 3.8 2 / Thiamine 0.36mg Phosphorus 256mg FibersU (fructans, cellulose,

β-glucan, arabinoxylan, lignin)

(16), phenolic acid (16),

anthocyanins (6), polyphenols (7)

Phytate (10, 17),

polyphenol (17)

Riboflavin 0.2mg Magnesium 120mg

Niacin 1.5mg Calcium 15mg

Vitamin A 0.062mg Iron 2.4mg

Zinc 2.21mg

Potassium 287mg

Sodium 35mg

Selenium 0.155mg

Copper 0.31mg

(Continued)
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TABLE 1 | Continued

Cereals Kcal CHO Pro Fat FTOT FSOL Vitamins Micros Phytochemicals Antinutrients

Millets (Panicum

miliaceum L.)

378 72.8 11 4.22 8.5 / Thiamine 0.421mg Calcium 8mg FibersU, anthocyanins (6),

polyphenols (7)

Goitrogens (18, 19),

tannin (10, 17), phytate

(9, 10, 17), oxalates (9)

Riboflavin 0.29mg Potassium 195mg

Niacin 4.72mg Sodium 5mg

Pantothenic acid 0.848mg Phosphorus 285mg

Vitamin B6 0.384mg Iron 3.01mg

Magnesium 114mg

Zinc 1.68mg

Copper 0.75mg

Manganese 1.63mg

Selenium 0.027mg

Oats (Avena sativa) 389 66.3 16.9 6.9 10.6 / Thiamine 0.763mg Calcium 54mg Saponins (20), fibersU (fructans,

cellulose, β-glucan, arabinoxylan,

lignin), phenolic acid (16, 20),

polyphenols (7)

Oxalate (9, 18),

Saponins (steroidal

avenacosides

accumulating in the

leaves and triterpenoid

avenacins in the

rootsand) (21), phytate

(9, 10)

Riboflavin 0.139mg Potassium 429mg

Niacin 0.961mg Sodium 2mg

Pantothenic acid 1.35mg Phosphorus 523mg

Vitamin B6 0.119mg Iron 4.72mg

Magnesium 177mg

Zinc 3.97mg

Copper 0.626mg

Manganese 4.92mg

Rice (Oryza sativa

L.)

334 80.4 6.7 0.4 1 0.08 Thiamine 0.11mg Calcium 24mg FibersU (fructans, cellulose,

β-glucan, arabinoxylan, lignin)

(16), phenolic acid (16),

anthocyanins (6), polyphenols (7)

Phytate (10, 18),

tannins

(proanthocyanidins) (8)

Riboflavin 0.03mg Potassium 92mg

Niacin 1.3mg Sodium 5mg

Magnesium 20mg

Phosphorus 94mg

(Continued)
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TABLE 1 | Continued

Cereals Kcal CHO Pro Fat FTOT FSOL Vitamins Micros Phytochemicals Antinutrients

Iron 0.8mg

Copper 0.18mg

Zinc 1.3mg

Selenium 0.01mg

Rye (Secale

cereale L.)

338 75.9 10.3 1.63 15.1 / Thiamine 0.316mg Calcium 24mg FibersU (fructans, cellulose,

β-glucan, arabinoxylan, lignin)

(16), phenolic acid (16),

β-caroteneU, Anthocyanins (6)

Phytate (9, 10),

oxalates (9)

Riboflavin 0.251mg Iron 2.63mg

Niacin 4.27mg Magnesium 110mg

Pantothenic acid 1.46mg Phosphorus 332mg

Vitamin B6 0.294mg Potassium 510mg

Vitamin A 0.003mg Sodium 2mg

Vitamin E (alpha-tocopherol)

0.85mg

Zinc 2.65mg

Vitamin K (phylloquinone)

0.059mg

Copper 0.367mg

Manganese 2.58mg

Selenium

0.139mg

Sorghum

[Sorghum bicolor

(L.) Moench]

329 72.1 10.6 3.46 6.7 / Thiamine 0.332mg Calcium 13mg FibersU, β-caroteneU,

anthocyanins (6), polyphenols (7)

Tannins

(proanthocyanidins)

(8, 17), phytate

(9, 10, 17), oxalates (9)

Riboflavin 0.096mg Iron 3.36mg

Niacin 3.69mg Magnesium 165mg

Pantothenic acid 3.67mg Phosphorus 289mg

Vitamin B6 0.443mg Potassium 363mg

Vitamin E (alpha-tocopherol)

0.5mg

Sodium 2mg

Zinc 1.67mg

Copper 0.284mg

Manganese 1.6mg

Selenium

0.122mg

Spelt (Triticum

aestivum L. subsp.

spelta)

338 70.2 14.6 2.43 10.7 / Vitamin K (phylloquinone)

0.036mg

Copper 0.511mg FibersU Phytate (9), oxalates (9)

(Continued)
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TABLE 1 | Continued

Cereals Kcal CHO Pro Fat FTOT FSOL Vitamins Micros Phytochemicals Antinutrients

Vitamin B6 0.23mg Calcium 27mg

Vitamin E (alpha-tocopherol)

0.79mg

Iron 4.44mg

Thiamine 0.364mg Magnesium 136mg

Riboflavin 0.113mg Manganese 2.98mg

Niacin 6.84mg Potassium 388mg

Pantothenic acid 1.07mg Sodium 8mg

Phosphorus 401mg

Selenium 0.117mg

Zinc 3.28mg

TeffZ [Eragrostis tef

(Zuccagni) Trotter]

367 73.1 13.3 2.38 8 / Thiamine 0.39mg Calcium 180mg FibersU, β-caroteneU Phytic acid (9), lectins

(9), saponins (9),

goitrogens (9)

Riboflavin 0.27mg Potassium 427mg

Niacin 3.36mg Sodium 12mg

Pantothenic acid 0.942mg Phosphorus 429mg

Vitamin B6 0.482mg Iron 7.63mg

Vitamin E (alpha-tocopherol)

0.08mg

Magnesium 184mg

Vitamin A 0.003mg Zinc 3.63mg

Vitamin K (phylloquinone)

0.019mg

Copper 0.81mg

Manganese 9.24mg

Selenium 0.044mg

Triticale (X

Triticosecale spp.)

