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Abstract: Non-alcoholic fatty liver disease (NAFLD) is an ‘umbrella’ term, comprising a spectrum
ranging from benign, liver steatosis to non-alcoholic steatohepatitis, liver fibrosis and eventually
cirrhosis and hepatocellular carcinoma. NAFLD has evolved as a major health problem in recent years.
Discovering ways to prevent or delay the progression of NAFLD has become a global focus. Lifestyle
modifications remain the cornerstone of NAFLD treatment, even though various pharmaceutical
interventions are currently under clinical trial. Among them, sodium-glucose co-transporter type-2
inhibitors (SGLT-2i) are emerging as promising agents. Processes regulated by SGLT-2i, such as
endoplasmic reticulum (ER) and oxidative stress, low-grade inflammation, autophagy and apoptosis
are all implicated in NAFLD pathogenesis. In this review, we summarize the current understanding
of the NAFLD pathophysiology, and specifically focus on the potential impact of SGLT-2i in NAFLD
development and progression, providing current evidence from in vitro, animal and human studies.
Given this evidence, further mechanistic studies would advance our understanding of the exact
mechanisms underlying the pathogenesis of NAFLD and the potential beneficial actions of SGLT-2i
in the context of NAFLD treatment.

Keywords: non-alcoholic fatty liver disease; NAFLD; MAFLD; SGLT-2; sodium-glucose co-transporter
type-2 inhibitors; metabolic syndrome

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) has become a major health problem world-
wide with an increasing prevalence ranging from 13% in Africa to 42% in South-East
Asia [1,2]. The term NAFLD includes a variety of diseases, ranging from liver fat de-
position in more than 5% of hepatocytes (steatosis—non-alcoholic fatty liver (NAFL)) to
necroinflammation and fibrosis (non-alcoholic steatohepatitis (NASH)), which can progress
into NASH-cirrhosis, and eventually to hepatocellular carcinoma [3,4]. Determining ways
to delay the progression of NAFLD has become a global focus.
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Lifestyle modifications—namely improved diet, weight management and increased
physical activity—play a fundamental role in the treatment in NAFLD, since more than
half of the patients with NAFLD have a high body mass index (BMI) [5,6]. Of note, drugs
for specifically treating NAFLD are now being developed/approved, thus management of
co-morbidities such as obesity, dyslipidemia or type 2 diabetes mellitus (T2DM) remains
the cornerstone for the treatment of NAFLD patients [7,8].

Interestingly, since the cardiometabolic disorders associated with NAFLD account for
the increased morbidity and mortality in these patients, the term metabolic (dysfunction)
associated fatty liver disease (MAFLD) has been recently proposed by a panel of interna-
tional experts as more appropriate, reflecting the underlying pathogenesis of the NAFLD
spectrum [9-11]. Masarone et al., revealed that the prevalence of NAFLD was 94.82%
among patients with metabolic syndromes (MS) and was presented in all T2DM patients
with elevated transaminases when they performed biopsy [12]. Surprisingly, 58.52% of
MS and 96.82% of T2DM patients in this study were diagnosed with NASH. As insulin
resistance (IR) is crucially linked with both T2DM and NASH pathophysiology [13], they
concluded that NASH may be one of the early clinical manifestations of T2DM [12]. Of note,
NAFLD, particularly steatohepatitis, has also been associated with an increased risk of
cardiovascular-related mortality regardless of age, sex, smoking habit, cholesterolemia and
the remaining elements of MS [11]. Several prospective, observational and cross-sectional
studies and meta-analyses demonstrated that NAFLD is associated with enhanced preclini-
cal atherosclerotic damage as well as coronary, cerebral and peripheral vascular events with
anegative impact on patients” outcome [14]. Furthermore, the severity of liver biopsy-based
fibrosis has been independently associated with the worsening of both systolic and diastolic
cardiac dysfunction [15,16].

Sodium-glucose co-transporter type-2 (SGLT-2) inhibitors (SGLT-2i) are glucose-lowering
agents that improve glucose control, whilst promoting weight loss and lowering serum
uric acid levels. These agents have shown great advantages even in patients with no
diabetes, gaining approval of use in non-diabetic patients with heart failure and chronic
kidney diseases [17,18]. In addition to the anti-hyperglycemic effects and their ability
to reduce body weight, SGLT-2i seem to exert potent antioxidant and anti-inflammatory
effects making them promising candidates for NAFLD treatment.

Indeed, recent data from animal studies and clinical trials have demonstrated beneficial
effects of SGLT-2i on fatty liver accumulation, as judged by improvement of biological
markers of NAFLD, as well as by imaging techniques, albeit mainly in T2DM patients.

Herein, we provide current insights into the effects of SGLT-2i on the progression
of NAFLD, focusing on the underlying mechanisms of action. Endoplasmic reticulum
(ER) stress, oxidative stress, low-grade inflammation, autophagy and apoptosis are among
the SGLT-2i-regulated processes that have been shown to mediate the beneficial effects of
SGLT-2i on NAFLD. Accordingly, we present the available evidence from in vitro, animal
and human studies regarding the potential impact of SGLT-2i on NAFLD development and
progression.

2. Overview of NAFLD Pathogenesis

The main theory concerning the pathophysiology of NAFLD has changed over time,
reflecting the advances in our understanding of this multi-factorial disease. For years, the
“two-hit” theory was the prevailing one. According to this theory, the pathophysiology of
NAFLD consisted of a first “hit” representing the stage of simple steatosis alone (NAFL),
which involves hepatocytic lipid accumulation and hepatic insulin resistance [19], as well as
of a second “hit” from other factors (e.g., oxidative stress, ER stress, other injury), which was
required for the development and progression of hepatic inflammation (NASH) and fibrosis.
Replacing this initial theory, the “multiple parallel-hit” model [20] has been more recently
proposed to better explain the complex pathogenesis and progression of NAFLD. According
to this theory, as its name suggests, different amalgamations of numerous (epi)genetic and
environmental factors, representing “hits”, dynamically interplay with each other, and can
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drive the development and progression of NAFLD. These factors include specific genetic
polymorphisms and epigenetic modifications [21], features of metabolic syndrome [22-25]
(western diet, lack of physical activity, central obesity, dysregulation of adipoknes and IR),
lipotoxicity [26,27], dysbiosis of the gut microbiota [26], dysregulation of autophagy and
mitochondrial function [28-30], ER stress [31], hepatocyte homeostasis and death [32,33],
as well as inflammatory and fibrotic responses [34,35]. Notably, when the hepatic capacity
to handle the primary metabolic energy substrates is overwhelmed, toxic lipid species
accumulate in the liver, leading to hepatocyte dysfunction and apoptosis, along with
metabolically triggered inflammation and subsequent fibrosis [36].