338 73.1 13.2 1.81 14.6 / Thiamine 0.378mg Calcium 35mg Phenolic acids (free and bound)

(22), proanthocyanidins (22),

lignans (22)

Phytate (23), tannin (23)

Riboflavin 0.132mg Iron 2.59mg

Niacin 2.86mg Magnesium 153mg

Pantothenic acid 2.17mg Phosphorus 321mg

Vitamin B-6 0.403mg Potassium 466mg

Vitamin E (alpha-tocopherol)

0.9mg

Sodium 2mg

Zinc 2.66mg

Copper 0.559mg

Manganese 4.18mg

(Continued)
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TABLE 1 | Continued

Cereals Kcal CHO Pro Fat FTOT FSOL Vitamins Micros Phytochemicals Antinutrients

Wheat (Triticum

Aestivum)

336 65.2 12.3 2.6 9.7 / Thiamine 0.42mg Calcium 35mg Fibers (Fructans, cellulose,

β-glucan, arabinoxylan, lignin)

(16, 24), phenolic acid (16),

anthocyanins (6), polyphenols (7)

Lectins (18), oxalate

(9, 18), phytate

(9, 10, 18), tannin (17)

Riboflavin 0.14mg Phosphorus 304mg

Niacin 5.4mg Iron 3.3mg

Copper 0.31mg

Zinc 3.1mg

Wheat (Triticum

durum)

332 62.5 13.0 2.9 9.8 / Thiamine 0.43mg Calcium 30mg Fibers (fructans, cellulose,

β-glucan, arabinoxylan, lignin)

(16, 24), phenolic acid (16),

anthocyanins (6), polyphenols (7)

Lectins (18), oxalate

(9, 18), phytate

(9, 10, 18), tannin (17)

Riboflavin 0.15mg Phosphorus 330mg

Niacin 5.7mg Iron 3.6mg

Vitamin A 0.002mg Copper 0.40mg

Zinc 2.9mg

Potassium 494mg

Magnesium 160mg

Selenium 0.038mg

Wild rice (Zizania

spp.)

357 74.9 14.7 1.08 6.02 / Thiamine 0.115mg Calcium 21mg FibersU, β-caroteneU Phytate (18)

Riboflavin 0.262mg Iron 1.96mg

Niacin 6.73mg Magnesium 177mg

Pantothenic acid 1.07mg Phosphorus 433mg

Vitamin B-6 0.391mg Potassium 427mg

Vitamin E (alpha-tocopherol)

0.82mg

Sodium 7mg

Vitamin A 0.006mg Zinc 5.96mg

Vitamin K (phylloquinone)

0.019mg

Copper 0.524mg

Manganese 1.33mg

Selenium 0.028mg

Amaranth 371 65.25 13.6 6 7.02 6.7 Vitamin C 4.2mg Calcium 159mg FibersU, β-caroteneU Oxalate (18), phytic

acid (9), lectins (9),

saponins (9),

goitrogens (9)

(Amaranthus spp.) Riboflavin 0.2mg Copper 0.525mg

Niacin 0.923mg Iron 7.61mg

Thiamin 0.116mg Magnesium 248mg

(Continued)
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TABLE 1 | Continued

Cereals Kcal CHO Pro Fat FTOT FSOL Vitamins Micros Phytochemicals Antinutrients

Pantothenic acid 1.46mg Manganese 3.33mg

Vitamin B6 0.591mg Phosphorus 557mg

Vitamin E (alpha-tocopherol)

1.19mg

Potassium 508mg

Vitamin A 0.001mg Sodium 4mg

Zinc 2.87mg

Selenium

0.187mg

Buckwheat

(Fagopyrum

esculentum

Moench)

335 70.6 12.6 3.1 10 / Riboflavin 0.19mg Calcium 41mg FibersU Phytic acid (9), lectins

(9), saponins (9),

goitrogens (9)

Niacin 6.15mg Copper 0.515mg

Thiamin 0.417mg Iron 4.06mg

Pantothenic acid 0.44mg Magnesium 251mg

Vitamin B6 0.582mg Manganese 2.03mg

Vitamin E (alpha-tocopherol)

0.32mg

Phosphorus 337mg

Vitamin K (phylloquinone)

0.007mg

Potassium 577mg

Sodium 11mg

Zinc 3.12mg

Selenium

0.057mg

Quinoa 368 64.2 14.1 6.07 7 / Thiamine 0.36mg Calcium 47mg FibersU, β-caroteneU Phytate (IP6) (9, 18),

saponins (9, 17), lectins

(9), goitrogens (9)

(Chenopodium

quinoa)

Riboflavin 0.318mg Iron 4.57mg

Niacin 1.52mg Magnesium 197mg

Pantothenic acid 0.772mg Phosphorus 457mg

Vitamin B-6 0.487mg Potassium 563mg

Vitamin A 0.004mg Sodium 5mg

Vitamin E (alpha-tocopherol)

2.44mg

Zinc 3.1mg

Vitamin K (menaquinone-4)

0.011mg

Copper 0.59mg

Manganese 2.03mg

Selenium 0.085mg

CHO, carbohydrates; Fat, lipids; FSOL, soluble fibers; FTOT , total fibers; LA, limiting aminoacid(s); Macros, macronutrients; Micro, micronutrients; NA, not available; Oligos, oligonutrients; Pro, proteins. Nutritional values were founded on

USDA Database (https://fdc.nal.usda.gov), CREA Database (https://www.alimentinutrizione.it/sezioni/tabelle-nutrizionali), BDA IEO Database (http://www.bda-ieo.it).
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FIGURE 1 | Structure and composition of grains.

TABLE 2 | Phytochemicals in cereals and their effects on health.

Phytochemical/antinutrient Potential effect on health References

Flavonoids, isoflavonoids,

anthocyanidins

Benefits: anti-free radicals’ action in cellular signaling, cancer prevention (7, 20, 31–35)

Harms: platelet aggregation, allergies, inflammation, and hepatotoxins

Fibers Benefits: blood cholesterol reduction, prevention of cardiovascular disease, metabolic

syndrome, type 2 diabetes and cancer

(16, 20, 24, 36)

Lectins Benefits: possible cancer diagnostic and treatment tools (9, 18, 37–42)

Harms: altered gut function, inflammation, food poisoning by lectin-rich foods, if not prepared

correctly

Oxalates Harms: probable inhibition of calcium absorption and increased calcium kidney stone

formation.

(9, 18, 43)

Phytate (IP6) Benefits: antioxidant, antineoplastic effect, decreasing kidney stone risk, decreasing

osteoporosis risk, decreasing dental calculi risk, preventing age-related cardiovascular

calcification

(9, 17, 18, 25, 44–52)

Harms: chelate calcium, iron and zinc, interfering with their absorption

Goitrogens Benefits: antineoplastic effect (9, 18, 19, 53–55)

Harms: altered thyroid function (hypothyroidism and/or goiter); inhibit iodine uptake

Phytoestrogens Benefits: reduced menopausal symptoms, reduced risk of cardiovascular disease, obesity,

metabolic syndrome, type 2 diabetes, cognitive disorders, several forms of cancer

(18, 56–64)

Tannins Benefits: antioxidant and radical scavenging agents, anticarcinogenic, immunomodulatory,

anti-diabetic, anti-obesity and cardioprotective agents

(8, 9, 18, 65–70)

Harms: inhibit iron absorption, negatively impact iron stores.

Saponins Harms: alteration of intestinal epithelial integrity, alteration of lipids absorption (including

vitamins A and E), putative hemolysis.

(9, 21, 71)

Proteinase’s inhibitors

(α-amylase inhibitors, trypsin

inhibitors and protease

inhibitors)

Benefits: prevention of obesity and type 2 diabetes. (9, 17, 72, 73)

Harms: delay in growth, reduction of protein digestibility, decreased glucose absorption rate.

Anthocyanins Benefits: antioxidant and anti-hypertension activity, cancer and metabolic syndrome

prevention, glycemic and bodyweight control, neurological, hepatic and retinal protection,

hypolipidemic agent, enhancing immune response and anti-aging agent

(6, 74–88)

decreased mineral bioavailability (9, 45). Cereals contain the
highest concentrations of phytate, mainly in the outermost
layer (18). Despite their antinutrient activity, phytates might

be antioxidants chelating excess iron, thereby avoiding the
damaging Fenton reactions (46, 47). Phytate could have
pleiotropic effect [enhancing immunity, inhibiting inflammatory
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cascade, decreasing cell proliferation (44, 47), decreasing
kidney stone risk (48), osteoporosis risk (25, 49), dental
calculi (50), preventing age-related cardiovascular calcification
(51, 52)]. However, these observations need to be confirmed by
further research.

Lectins, also named hemagglutinins, are a group of
carbohydrate/glycoconjugates-binding proteins (96), which
reversibly link characteristic carbohydrate portions on
cells, getting involved in autoimmune diseases genesis by
presenting wrong immune system codes and stimulation of
the differentiation of some white blood cells (possibly leading
to cancer, but no studies have yet demonstrated lectins to
be carcinogenic) (18, 97–99). Due their resistance to host
enzyme and bacterial degradation, lectins arrive functionally
and immunologically intact into the small intestine (37). In
animal models, binding to glycoconjugates and glycan receptors
of the enterocytes on their luminal surface, lectins showed
to induce alteration of intestinal integrity by compromising
nutrient absorption and reducing growth (9, 38–40). However,
considering human studies, lectins might have therapeutic effect
as nutraceutical agents: their high affinity and specificity to
glycans could be used as cancer diagnostic and treatment tools,
as adjuvants, together with conventional chemotherapy agents
(41, 42).

Saponins, a various family of secondary metabolites produced
by oats only among cereals, have a potent antifungal activity
(17, 21). Due their ability to bind to cholesterol group in
erythrocyte surfaces, saponins could lead to hemolysis in
vitro (71) and hinder sterol absorption and activity (including
vitamins A and E) (17), however saponins bio accessibility
is very low and so these interactions could be considered of
uncertain significance in vivo (100). Furthermore, saponins could
be inhibitors of digestive enzymes (e.g., trypsin, glucosidase,
amylase, lipase, and chymotrypsin) causing alterations of
intestinal epithelial cells integrity (17). However, saponins have a
strong hypocholesterolemic effect, in presence of cholesterol (9).

In cereals, compounds with antinutrient activities include α-
amylase inhibitors, trypsin inhibitors, and protease inhibitors
(17). The inhibition of α-amylase function increases time of
carbohydrate absorption (72), while in human diets trypsin
inhibitors reduce protein digestion and consequent amino acids
availability, leading to decreased growth rate and pancreatic
hyperplasia (17), like protease inhibitors (9). Nevertheless,
several studies demonstrated that enzyme inhibitors, including
alpha-amylase, alpha-glucosidase, and lipase inhibitors, might
prevent type 2 diabetes and obesity (73).

Tannins are high molecular weight polyphenol compounds
which link with carbohydrates and proteins with intra-
and inter-molecular hydrogen bonds, acting as antioxidant,
anticarcinogenic, immunomodulatory, and cardioprotective
agents (8, 9, 65–69). Although positive effect of antioxidants,
tannins could prevent dietary minerals absorption, such as zinc,
copper and iron absorption (9, 70, 101). They are present in
cereal grains, seeds, legumes, fruits, juices, cocoa beans, tea,
wines and nuts, representing one of the most plenty metabolites
among secondary plant ones (8).

Goitrogens are a heterogenous compounds group which
include foods, environmental toxins and drugs (102). They play
a role in thyroid function alteration increasing goiter and other
thyroid diseases risk.Withmastication and ingestion, myrosinase
(enzyme produced by human microflora and activated in
damaged plant tissue) converts the goitrongen glucosinolates
to several other compounds: nitriles, thiocyanates, sulforaphane
and isothiocyanates (53). Glucosinolates could have a role in
preventing cancer but also in impairing thyroid function (54, 55).
Among cereal, only millet contains a goitrogenic compounds:
C-glycosylflavones which inhibit thyroid peroxidase (TPO), as
shown in in-vitromodels (19).