The hallmark of NAFLD pathogenesis seems to be an increased adipocyte-like (dys)fu-
nction of the hepatocytes, when the capacity of adipose tissue to store excess energy
from the diet is diminished [37-40]. In conditions of energy surplus, increased metabolic
substrates in tissues [27] drive hepatic de novo lipogenesis [41-43], while enhancing IR
leading to a vicious cycle. The accumulation of intrahepatic lipid levels are governed by
the balance between lipids synthesis, uptake and lysis [44]. Loss of equilibrium between
lipogenesis and lipolysis leads to intracellular accumulation of free fatty acids (FFA) and
subsequent hepatocellular damage, IR, worsening of liver function, formation of hepatic
steatosis and progression to NASH, cirrhosis, and hepatocellular carcinoma [44].

In most individuals with NAFLD, dysregulation of adipokines (e.g., leptin and adiponec-
tin) and metabolic-induced inflammation impair insulin signaling in adipocytes [45,46]. This
impairment, in turn, contributes to reduced FA uptake and accelerated lipolysis in subcuta-
neous adipose tissue, resulting in exces sive delivery to the liver [45-47]. When hepatocytes
are overloaded with lipids, physiologically minor pathways of 3-oxidation in the peroxi-
somes and the ER are upregulated, thus increasing the hepatocyte reactive oxygen species
(ROS) production [41,48] and generating highly reactive aldehyde by-products [49]. This
phenomenon leads to nuclear and mitochondrial DNA damage, phospholipid membrane
disruption and cell death. Moreover, due to the mitochondrial dysfunction and the conse-
quent impaired {3-oxidation found in patients with NAFLD, FA are alternatively esterified
and collected in lipid droplets in the ER [50,51], generating toxic lipid metabolites, such as
diacylglycerols [24], ceramides [52,53], and lysophosphatidyl choline species [53], which
in turn lead to hepatocyte dysfunction (lipotoxicity) [54,55] and ER stress. The adaptive
homeostatic mechanism of ER stress, called the unfolded protein response (UPR) [56], is
impaired in NAFLD patients and, thus further cell stress-sensors are activated, whilst
inflammatory and apoptotic pathways are upregulated [57,58]. In addition, the gut mi-
crobiota seem to also play a critical role in NAFL and NASH pathogenesis. Gut-derived
pathogens and damage-associated molecular patterns activate an intrahepatic inflamma-
tory process via Toll-like receptor signaling and NLR family pyrin domain containing-3
(NLRP3) inflammasome activation [35,59,60]. Hepatic innate immune cells, including
Kupffer cells and dendritic cells, as well as hepatic stellate cells (HSCs) are then activated
and the liver parenchyma is progressively infiltrated by recruited neutrophils, monocytes,
T-lymphocytes, and macrophages [34,61]. Subsequently, the secreted cytokines and growth
factors intensify the inflammatory process and further contribute to the fibrotic process as
an ineffective attempt for tissue regeneration [35]. Overall, NAFLD is characterized by a
complex pathogenetic mechanism, where various pathways are implicated, making the
discovery of a “wonder drug” a difficult task (Figure 1).
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The molecular mechanism of SGLT-2i hepatoprotective action
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Figure 1. SGLT-2 inhibitors as a promising therapeutic agents for treatment of NAFLD/NASH
patients. SGLT-2i treatment contributes to alleviation of NAFLD by reduction of hyperglycaemia,
improvement of systematic insulin resistance, elevation of caloric loss and reduction of body weight
mostly due to glycosuria. Apart from that, SGLT-2i play a hepatoprotective effect through reduction
of hepatic de novo lipogenesis, hepatic inflammation, apoptosis, ER-stress, oxidative stress, and
increase of hepatic beta-oxidation. Reduced activation of hepatic satellite cells and p53/p21 pathways
by SGLT-2i leads to amelioration of hepatic fibrosis and HCC development. FFA: Free fatty acids;
DNL: De novo lipogenesis; HCC: Hepatocellular carcinoma; TC: Total cholesterol; TG: Triglycerides;
LDL: Low density lipoprotein; VLDL: Very low density lipoprotein; GNG: Gluconeogenesis; HSC:
Hepatic stellate cells; IR: Insulin resistance; ROS: Reactive oxygen species; ER-stress: Endoplasmic
reticulum stress.

3. SGLT-2i Overview

Phlorizin, a b-Dglucoside, was the first natural non-selective SGLT-2i isolated from
the bark of the apple tree in 1835 and was initially used for fever relief and treatment of
infectious diseases [62,63]. Phlorizin contains a glucose moiety and an aglycone in which
two aromatic carbocycles are joined by an alkyl spacer. Approximately fifty years later,
scientists observed that phlorizin in high dose lowered plasma glucose levels through glu-
cosuria independently of insulin secretion [62—-64]. However, the mechanism of phlorizin
action through the active glucose transport system of the proximal tubule was revealed in
the early 1970s [62,65].
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Thereafter, researchers began to discover the exact mechanism of phlorizin action and
its potential application in the management of hyperglycaemia. Phlorizin, when delivered
orally, undergoes hydrolysis of the O-glycosidic bond by intestinal glucosidases, leading to
formation of phloretin, which is capable of GLUT transporter inhibition and uncoupling of
oxidative phosphorylation. Due to Phlorizin’s low SGLT-2 selectivity, rapid degradation,
inhibition of the ubiquitous glucose transporter 1 (GLUT1), poor intestinal absorption and
its gastrointestinal side effects (e.g., diarrhea and dehydration), possibly due to its higher
potency for SGLT-1, it failed to be developed as an antidiabetic drug [62,66-68].