Both plants and mammals produce oxalic acid, or oxalate, in
small amounts: plants for several functions (i.e., plant defense,
detoxification of heavy metals and calcium regulation) while in
mammals it represents a metabolite of ascorbate, hydroxyproline,
glyoxylate, and glycine. Oxalate can form soluble (with sodium
and potassium) or insoluble (with iron, magnesium, and
calcium) salts or esters (18), reducing absorption and probably
contributing to calcium oxalate kidney stone formation due to
hyperoxaluria (9, 18, 43). Oxalic acid is present in whole grains in
smaller amounts than amaranth in which it is more enriched (18).
Considering soluble and insoluble oxalate, wheat bran contains
more soluble oxalate than whole grains products (44 mg/100 g
in whole wheat flour, 113 mg/100 g dry weight vs. 13.8mg in
oats) (103).

Phytoestrogens are polyphenolic compounds derived from
plants with peculiar structural analogies to 17-β-estradiol,
female main sex hormone (104). They bind to estrogen
receptors (ER) with an higher affinities for β receptor rather
than α one and a fainter bond than 17-β-estradiol (56).
Intestinal microflora converts lignan phytoestrogens, one of the
four phenolic phytoestrogens compounds, to the “mammalian
lignans,” enterolactone and enterodiol (57, 104). Lignans are
extant in a very small amounts (<0.01 mg/100 g) in whole
grains, excepted for multigrain bread (105). According to the
currently published literature, phytoestrogens could have positive
effects on health (i.e., reducing risk of metabolic syndrome,
cardiovascular disease, type 2 diabetes, obesity, cognitive
disorders, several cancer types, menopausal symptoms). Their
role in increasing estrogen-sensitive breast and uterine cancer
risk has not been demonstrated, as their role as endocrine
disrupts, but last one only in babies and infants because of their
underdeveloped digestive tract (18). Petroski and Minich (18)
reported how phytoestrogen-rich products could be considered
in cancer prevention (i.e., breast, prostate, endometrial, and
colorectal cancer).

FARMING METHODS AND PROCESSING
AND THEIR IMPACT ON GRAINS
CONSTITUENTS

Numerous studies have showed that organic cereals, relative to
non-organic crops, contain higher levels of some vitamins (e.g.,
vitamin C) andminerals (e.g., iron, magnesium and phosphorus),
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TABLE 3 | Effects of processing on cereals nutrients composition.

Process Effect References

Organic farming May increase levels of vitamin C, iron,

magnesium, phosphorus, anthocyanins,

flavonoids and carotenoids

(107)

Refining Reduction of fiber, vitamins, minerals, and

phytonutrients. Refining increases the glycemic

index

(29, 108)

Soaking Reduction of phytic acid. Reduction of minerals

and extractable proteins from the water

(109)

Germination With germination, depending on the type of

cereal, it improves digestion and protein

content; increases crude fiber and the amount

of sugars. The quantity of vitamins, mineral

salts, oxalates, tannins, phytates, flavonoids

and phenols could be also modified.

(110–119)

Fermentation Starch hydrolysis. Increases the bioavailability

of minerals (e.g., calcium, phosphorus, and

iron). Variable effect on the glycemic index

(120–127)

Cooking Water-cooking methods facilitates losses of

water-soluble vitamins and minerals; the losses

amount varied by the cooking method and the

duration. Cooking also increases the glycaemic

index and, possibly, the antioxidant activity

(29, 128–140)

and are also low in nitrates and pesticide residues (106) (Table 3).
Organic foods provide higher levels of anthocyanins, flavonoids,
and carotenoids (106). Moreover, regular consumption of these
foods has been supposed to be associated with reduced risks of
several diseases, such as cancer (141). From a general perspective,
organic farming has some pros- and some contra-. Among the
former, it should be highlighted the greater biodiversity and the
better health of agricultural soil (142, 143); among the latter
the crop yield remains low per area compared to conventional
farming (144–146).

With the increase of the world population, it is necessary to
identify alternative strategies to the use of chemical substances
to preserve crops, in particular cereals, from diseases caused
by phytopathogens, because these substances negatively alter
the beneficial microbiota of the soil with repercussions also
on the final consumer (147). On the contrary, biocontrol
uses soil and beneficial microbes associated with the plants
themselves in order to stimulate the microbial population,
including antagonists and pathogens, so as to promote plant
growth and avoid the use of synthetic chemicals (148). This
mechanism is expressed through: indirect antipathogenesis
in which microbes improve the availability of soil nutrients
or nitrogen fixation, and direct antipathogenesis, in which
microbes fight pathogens by competition, by antibiosis, through
production of antipathogenic substances, by stimulating plant
defenses through induced systemic resistance, by enhancing the
soil microbiota (suppression of the soil), by hyperparasitism that
is the use of parasitic microbes of the pathogen, by the insertion
of genetic sequences with antipathogenic action on transgenic
crops (148). However, how these harvest methods could impact
on cereals nutrients contents is an area of active research.

Cooking is another aspect that might impact the vitamin and
micronutrients content in grains. For example, boiling causes
little losses of riboflavin relative to microwave and pressure
cooking (29); in pasta it has been reported that niacin losses
are higher than thiamine and riboflavin (128). Folic acid losses
were lower after boiling and frying compared to microwave and
pressure cooking (129, 130) while vitamin B12 losses after boiling
are moderate (131). Among methods that could cause vitamin
C loss, pressure cooking appears to induce the maximum loss
(132, 133). Interestingly, a study carried out on two varieties of
rice showed that boiling increases antioxidant activities and the
glycaemic index but does not impact on the phenolic content
(134). However, cooking temperature is a major factor the losses
of carotenoids (135–140).

Beyond farming and cookingmethods, refining (i.e., removing
the bran and germ) has a pivotal role in vitamin and
micronutrients loss (29, 108). Themain cereals subject to refining
are wheat, rice, corn, barley, oats, rye, and millet. After bran
and germ removal, a refined grains are composed mainly by the
endosperm and is therefore rich in starch.

Germination is the process that converts seeds into plants;
it takes place in favorable environmental conditions, including
the presence of water, oxygen, and suitable temperatures (110).
The effect of germination on the nutritional value of grains can
vary by the compound considered. For example, an increase in
phenolic compounds, flavonoids, crude proteins, and antioxidant
was described in buckwheat Instead, germination decreases
phytic acid content (111, 112). In corn, germination causes an
increase in phenols, fats, crude fibers, and total proteins content
(113, 114) while in Finger millet it increases the sugars, the
digestion of proteins, tannins, phytates, and starch (115). In
sorghum and millet there is an increase in crude fiber, minerals
and vitamins, increases the digestibility of proteins, sucrose,
glucose and fructose; on the other hand, oxalates, tannins and
phytates decrease (116–119).