Nevertheless, in order to overcome the aforementioned side effects of phlorizin, a
researcher developed a devphlorizin-based analog with improved bioavailability /stability
and more selectivity towards SGLT-2 than SGLT-1. Initially, they focused on the devel-
opment of O-glucoside analogs such as T-1095, sergliflozin and remogliflozin [69,70].
However, due to their poor stability and incomplete SGLT-2 selectivity, pharmaceutical
industries turned to another derivative of phlorizin known as C-glucosides [62].

Since then, there have been numerous attempts to synthesize phlorizin C-glucoside
analogs with sufficient potency and selectivity for inhibition of SGLT-2. These attempts
led to development of dapagliflozin by Meng et al., in 2008 [71]. Dapagliflozin demon-
strated more than 1200-fold higher potency for human SGLT-2 versus SGLT-1. Apart from
dapagliflozin, during the next years, several other C-glucoside inhibitors have been devel-
oped and approved by United States Food and Drug Administration (FDA). Canagliflozin,
characterized by a thiophene derivative of C-glucoside, showed over 400-fold difference in
inhibitory activities between human SGLT-2 and SGLT-1 [72]. Thereafter, empagliflozin,
which has the highest selectivity for SGLT-2 over SGLT-1 (approximately 2700-fold), was
the third agent approved by both the European Medicines Agency (EMA) and the FDA,
while other SGLT-2i, namely luseogliflozin and topogliflozin, are approved so far for use
only in Japan, and ipragliflozin only in Japan and Russia [73-77].

The structure of phlorizin and currently FDA-approved SGLT-2 inhibitors in the United
States, including dapagliflozin, canagliflozin, empagliflozin, and ertugliflozin, along with
their chemical formulae and brand names are presented in Figure 2 [78]. Diverse structures
of other SGLT-2 inhibitors have been previously disclosed in various articles and in a
number of patents [79,80].

SOUes
Y L
o g o

Canagliflozin (C,,H,sFO5S)

Phlorizin (C,,H,,0,) Dapagliflozin (C,;H,5ClOg)

Brand Names:
(Invokamet, Invokana)

CCOLL Q

W

Brand Names:
(Edistride, Farxiga, Forxiga, Qtern,
Qternmet, Xigduo)

Empagliflozin (C,;H,,ClO;) Ertugliflozin (C,,H,sClO,)
Brand Names: Brand Names:
(Glyxambi, Jardiance, Synjardy, (Segluromet, Steglatro, Steglujan)

Trijardy)

Figure 2. Structure of phlorizin and FDA-approved SGLT-2 inhibitors.
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4. SGLT-2 Inhibitors in NAFLD
4.1. Laboratory Experiments
4.1.1. In Vitro Data

The expression of both SGLT-1 and SGLT-2 co-transporters has been reported in human
hepatocellular carcinoma cells (HepG2) [81-83], whilst SGLT-2 has also been identified in
immortalized human primary hepatocyte cells (HuS-E/2), as well as immortalized normal
human hepatocyte-derived liver cells (L02) [84,85].

Studies have indicated that most SGLI-2i exert anti-proliferative activity in several
hepatocellular cell lines, through—among other mechanisms—attenuation of glucose up-
take [86]. Incubation of both L02 and HepG2 cells with canagliflozin at various concentra-
tions for 24 h resulted in a significant reduction of cell proliferation through an increase in
GO0/G1 and a decrease in G2/M phase cell population [86]. In addition, an apoptotic effect
was exhibited through activation of caspase 3 in HepG2 cells [87]. From a mechanistic point
of view, cell growth regulators, cyclins and cyclin-dependent kinases (CDKs) have been in-
dicated as direct targets of SGLT-2i to control proliferation and survival processes. As such,
canagliflozin-treated HepG2 cells demonstrated increased expression of the cell growth
regulator hepatocyte nuclear factor 4ec (HNF4«) [82]. Furthermore, reduced expression
of cyclin D1, cyclin D2 and cdk4 leading to cell cycle arrest in a hepatocellular carcinoma
(HCC) cell line have been reported after treatment with canagliflozin [82,87]. In another
study, incubation of HepG2 cells with canagliflozin resulted in reduced clonogenic cell
survival and elevation of anti-carcinogenic potential of y-irradiation through modulation
of ER stress-mediated autophagy and cell apoptosis [88]. On the contrary, trilobatin, a
novel SGLT-1/2 inhibitor, increased the HepG2 cell proliferation rate at a dose of 10, 50
and 100 uM, while incubation of human HCC cells with tofogliflozin at various concen-
trations did not alter the HCC cell proliferation rate [89]. Incubation of HepG2 cells with
dapagliflozin, canagliflozin and empagliflozin had no effect on cancer cell survival [81,86]
and adhesion capacity [81], while the cell sensitivity to dapagliflozin was induced after
UDP Glucuronosyltransferase Family 1 Member A9 (UGT1A9) silencing, indicated by an
increased number of floating HepG2 cells; of note, UGT1A9 metabolizes and deactivates
dapagliflozin [81].

Dapagliflozin treatment remarkably suppressed oleic acid (OA)-induced lipid accu-
mulation and TG content in L02 cells through increased FA 3-oxidation, as indicated by
elevated proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1x) levels and
activation of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin
(mTOR) signaling pathway [84]. Several in vitro studies have shown that AMPK is a key
regulator that mediates the various beneficial effects of SGLT-2i related to cholesterol and
glucose metabolism in hepatic cells. AMPK activation by dapagliflozin prevented glu-
cose absorption through reduced SGLT-2 expression in OA-stimulated HuS-E /2 cells [90].
This effect was eliminated after incubation of cells with compound C, a potent AMPK
inhibitor [84]. Moreover, treatment of HepG2 cells with canagliflozin facilitated hepatic
cholesterol efflux via activation of AMPK. In turn, AMPK activation led to increased ex-
pression of the liver X receptor (LXR) and its downstream proteins, resulting in subsequent
stimulation of cholesterol reverse transport [91]. LXR activation also accelerates fecal choles-
terol disposal through regulation of ATP-binding cassette (ABC) transporters ABCG5 and
ABCGS expression [92]. Canagliflozin treatment resulted in reduced expressions of ABCG5
and ABCGS8 and LXR, while this effect was inhibited after treatment of cells with compound
C [91]. An increased AMP/ADP ratio leads to AMPK activation. It is known that SGLT-2i
reduces cellular ATP levels and indirectly activates the AMPK signaling pathway [83,93].
It has been shown that dapagliflozin alleviates the intracellular ATP levels via regulation of
glucose metabolism [84].
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Stimulation of hepatic cell lines with palmitic acid (PA) mimics hepatocyte situation in
NASH [94,95]. Incubation of PA-stimulated L02 and HepG2 cell lines with dapagliflozin
resulted in a significant reduction of intracellular lipid accumulation. This effect was at-
tributed to down-regulation of proteins related to lipid synthesis, up-regulation of genes
involved in fatty acid oxidation (e.g., peroxisome proliferator-activated receptor alpha
(PPARw) and carnitine palmitoyltransferase 1 (CPT1a)), regulation of AMPK/mTOR path-
way and autophagy. Interestingly, incubation of cells with compound C abolished the
dapagliflozin beneficial effect on reduction of intracellular lipid accumulation [85]. Col-
lectively, these data suggest that SGLT-2i induced improvement of NAFLD is directly
dependent on AMPK signaling activation.

The divergent results of the various relevant studies suggest that the effects of SGLT-2i
on cell proliferation, survival and apoptosis—which are important processes in hepatocellular
carcinoma development and progression—appear to be drug-, dose- and duration-dependent.

4.1.2. Animal Studies

Overall, the animal models of NAFLD/NASH can be divided into two categories.
Of these, one comprises genetically modified animal models, such as leptin deficient
(ob/ob), leptin-resistant (db/db), Agouti mutation (KK-Ay), and apolipoprotein E knockout
(ApoE~/~) mice, as well as the Prague hereditary hypertriglyceridemic (HHTg) rats, Zucker
diabetic fatty (ZDF) rats and Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The other
category includes dietary/pharmacological manipulation-induced NAFLD/NASH animal
models, such as those fed with either a methionine/choline-deficient (MCD) diet, the
trans-fat containing AMLN (amylin liver non-alcoholic steatohepatitis, NASH) diet, and
the methionine-reduced, choline-deficient and amino acid defined (CDAA) diet, as well
as a high-fat diet (HFD), and a HFD + cholesterol diet or a high-fat, high-calorie (HFHC)
diet [30,96-100]. Most of the recent data indicate that both SGLT-1 and SGLT-2 genes
are expressed in hepatic tissues of mice and rats [30,85,87,101]. High levels of SGLT-2
protein have also been detected in hepatic macrophages and T cells [101]. While the exact
underlying molecular mechanisms of SGLT-2i-induced beneficial effects on NAFLD have
not yet been fully clarified, most of our knowledge regarding the potential hepato-protective
mechanism(s) of SGLT-2i actions comes from animal studies.

Although the SGLT-2i-induced weight loss seems to play an important role in hepato-
protective effects on NAFLD in humans [102-104], data from animal studies suggest that other
mechanisms are more likely responsible for the noted SGLT-2i-mediated hepato-protection.

Administration of SGLT-2i leads to net loss of calories and consequent attenuation
of body weight gain, while reducing the accumulated white adipose tissue [99,105-107].
In fact, it has been found that SGLT-2i promote weight loss through improvement of
systemic IR, increased body temperature and basal metabolism via regulation of the
AMP/ATP ratio [19]. Petito da Silva et al., reported that empagliflozin (Table 1) at a
dose of 10 mg/kg/day given for five weeks significantly reduces body weight and body
mass in HFD-fed male C57B1/6 mice, despite a slight increase in their appetite [107]. Similar
results were observed in HFD-fed C57BL/6] male mice after administration of canagliflozin
(Table 2) at 30 mg/kg dose for four weeks in parallel with improvement of liver function,
liver TG content and NAS score [108]. Additionally, short term and low dose administra-
tion of dapagliflozin (Table 3) reduced both ALT levels and body weight in both HFD and
HFD+MCD diet fed C57BL/6] mice [109]. However, it should be noted that not all studies
point towards a beneficial effect of SGLT-2i on body weight. Several studies have shown
that administration of SGLT-2i does not exert any significant effect on body weight gain,
epididymal fat weight or food intake [30,105,110,111]. In addition, although several studies
reported strong effects of low dose ipragliflozin (Table 4) on weight loss [100,112,113],
supplementation of an AMLN diet with 40 mg ipragliflozin/kg for 8 weeks did not sig-
nificantly alter the body weight of AMLN diet fed mice, while it improved liver function,
hepatic fibrosis and NA score [114]. Empagliflozin at the dose of 10 mg/kg/day improved
liver function and NAFLD status, while it had no significant effect on the body weight of
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ZDF, HHTg and Wistar rats [115,116], as well as on the body weight and appetite of ApoE
knockout mice [30].

Although there are studies showing that administration of SGLT-2i does not exert any
significant effect on body weight gain [30,100,110-114], the vast majority of the literature
points towards a beneficial effect on weight loss.