Fermentation is the digestion of food compounds by bacteria
and/or yeast and represents one of themost ancestral methods for
food processing and preservation. Fermentation could improve
the sensory profile of foods favoring their preservation (120).
Through this process is possible to activate enzymes such as
α-amylase and maltase which hydrolyze starch and break it
down intomaltodextrins and simple sugars. During fermentation
there is a decrease of total carbohydrates because of their
metabolization by microorganisms (121). Minerals have a very
low bioavailability as they are bound to polysaccharides and
phytates of the cell wall; for example potassium is inaccessible to
digestive enzymes as long as it is chelated by phytate molecules
(122). Through fermentation it is possible to release these
minerals andmake them readily bioavailable (123). Furthermore,
fermentation increases the bioavailability of calcium, phosphorus
and iron probably because of degradation of oxalates and
phytates (124). Regarding glycaemic index, fermentation has
variable effects and different studies have showed discordant
results (125–127).

Soaking is a practice that consist in dipping whole grains
in water for a variable amount of time before being cooked.
Through soaking the endogenous phytases are activated and a
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significant part of phytic acid is removed. For example, soaking
sorghum flour for 24 h leads to acid phytic reduction up to
20% (109). However, while soaking can reduce the contents of
antinutrients, it might also facilitate the loss of minerals and
extractable proteins from the water.

Overall, since the various cooking methods could impact on
the nutrients composition of grains, consumers should be advised
to alternate cooking techniques and methods of preparations.

THE EFFECT OF CONSUMING WHOLE
GRAINS ON OBESITY

Observational and interventional trials have reported an
inverse correlation between whole grain-rich diets and obesity
parameters, in contrast to refined grains, which present a lower
nutritional quality (27, 149–151). There are differentmechanisms
through which whole grains can help in regulating the body
weight, including the fact that they promote satiety, thus leading
to a reduced food consumption (152).

A low glycemic index (GI) diet, typical of those containing
whole grains, has been shown to have a higher satiating power
than a high GI one, regardless of confounding factors like
consistency, flavor or percentage of fiber. A low GI diet is
characterized by slow digestion and absorption, thus stimulating
gastrointestinal receptors that induce satiety (153).

Among the various whole grain components, dietary fibers
play a pivotal role in this setting. When ingested, dietary
fibers bind water and form a thick agglomerate that can delay
gastric emptying and slow down the bowel movements, leading
to a reduced glucose absorption. Moreover, dietary fiber can
reduce the synthesis of insulin by the pancreas and reduce
the risk of hypoglycaemia in the post-absorption setting, thus
inducing early satiety and fatty acid catabolism with reduced fat
accumulation (154).

Dietary fibers stimulate the synthesis of intestinal hormones,
which exert an effect upon satiety and glucose metabolism.
For example, cholecystokinin, which is produced in the small
intestine, helps in regulating the release of pancreatic hormones
and in controlling gastric distention, but it also exerts an effect
at the level of the satiety regulation center in the hypothalamus.
Finally, the incretins (GIP and GLP-1), which are also produced
at the level of the small bowel, stimulate post-prandial insulin
synthesis and glucose homeostasis (155).

Moreover, when processed by the gut microbiota, dietary
fibers are broken down into short chain fatty acids (SCFAs),
which help in controlling body weight by decreasing gastric
emptying rate and increasing the satiating effect. In particular,
propionic and acetic acid have been found to reduce non-
esterified fatty acids plasma concentration, involved in peripheral
and hepatic insulin resistance. In addition, propionate may act
on glucose and insulin homeostasis and may stimulate GLP-
1 release, as suggested in an intervention trial in which a
dinner based on non-digestible carbohydrates has been shown to
improve glucose response of the subsequent breakfast (156).

Finally, whole grains have been reported to be rich in
prebiotics, which can influence gut microbiota composition thus
exerting a positive effect over the host body weight control. The
gut microbiota has recently emerged among the regulators of
body weight. It has been reported that the microbiota of obese
mice and human subjects is composed by less Bacteroidetes and
more Firmicutes compared to non-obese subjects. The different
composition of the bacterial flora may explain the different rate
of absorption of ingested foods, thus explaining the role of
dysbiosis in increased body weight (157, 158). However, several
lines of evidence have shown that microbiota composition could
modulate also systemic inflammation, which is an important
factor in glycemic resistance, and thermogenesis, which is a
contributor of body mass regulation (159).

WHOLE GRAINS AND CANCER

Cancer is caused by a complex interaction between environment
and genetic background (160). However, it has been estimated
that up to 40% of cancers could be avoided by a healthier lifestyle,
including diet (161). Although diet should be evaluated as the
whole foods that are assumed by a person (i.e., the specific diet
pattern), several lines of evidence highlight a protective role of
WG on cancers, particularly on colorectal cancer (CC).

For example, the umbrella review of Tieri et al. (3) has
shown a convincing risk-reducing effect of WG on CC incidence.
This data is aligned with several lines of evidence that support
a protective role of WG on CC [e.g., data from 2018 World
Cancer Research Fund’s (WCRF)]. However, this work has also
showed a putative risk-increasing effect of WG on prostate
cancer. This observation is not supported by the evidence of
WCRF. Possible explanations for this discrepancy might stem
from the different definitions of WG in the studies included
in the analyzes or the increased prostate cancer screening
(i.e., PSA testing) in the population consuming high levels
of WG that could be composed by more health-conscious
men (3).

In the pivotal work of Reynold et al., it has been shown
that a diet high in WG and/or fibers has a significant lowering
impact on CC incidence and whole cancer mortality (162).
In particular, the protective effect on CC and mortality in
terms of relative risk is 0.84 (IC 95% 0.78–0.89) and 0.87 (IC
95% 0.79–0.95) for high fiber diet and 0.87 (IC 95% 0.79–
0.96) and 0.84 (IC 95% 0.76–0.92) for high WG consumption.
Although this study represents solid evidence to recommend
regular consumption of grains in their whole form, it is not
able to show how they exert their protective role on cancer
incidence/mortality. In particular, it seems that a large part of
the positive health effect of WG could be linked to their high
fiber contents (162, 163), although a protective role of other
components (e.g., phytochemicals, antioxidants, minerals) could
not be excluded.