However, the protective role of SGLT-2i against NAFLD progression also seems to be
mediated by effects beyond those on body weight. Indeed, it has been shown that SGLT-2i
treatment improves IR and ameliorates the intracellular FFA, total cholesterol (TC) and TG
accumulation through reducing the expression of genes involved in de novo lipogenesis,
FA uptake and hepatic TG secretion, whilst it also promotes the expression of key regula-
tory genes of fatty acid 3-oxidation [30,84,100,107,109,112,117]. Specifically, empagliflozin
administration has been shown to reduce hepatic triacylglycerol (TAG) levels and im-
prove IR through reduction of lipotoxic intermediates formation, such as diacylglycerols
(DAG) [115], which at elevated levels contribute to IR by activating the protein kinase C
(PKC)e pathway [118]. Of note, a recent study by Hiittl et al., demonstrated that reduction
of hepatic lipid accumulation following empagliflozin treatment is mediated via increased
nuclear factor erythroid 2-related factor 2 (Nrf2), fibroblast growth factor 21 (FGF21) and
altered gene expression of the P450 (CYP) enzyme superfamily of cytochrome [115]. In-
terestingly, Nrf2 and FGF21 regulate lipid metabolism through inhibiting lipogenesis and
improving insulin sensitivity, respectively [119,120].

Sterol regulatory element-binding transcription factor 1 (SREBP1) is one of the key
regulators of hepatic lipogenesis and plays a crucial role in the regulation of lipogenic
genes, such as fatty acid synthase (Fasn), acetyl-CoAcarboxylase 1 (Accl), and stearoyl-CoA
desaturasel (Scd-1). Increased SREBP1 expression has been linked to the aggravation of
hepatic steatosis [121]. While reduced expression of SREBP1 and Scd-1 by both canagliflozin
and empagliflozin has been observed in several studies [30,107,108,115], Kern et al., found
that empagliflozin treatment for eight weeks does not markedly affect the Scd-1 levels in
db/db mice [122]. Dapagliflozin (1 mg/kg/day) treatment for nine weeks resulted in down-
regulation of Scd-1 gene expression, as well as reduced ACC1 phosphorylation in ZDF rats.
Taking into account that SREBP1 activity is directly regulated by mTOR signaling [123],
reduced expression of SREBP1 and its downstream lipogenic targets could be due to the
reduced mTOR expression/activity observed after SGLT-2i administration [84,123].

Peroxisome proliferator-activated receptor gamma (PPAR-y) upregulation triggers
de novo lipogenesis and consequent deposition of lipid droplets into hepatocytes [124].
Eight weeks of dapagliflozin treatment reduced hepatic weight and prevented progression
of hepatic steatosis compared to mice treated with insulin glargine [125]. This effect was
found to be mediated through decreased expression of PPAR-y targeted genes involved in
fatty acid synthesis, such as Scd-1, monoacylglycerol O-acyltransferase 1 (Mogat1), Cell
death inducing DFFA like effector A (Cidea) and cell death inducing DFFA like effector C
(Cidec), without affecting insulin sensitivity, liver TC or oleate content [125].

SGLT-2i have been also shown to reverse the HFD-induced down regulation of
genes involved in FA (-oxidation and lipolysis in the liver of various mouse models
of NAFLD [30,84,107,108]. Indeed, it has been shown that expression of PPAR« is induced
by SGLT-2i [84,105,107,114]. PPAR« activation is predominant for regulation of genes
related to the FA -oxidation process in mitochondria, such as peroxisomal acyl-CoA
oxidasel (ACOX1) and enoyl-CoA hydratase, CPT1, and cytochrome-mediated (CYP4A1
and CYP4A3) [44]. Ipragliflozin treatment has been shown to result in acceleration of
-oxidation and export of very-low-density lipoprotein (VLDL) through upregulation of
PPAR«, CPT1A, and Microsomal Triglyceride Transfer Protein (MTTP) gene expression
in the liver of AMLN-fed C57BL/6] mice. MTTP plays a crucial role in export of hepatic
LDL [114]. Similarly, dapagliflozin attenuated hepatic lipid accumulation in ZDF rats via
up-regulation of the FA 3-oxidation enzyme ACOX1 [85]. Tofogliflozin administration
induced the expression of genes related to FA (3-oxidation in non-tumorous liver lesions,
while it had no effect on their expression in tumorous liver tissues [126]. However, not all
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studies show a promotive effect of SGLT-2i on the expression of enzymes and transcription
factors involved in the regulation of FA 3-oxidation [107,114,126]. Of note, the expression
of PPAR«x remained unaffected in both Wistar and HHTg rats after eight weeks of em-
pagliflozin administration [107,115]. Administration of canagliflozin at doses of 10 and
20 mg/kg/day ameliorated the HFD-induced down-regulation of the expression of the key
regulatory molecule of hepatic lipolysis, known as zinc alpha 2 glycoprotein (ZAG). When
the same SGLT-2i was given in KK-Ay mice, it reduced the accumulation of lipid droplets in
the liver by increasing hepatic prostaglandin E2 (PGE2) protein levels [111]. Furthermore,
the combined therapy with canagliflozin and exercise exerted an additive effect on hepatic
PPARy Coactivator 1 Beta (PGC1b) elevation, and reduced expression of hepatic lipogenic
genes, such as Scd1 [108]. Notably, PGC1 plays a central role in the control of hepatic
gluconeogenesis, while its overexpression has been associated with stimulation of hepatic
FA oxidation [127].

The inhibition of de novo lipogenesis, and enhanced lipolysis and -oxidation by
SGLT-2-i lead to a consequent reduction in oxidative stress, hepatic inflammation and
apoptosis [128]. Administration of canagliflozin to HFD-fed diabetic Wistar adult male rats
resulted in reduced hepatic steatosis through amelioration of oxidative stress, inflammation
and apoptosis, as indicated by reduced plasma malondialdehyde (MDA) levels, serum tu-
mor necrosis factor (TNF) and caspase-3 levels, as well as hepatic expression of interleukin-6
(IL-6) [128,129]. Moreover, dapagliflozin treatment reduced the expression of hepatic in-
flammatory cytokine (TNF-«, IL-13, IL-18) content and improved hepatic steatosis in HCHF
fed male Wistar rats [130]. Tahara et al., have also shown anti-oxidative stress and anti-
inflammatory effects of ipragliflozin on HFD-fed and streptozotocin—nicotinamide-induced
type 2 diabetic mice [131]. Similarly, dapagliflozin treatment at a dose of 1 mg/kg/day
decreased hepatic ROS production of myeloperoxidase (MPO) and F4/80, thus ameliorat-
ing serum ALT levels and hepatic fibrosis [132]. MPO is a chlorinating oxidant-generating
enzyme that regulates the initiation of an acute inflammatory response and promotes the
development of chronic inflammation through oxidant production [133]. Furthermore,
canagliflozin treatment of F344 rats for 16 weeks resulted in reduced hepatic ROS pro-
duction and MDA and 8-hydroxy-2’-deoxyguanosine (8-OHdG) levels [110]. MDA and
8-OHdG are known biomarkers of lipid peroxidation and oxidative DNA damage, respec-
tively. Of note, canagliflozin and teneligliptin combination therapy showed a stronger effect
on reduction of hepatic oxidative stress and amelioration of hepatic inflammation [110].
Treatment with both remogliflozin and ipragliflozin also reduced oxidative stress levels, as
evaluated by decreased thiobarbituric acid reactive substances (TBARS) levels [100,134].
Instead, administration of dapagliflozin at 1 mg/kg/twice/day for four weeks had no
significant effect either on hepatic TBARS and TG levels or on plasma ALT levels [135].
In addition, reduction of oxidative stress by empagliflozin treatment resulted in amelio-
ration of hepatic inflammation [30,107,116] and steatosis, as judged by down-regulation
of inflammatory markers [30,107,115]. Of interest, decreased macrophage infiltration ex-
pression [107,117,134] as well as elevation of autophagy markers [30,117] have also been
linked to the anti-inflammatory actions of SGLT-2-i in the liver. Specifically, oxidative
stress was reduced after empagliflozin treatment via up regulation of Nrf2, which led
to increased antioxidant enzyme activity (SOD) and reduced hepatic inflammation [115].
Empagliflozin exerted anti-inflammatory actions in diet-induced obese mice and NASH
mouse models through, at least in part, suppression of hepatic nuclear factor kappa-light-
chain-enhancer of activated B cells (NFkB), monocyte chemoattractant protein-1 (MCP-1)
and TNF-« expression, as well as inhibition of the IL17/1L23 axis [115,117,136]. Reduced
hepatic inflammation has also been reported in mice and rats after treatment with low
dose (1 mg/kg/day) dapagliflozin and ipragliflozin. Indeed, ipragliflozin administration
for 12 weeks alleviated hepatic fibrosis through reduced expression of pro-inflammatory
markers Emrl and Itgax in non-tumoric lesions [126]. On the contrary, a recent study
in mice by Hupa-Breier et al., demonstrated that four weeks treatment of diet-induced
NASH with empagliflozin alone at a dose of 10 mg/kg/day did not exert any beneficial
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effect on NASH, while it significantly increased expression of pro-inflammatory and pro-
fibrotic genes. In the same study, the combination of dulaglutide (a GLP-1 agonist) and
empagliflozin exhibited a hepato-protective effect on diabetic background mice through
modulation of the pro-inflammatory immune response and microbiome dysbiosis [137].

Meng et al., demonstrated that induction of AMPK/mTOR activity is dominant path-
way in empagliflozin-induced beneficial effects on liver inflammation and ALT levels [117].
Dapagliflozin treatment also induced AMPK/mTOR pathway activation through phospho-
rylation of liver kinase B1 (LKB1; a ubiquitously expressed master serine/threonine kinase
that activates downstream kinases of the AMPK pathway) [105,138]. Previous studies
have demonstrated that AMPK activation is required for SGLT-2i induced autophagy-
dependent lipid catabolism [30,117]. Both dapagliflozin and empagliflozin promote hepatic
autophagy through increased AMPK phosphorylation and BECLIN gene expression, as
well as reduced P62 levels and mTOR levels and activity [30,85].

Apart from impaired autophagy, ER stress is also implicated in the development of
steatosis and the progression of NAFLD/NASH [30,107]. Consistent with the regulatory
role of ER stress in the autophagy process, Nasiri-Ansari et al., demonstrated that stim-
ulation of autophagy by empagliflozin leads to amelioration of ER stress and reduced
hepatic cell apoptosis [30]. In particular, empaglifilozin administration protects against
HFD-induced NAFLD through inhibiting all three branches of ER stress, namely inositol-
requiring enzyme 1 (IREla), X-box binding protein 1 (Xbp1), activating transcription
factor 4 (ATF4), C/EBP homologous protein (CHOP) and activating transcription factor
6 (ATF6) [30,107]. A recent study by Chen et al., also showed that down-regulation of
the ATF6 signaling diminished ER stress-induced inflammation and apoptosis of hepatic
cells [139]. The synergistic ER stress response and autophagy process regulated hepatic cell
apoptosis in HFD-fed ApoE~/~ mice with NASH, by reducing cleaved caspase 3 levels
and elevation of B-cell lymphoma-2 (Bcl-2) /BCL2 Associated X (Bax) ratio [30]. Of note,
canagliflozin was previously found to exert an anti-apoptotic effect on HFD-fed mice as
revealed by robust Bcl-2 hepatic expression [129].

Chronic liver inflammation leads to transformation of hepatic stellate cells to myofi-
broblasts, thus contributing to liver fibrosis and progression of NAFLD to NASH [140].
Transforming growth factor beta (TGF-f3) is known as the most potent inducer of liver fibro-
sis. Administration of canagliflozin for 16 and 20 weeks reduced the expression of hepatic
TGF-f3 in both F344 rats and MC4R-KO mice, respectively [101,110]. Interestingly, TGF-f3
activation leads to increased fibronectin and collagen types I, II, and IV production [141].
Treatment of mice with both empagliflozin and canagliflozin resulted in reduced expres-
sion of different types of collagen, implying synergistic action(s) [87,137]. Luseogliflozin
also exerts anti-fibrotic effects through reduction of collagenlal, collagenla2, TGF-f3 and
smooth muscle actin (SMA) expression [142]. Extensive data exist regarding the crucial
role of tissue inhibitors of metalloproteinases (TIMPs) in the progression of hepatic fibrosis.
Reduced expression of TIMPs and amelioration of hepatic fibrosis have been observed
after luseogliflozin and canagliflozin administration [101,126,142]. On the contrary, em-
pagliflozin treatment did not affect the expression of stellate cell functionality markers,
such as galectin-3, a-SMA, and collagenlal [99].