A regular consumption of fibers, estimated to be at least
25–29 g per day (162), seems to protect against cancer with at
least three different mechanisms. First, since fibers are chemical
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substances that cannot be metabolized by the gastrointestinal
tract, their presence could accelerate the feces’ transit time,
reducing the exposition of carcinogens to colonocytes (164–166).
Second, fibers can be digested by gut microbiota (i.e., lactic-acid-
producing bacteria) which can produce lactic acid and short-
chain fatty acids (SFAs) (e.g., butyrate, acetate, propionate) as
a consequence of their metabolism (167). It has been shown
that butyrate can be used directly by colonocytes as a growth
factor and as a nutrient (167). However, it might also exert
some epigenetic effects, for example stimulating the acetylation of
histones (168). It has been postulated that this epigenetic activity
might exert a protective role on the neoplastic degeneration of
colonocytes (168). Third, fibers may slow down food digestion
and increase satiety thus favoring the loss of weight. Since
several lines of evidence link visceral fat with insulin resistance,
hyperinsulinemia, pro-inflammatory state, and cancer, fibers
could indirectly reduce cancer pathogenesis acting of body
composition (169–173).

Although the anticancer role of other nutrients present inWG
is still debated, it appears plausible that some phytochemicals
could be able to impair malignant cell transformations or
progression. For example, phytates might chelate various metals,
reducing the probability of oxidative damage of normal cells
in presence of oxygen (174). A putative anticancer role has
been hypothesized also for saponins (175) and some other
phytochemicals (164).

Phytoestrogens are phytochemical compounds present in
some cereals, and, in the past, it was postulated that they
increase the risk of some cancers because of their pro-
estrogenic effect (56). However, several lines of clinical evidence
support the idea that these compounds can instead reduce
the risk of hormonal cancers such as breast cancers (176).
Although this observation could appear puzzling, the cancer
protective effect might derive from their competing activity with
endogenous estrogens and their preferential signaling through
estrogen receptors beta, that have shown to impair cancer cells
growth (177).

Comprehensively, several lines of evidence highlight that high
WG intake reduces CC incidence and overall cancer mortality;
fewer solid conclusions can be drawn for the other cancer types.
Although the protective role of WG on cancers appears to be
linkedwith their fibers content, the effect of other phytochemicals
cannot be excluded.

WHOLE GRAINS AND CARDIOVASCULAR
DISEASES

Healthy dietary regimens exert a protective role against a
number of chronic diseases. In particular, whole-grains cereal
products and their components, including cereals fibers and
bran, have been consistently found to exert a cardioprotective
effect (178–180).

Whole grain and cereals fiber consumption reduces the risk of
atherosclerosis and coronary artery disease (CAD) progression.
Indeed, a comprehensive analysis that evaluated the association

of whole grains consumption and atherosclerotic cardiovascular
diseases (CVD) showed that an increased consumption of
whole grains significantly reduces the risk of occurrence of
CVD (181, 182).

The correlation between whole grain intake and ischemic
stroke is less clear. An increased consumption of whole grains
has been found to reduce, in a non-significant manner, the risk
of stroke when compared to a lower intake. Instead, significant
data have been reported for individual whole grain components.
In particular, cold breakfast cereals and bran consumption
lowers the risk of occurrence of ischemic stroke, while regular
popcorn consumption enhances this risk. However, since such
a correlation was not reported for light and fat-free popcorn,
it could be postulated that several compounds, including
trans fat, butter and sodium, could be responsible for this
effect (179).

Whole grains have demonstrated to have pleiotropic
effects and the cardioprotective action related to whole grain
consumption depends upon several mechanisms (183). Whole
grains are composed by bran, germ and endosperm. When
whole grains are processed to produce flour, the endosperm
(full of carbohydrates) is retained, whereas bran and germ,
along with their constituents (fiber, vitamins, minerals and anti-
oxidants) are eliminated. The cardioprotective benefit obtained
through the consumption of whole grains is particularly
attributable to the effects upon the lipid metabolism: whole
grains components, including soluble fiber and phytosterols,
act upon numerous lipid intermediates, determining a less
atherogenic lipid profile. Moreover, whole grains constituents,
like phytoestrogens and anti-oxidants, exert a beneficial effect
upon the vascular endothelium, thus reducing the risk of
endothelial dysfunction, that is another major risk factor for
atherosclerosis (178, 183). In the CARDIA study, whole grains
were inversely associated with cell-adhesion molecules related to
vascular dysfunction and CDV. In particular, adiponectin, which
is a peptide released from adipocytes, exerts a cardioprotective
activity and lower plasmatic concentrations of adiponectin are
commonly observed in obese subjects as well as those with
CVD and can induce HTN and endothelial malfunctioning
(184, 185).

Whole grains, cereal fibers and bran intakes have also been
proven to reduce the level of circulating inflammatory markers
and to lower incidence of elevated blood pressure, which are both
recognized cardiovascular risk factors (186, 187).

Among the various cardiovascular risk factor, the role of
dysbiosis has recently emerged. Gut microbiota dysregulation
induces bowel inflammation, with consequent increase in the
permeability of the gut membrane and thereafter increased
release of bacterial components and metabolites that can lead
to an augmented risk for CVD. Dietary modifications increasing
the daily consumption of whole grains can represent a feasible
opportunity in this setting, aiming at restoring the integrity of
the gut barrier and at improving the composition of the intestinal
flora. Whole grains are in fact rich in prebiotics, which can
positively modify the composition of the intestinal flora with
beneficial effects upon the host (188, 189).
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WHOLE GRAINS AND DIABETES
MELLITUS TYPE 2

Following a regular, balanced diet and practicing moderate
physical activity in a regular manner are crucial for both the
prevention and management of type 2 diabetes mellitus (T2DM).

Whole grains consumption not only allows to prevent T2DM
occurrence, but it also helps in controlling T2DM-related factors,
such as overweight and obesity, as it has been reported that a
diet rich in whole grains determines a better control of the BMI
(121, 179–183).

However, conflicting data exist upon this topic. In fact, a meta-
analysis of 26 randomized clinical trials (RCTs) reported a non-
significant impact upon body weight control in subjects with an
elevated BMI when following a diet rich in whole grains, even
though whole grain consumption can actually reduce the body
fat percentage, when compared to a diet rich in refined grains
(190, 191). If individual constituents are considered, instead, a
diet rich in rye helps in controlling and, in particular, in lowering
the body weight, differently from refined wheat-based diet (192).

Different pathways can be activated by whole grains and their
components (especially dietary fiber), determining an effect upon
the glycemic control. Dietary fiber, in particular, increases gastric
distention and delays intestinal transit time, thus determining
early satiety and leading to increased production of molecules
active upon the energetic and glycemic balance. Furthermore,
the lower energy density of whole grains reduces the energy
intake, which leads to decreased body fat and improved insulin
sensitivity. Finally, dietary fiber delays nutrient absorption at
the intestinal level, reducing insulin demand and stimulating fat
absorption, ultimately reducing the fat storage (191).

Whole grains constituents exert anti-oxidant properties and
reduce the synthesis of pro-inflammatory molecules, thereby
improving insulin sensitivity and preventing the onset and
evolution of T2DM (193).

Whole grains are also rich in vitamins and minerals, which
help in improving the glycemic control by both regulating
insulin-mediated hepatic glucose uptake (vitamin B complex
and magnesium) and regulating the oxidative and inflammatory
pathways (vitamin E and zinc). T2D comes with a progressive
reduction of intracellular zinc levels and increased urinary
excretion: zinc supplementation has been proven to exert anti-
oxidant properties and lower the synthesis of inflammatory
molecules, such as TNF-alpha and IL-1beta (194–197).

In patients with a diagnosis of diabetes mellitus (DM),
glycemic control helps in lowering the risk of T2DM-related
micro-/macro- vascular complications. An increased intake of
fiber (especially soluble fiber) has been associated with a better
glycemic control in diabetic patients. With respect to individual
constituents, glycated hemoglobin and fasting plasma glucose
have been found to be significantly lower in diabetic patients
following a diet including regular oat intake, if compared to
dietary regimens rich in other cereals. Moreover, oatmeal intake
allows for a better glycemic control, with lower post-prandial
glucose and improved insulin activity, when compared with a
control meal (191, 198–200).

WHOLE GRAINS AND
NEURODEGENERATIVE DISEASES

The activation of oxidative and pro-inflammatory pathways,
as well as mitochondrial dysfunction, can alter several
physiological mechanisms, ultimately leading to different
kinds of neurodegenerative disorders. Novel approaches in
regulating this mechanisms could be helpful in treating and
preventing the onset of these diseases (201, 202).

Whole grains are rich in polyphenols, which are involved
in the regulation of several pathways, including the oxidative
and inflammatory ones, and they are also involved in the
modulation of the host immune response, as suggested by both
observational end experimental studies (203–205). Moreover,
polyphenols inhibit mitochondrial dysfunction by activating pro-
survival molecules, such as Bcl-2 and PERK and by releasing anti-
oxidant enzymes, including catalase and superoxide dismutase
(206, 207). Polyphenols can help in improving cognitive
functioning by blocking the action of acetylcholinesterase and
butyrylcholinesterase, thus inducing metal chelation, autophagy
regulation and prion elimination (208).

Preclinical data from mice suggest that resveratrol might
prevent neuronal loss. SRT501, an oral formulation of
resveratrol, stimulates mitochondrial function by activating
SIRT1, an NAD+-dependent deacetylase, in autoimmune
encephalomyelitis, an animal model of multiple sclerosis (209).
Resveratrol is also associated with a neuroprotective effect in
6-hydroxydopamine (6-OHDA)-induced Parkinson’s disease rat
model, as evidenced by the reduction in DNA condensation and
vacuolization of dopaminergic neurons in the substancia nigra.
In addition, a lower expression of COX-2 and TNF-α has been
shown (210).

Therefore, due to all these beneficial effects, whole grains and
their constituents, especially polyphenols, may exert a beneficial,
neuroprotective effect, thus representing a feasible therapeutic
opportunity in this setting (211).

WHOLE GRAINS AND AUTOIMMUNE
DISEASES

As already reported, whole grain consumption can regulate
the organism’s inflammatory state. Gluten is a proteic complex
that can be found in different types of cereals and it is
composed by glutenins and gliadins. The gliadins present in
wheat gluten can induce celiac disease (CD) in genetically
susceptible individuals: it is a chronic inflammatory disorder
characterized by inflammation of the intestinal mucosa with
increased permeability, small intestinal villous atrophy and
consequent malabsorption. A similar histopathological pattern
has been observed in other autoimmune diseases and in healthy
people (212, 213).

The exposure of mononuclear cells to gliadins determines
the expression of inflammatory cytokines in both CD and non-
CD patients (214). Enterocytes, in response to the interaction
between gliadins and CXCR3 (a chemokine receptor), release
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zonulin, which can alter the integrity of the plasma membrane.
It has been reported that gliadin intake can lead to the release
of zonulin in both CD and non-CD patients, in both cases
leading to an increased intestinal permeability, with an increased
amount of microbial and dietary elements that can reach the
periphery and interact with the immune system (215). Actually,
this increased intestinal permeability has been postulated to
be associated with multiple forms of autoimmune diseases in
genetically predisposed individuals (216–218).

Besides gliadin, the lectin wheat germ agglutinin (WGA) plays
a synergistic role. In rat small bowel, WGA stimulates monocytes
and macrophages to produce pro-inflammatory cytokines, after
binding to N-glycolylneuraminic acid, a glycocalyx sialic acid;
this, subsequently, affects intestinal permeability (219, 220).
Human data are lacking, although high concentrations of
antibody to WGA have been found in CD-patients (221).

Thereafter, diets rich in cereals seem to exert a detrimental
effect upon the insurgence of autoimmune disease, especially CD.