NASH has been associated with an increased risk of cirrhosis and HCC development.
Hepatic tumorogenesis is the result of DNA instability caused by several factors, such
as hepatic lipotoxicity, aberrant metabolism and inflammation [141,143]. As a protective
effect of SGLT-2i on NAFLD/NASH progression has been shown in the vast majority of
the studies, further research aimed to evaluate the effect of SGLT-2i on development and
progression of HCC [87,101,142]. Activation of the hepatic P53 /P21 signaling pathway is
positively correlated with induced fibrosis and hepatocellular carcinogenesis. A 14-week
treatment with tofogliflozin has been shown to effectively reduce the P21 expression, al-
leviating the progression of NASH through, at least in part, mitigating genes related to
the hepatocyte cellular senescence-associated secretory phenotype [89]. Daily adminis-
tration of canagliflozin prevented the occurrence of HCC in both STAM mice—a NASH
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model—(11 weeks) and HFD-fed MC4R-KO mice (52 weeks), as indicated by a significantly
reduced number of hepatic tumorous lesions [87,101]. Moreover, 66 weeks administration
of canagliflozin to CDAA-fed F344 rats exerted an anti-carcinogenic effect, as indicated by a
reduced number of cells positively stained for placental glutathione S-transferase (a promi-
nent marker of hepatocarcinogenesis) [110]. Finally, canagliflozin administration reduced
the development of hepatic preneoplastic lesions in CDAA-fed rats through suppression
of hepatic neovascularization markers, namely cluster of differentiation 31 (CD31) and
vascular endothelial growth factor (VEGF) [110]. Overall, the key animal studies regarding
the impact of SGLT-2i on NAFLD/NASH/HCC are summarized in Tables 1-4.



Int. J. Mol. Sci. 2022, 23, 3107

12 of 32
Table 1. Key animal studies regarding the impact of empagliflozin on NAFLD/NASH.
Animal Model, Effect on Body Weight Effect on . . ]j:ffed o NAFLD Activity Score
Study/Reference D . . . Mechanism of Action Insulin Sensitivity (NAS) &
ose, & Duration and Liver Weight Laboratory Values & Glucose Homeostasis Fibrosis/Steatosis
Male C57BL/6]Rj on 1 Blood elucose levels 1 Lobular inflammation
Perakakis, N., AMLN diet (HFD, No effect - 1 Hepatic lactosylceramides No%effect on INAS
etal., 2021 [99] fructose + cholesterol) p y Insuli o No effect on the hepatic
10 mg/kg/day 12 (w) nsulin sensitivity steatosis and fibrosis
| Lipogenesis markers and lipid
uptake genes (SREBP1, ChREBP,
FASN, ACC«, SCD«, CD36)
T Autophagy activation
(AMPK/mTOR & BECLINT1,
Male C57BL /6] on HFD LC3BII)
+ streptozotocin VALT 1 IL-17/1L-23 axis inhibition
Meng, Z., et al., injection (T2DM with l Body weight VTG & TC (IL-23p19, IL-23, IL-13, IL-17A, 1 Blood elucose levels 1 Hepatic steatosis
2021 [117] NAFLD) | Liver/Bw 1 HDL RORyt, p-STAT3/t-STAT3, IL-17) & I NAS
10 mg/kg/day § M1 macrophage marker (CD11C,
8 (w) CD86, NOS2)
1 Th17-related chemokines and
chemokine receptors (CCL20,
CCR6,
CCR4, CXCL1/CXCL2, CXCL1,
CXCR2)
! Lipogenesis markers (SREBP1,
Pck1, FASN)
1 Inflammatory markers (MCP-1,
F4/80) | Lobular inflammation
Male ApoE knockout LALT, TG, L ER stress markers (GRP78, 1 Hepatic steatosi
Nasiri-Ansari, N., mice on HFD No effects TC levels IRE1x, XBP1, ELF2«, ATF4, 1 Blood glucose epfi ll\CL:Se atosts
etal., 2021 [30] 10 mg/kg/day 1 Serum TG/HDL CHOP, GRP94) levels No effect on hepati
10 (w) levels Autophagy markers (} mTOR and © etiect on epatic
fibrosis
P62 & T pAMPK/AMPK,
BECLIN)

| Apoptosis markers (Bax/Bcl-2
Ratio, cleaved Caspase-3)
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Animal Model, Effect on Body Weight Effect on . . ]j:ffed o NAFLD Activity Score
Study/Reference . . . Mechanism of Action Insulin Sensitivity (NAS) &
Dose, & Duration and Liver Weight Laboratory Values . . . .
& Glucose Homeostasis Fibrosis/Steatosis
l Lipogenic genes (Fas, SREBP1c,
PPARY)
1 ER- stress markers (CHOP, ATF4,
Male C57Bl/6 mice on GADD45) Improved Glucose
Petito-da-Silva, HFD 1 BW No effect on ALT Fatty acid -oxidation (1 PPAR-a, intelorence 1 Hepatic TC
etal., 2019 [107] 10 mg/kg/day | Liver/Bw 1 Acox1) Improved | Hepatic steatosis
5(w) }lipid droplet-associated protein Insulin sensitivity
(Fsp27/cidec)
l Inflammatory markers (Nfkb,
TNF-«)

. Male C57BL /6] on HFD 1 Inflammatory markers (IL6, .
Jojima, 1. + early STZ injection . 1GA TNF-a, MCP-1, SOCS3) } Hepatic TG
etal., 2016 1 Liver/BW .. | Plasma glucose Levels INAS

[136] 10 mg/kg/day lALT | Plasma DPP-4 activity 1 Hepatic fibrosis

- 3 (w) (CD26/DPP-4) P
| Lipogenicgenes (Fas, Scd-1,
SREBPI1c, PPARY)
Improvement of hepatic lipid
. metabolism Improved | Hepatic TG
Hiittl, M., HHTSg & Wistar rats 1 TAG (T Nrf, Cyp2el, | FGF21, Cyp4al, Glucose intolerance }lipotoxic
10 mg/kg/day No effect on BW No effect on .
etal., 2021 [115] 8 (w) cum ALT Cyplal, Cyp2bl) Improved diacylglycerols
seru 1 Inflammatory markers (MCP-1) Insulin sensitivity | Fibrosis

1 Oxidative stress markers (§
Hepatic GSH/GSSG, SOD)
| Hepatokines (Fetuin-A)
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Table 2. Key animal studies regarding the impact of canagliflozin on NAFLD/NASH/HCC.