However, a better understanding of the effects of whole grains
in this setting is needed and, in particular, it could be interesting
to evaluate what could be the consequences of eliminating the
cereals from the diet in terms of inflammatory response and
intestinal permeability, not only in healthy individuals, but also
in those presenting with autoimmune disorders (222).

WHOLE GRAINS AND OTHER CHRONIC
DISEASES

An increased consumption of whole grains and their
constituents, like dietary fiber, can determine a positive
outcome upon several gastrointestinal disorders.

In particular, dietary fiber, with its intrinsic characteristics,
such as viscosity, solubility and fermentability, can regulate
the glycemic and lipidic absorption at the bowel level, it can
control the bowel movements and determine an alteration of the
intestinal flora (166).

There is evidence supporting the role of dietary fiber in
controlling and ameliorating IBS symptoms (mostly in forms of
the disease which present with constipation), by regulating the
texture and the frequency of the stool output (223, 224).

In IBD, dietary fiber consumption is associated with the
production of short-chain fatty acids (especially butyrate),
which improve the bowel inflammatory status by up-
and down-regulating the anti- and pro-inflammatory
cytokines, respectively.

Finally, dietary fiber intake lowers the incidence of diverticular
disease by rendering the stools more bulky, attenuating the
pressure at the level of the large intestine membrane and thus
reducing micro-herniation (166).

Patients with chronic kidney disease (CDK) on hemodialysis
are recommended not to include whole grains in their diet,
given the high amount of phosphorus contained in these
foods. In CKD, phosphorus elimination is impaired, determining
secondary hyperparathyroidism and inducing calcium deposits
within the blood vessel wall, with consequent higher frequency
of occurrence of CVD and negative impact upon survival (225).

As said, whole grains constituents determine a protective
effect against a number of different pathologies, such as
obesity, insulin resistance, T2DM, CVD and cancer (179, 180).
These protective effects can be observed in both subjects with
CVD, T2DM and elevated BMI and in healthy individuals;
furthermore, it has been postulated that these beneficial effects
are present also in patients with kidney disease, especially the
ones presenting T2DM, CVD and elevated BMI as comorbidities
(225). Whole grain consumption in CKD patients could be
therefore reconsidered, but further research is needed to better
understand their role in this setting.

Low bone mineral density (BMD) depends upon different
non-modifiable and modifiable risk factors, including
lifestyle factors. Consequently, it has been postulated that
the occurrence of serious complications of low BMD,
including fractures, can be avoided through lifestyle
changes. The role of diet in ameliorating bone health is
well established and dietary regimens including whole grains
have been found to determine positive effect upon BMD
(226, 227).

Cereals are often part of many people’s breakfasts. They
are usually considered a healthy food due to the misleading
messages that praise their properties, not infrequently found
in commercial packages. However, it is important to pay
attention to the composition of ingredients which can vary
between the different products on the market. In particular,
it is necessary to favor those richer in fibers and with low
carbohydrate content. In addition, it is important to emphasize
the theoretical detrimental effect of phytates in wheat bran
that may interfere with absorption of calcium from other
foods consumed at the same time (228). For example, having
breakfast with wheat bran and milk concomitantly might limit
the absorption of calcium with a virtual reduction of the
preventive effects in terms of bone health. It should be noted
that the same interference with calcium absorption seems
attenuated in wheat bran present in bread or other foods,
where the cereal and therefore the phytates are present in
lower concentrations.

CONCLUSION

Whole grains represent a pivotal food for a healthy diet (Table 4;
Figure 2). Besides their carbohydrates content which makes
whole grains a main energetic food, whole grains are also an
important source of protein, fibers, phytocompounds, minerals,
and vitamins. In particular, it should not underestimated their
role as source of fibers, since a regular consumption of fibers
has shown to be associated with a lower risk of several chronic
diseases. Moreover, the recent scientific progress on microbiota
field has allowed to appreciate the crosstalk between fibers
and commensal flora to impinge on metabolic disfunction
and immune dysregulation. Although the complex interplay
between fibers/phytocompounds and microbiota has yet to be
elucidated, it might represent the crucial pathway behind the
healthy effect of whole grains. Moreover, it could be postulated
that the identification of microbiota’s produced compounds after
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TABLE 4 | Potential effects of whole grains on diseases.

Disease Potential effects of cereals References

Cancer Reduced colon cancer incidence and cancer mortality (162)

Atherosclerotic cardiovascular disease Whole grains reduce the risk of atherosclerotic CVDs (181, 182)

Stroke Breakfast cereal and bran lower the risk of ischemic stroke; regular popcorn increases the

risk of ischemic stroke

(229)

Elevated blood pressure Whole grains lower the incidence of elevated BP (187)

Type 2 diabetes mellitus Whole grains lower the risk of T2DM and related risk factors (191, 230)

Irritable bowel syndrome Dietary fiber attenuates IBS symptoms (223, 224)

Inflammatory bowel disease Dietary fiber reduces intestinal inflammation (166)

Diverticular disease Dietary fiber reduces the risk of diverticular disease (166)

Chronic kidney disease Whole grains can exert a beneficial effect in CDK (225)

Low bone mineral density Whole grains improve BMD and reduce the risk of its related complications (226, 227)

Alzheimer’s disease Acetylcholinesterase inhibition by polyphenols, improving synaptic transmission, amyloid β

toxicity reduction

(231)

Multiple sclerosis Neural loss prevention through SIRT1 activation by polyphenols (232)

Parkinson’s disease Antioxidant and antiapoptotic effect by polyphenols (211)

Huntington’s disease Genetic and immunological modulation by poliphenols (233)

Celiac disease Intestinal mucosal inflammation and increased permeability by gliadin and prolamins (215)

FIGURE 2 | Effect of WG on health and diseases.

ingestion of WG could be used to synthetize new drugs or the
new generation of supplements.

In addition, it should be underlined the importance of
limiting refined grains since they are a poorer source of fibers,
phytocompounds, minerals, and vitamins in comparison to

their whole counterpart. As stated by the Dietary American
guidelines, whole grains should be consumed on a daily basis
and at least the half of the quantity should be in the whole
form. Substituting refined cereals with their integral counterparts
should be facilitated by educational campaigns.
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Comprehensively, while the whole grains positive effects on
health are clear, in the future it will be crucial to understand the
underlying biological mechanisms that govern their activities.
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