Animal Model Effect on Body & Liver Effect on . . ]j:ffed on NAFLD Activity Score
Study/Reference Dose & Duration Weicht Laboratory Mechanism of Action Insulin Sensitivity (NAS) &
& Values & Glucose Homeostasis Fibrosis/Steatosis
. . No effect on body weight
Yoshino, K., ob.ese dlab.ehc KK-Ay No effect epididymal fat 1 TG 1 Prostaglandin E2 (PGE2) and .
mice putative dose of . No effect on serum . | Plasma glucose levels | Hepatic TG
etal., 2021 [111] ~17 mg/kg/day 3 (w) weigh ALT resolvin E3
&/%8 y | Liver/Bw
1 lipid-dependent energy
expenditure Improved glucose
. ] Respiratory Qquotients intolerance
Tanak; OI§d etal, MI?IIISS gglir]:/?ll(nygi on 1BW LALT ! Lipogenesis markers (PPAR, Improved insulin 1 Hepatic TG
[108] 4 (\é/;v) §/day 1 TG, ketone bodies FAS, Scd1) sensitivity INAS
1 Fatty acid B-oxidation markers }lasma glucose &
(CPT1a, PGCla, PGC1b) insulin levels
l Inflammatory markers (IL-1b)
! Inflammatory marker and
fibrosis marker [SOCS-3, collagen
Jojima, T., STAM mice | Liver/Bw TG (11 w) . 3wl INAS (11 w)
etal., 2019 [87] 30 mg/kg/day (11 w) LALT (11 w) | Lipogenesis markers [FAS | Plasma glucose levels | Hepatic fibrosis (4 w)
M 4 & 11 (w) (11 w)] 1 Tumor number (11 w)
! Inhibits progression of NASH to
Hepatocarcinogenesis GS & AFP
| Lipogenic markers genes [Accl
and Scd1 (8 and 20 w), Fasn (8 w)]
| Gluconeogenic markers (G6pc, | Hepatic steatosis (8 w)
. ! Liver weight 1 1G Pck1) Improved insulin | Hepatic fibrosis (20 w)
Shiba, K., MCztliéIgglm/lie (/)r:laHFD Bw) (8 and 20 w) | Inflammatory markers [F4/80 sensitivity and 1 NAS (20 w)
etal., 2018 [101] 8 20 &% 52%w) y 1 Body weight lALT gene (20 w), TNFa (20 w), Cd11c hyperglycemia 1 Tumor number (52 w)
! (8 and 52 w) (8 and 20 w) (8 and 20 w)] (8 and 20 w) 1 Hepatic TG content
(8 and 20 w)

| Fibrosis markers [Collal,
TIMP-1 (8 and 20w), Acta2, Tgflb
(20 w)]
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Animal Model Effect on Body & Liver Effect on . . ]j:ffed on NAFLD Activity Score
Study/Reference Dose & Duration Weicht Laboratory Mechanism of Action Insulin Sensitivity (NAS) &
& Values & Glucose Homeostasis Fibrosis/Steatosis
1 Fibrosis markers (xSMA,
TGF-31, a1(I)-procollagen) 1 Hepatic fibrosis &
F344 rats ! Inflammatory markers (CCL2, No effect on insulin Steatosis
Ozutsumi, T., on CDAA diet No effect on body weight VALT TNF-«, IL-6) sensitivity ! Hepatic Cirrhosis
etal., 2020 [110] 10 mg/kg/day No effect on Liver/BW 1 Hepatocarcinogenesis markers No effect on l Hepatic inflammation
16 (w) (GST-P, VEGF, CD31) plasma glucose levels ! Hepatic ballooning
1 Oxidative stress markers (MDA, I NAS
8-OHdG)
t Hepatic lipolytic factor ZAG
 Inflammatory markers (serum
TNF-«,
. . hepatic IL-6) | Hepatic inflammation
. Male W ister rats injected . . bALT Serum apoptotic markers No effect on fasting | Hepatic TC, TG, NEFA
Kabil, S], et al., with STZ on HFD | Liver weight 1 1 1 . . 1 .. .
2018 [129] 10 and 20 mg /kg/day LBW (20 mg) TC, TG & (¥ Caspase3, 1 Bcl-2) insulin levels Hepatic inflammation
8 (w) NEFA Hepatic oxidative stress Fasting blood glucose Hepatic Steatosis
( MDA, 1 SOD and GPx activity) INAS
Serum antioxidant enzyme
activity
( TOS and 1 TAS)
Table 3. Key animal studies regarding the impact of dapagliflozin on NAFLD/NASH.
Animal Model Effect on Body Effect on . . lj:ffect 01.1. ‘ NAFLD Activity Score
Study/Reference Dose & Duration nd Liver Weicht Laboratory Mechanism of Action Insulin Sensitivity (NAS) &
ose uratio a ervveig Values & Glucose Homeostasis Fibrosis/Steatosis
Male C57BL/6 ] and ! Hepa:t‘;eos’;‘dahve
Han, T, et al., ob/ob mice on HFD 1 B-oxidation (PPAR-«, CPT1, PGC1w) . .
2021 [105] 1 mg/kg/day No effect on BW ITC ! Inflammatory markers (MCP1) | Fasting blood glucose | Hepatic hlpld
4 (w) accumulation

1 Hepatic steatosis
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Table 3. Cont.
. Effect on Effect on NAFLD Activity Score
Study/Reference D?)g;nz})hfro;:ie;n a:flfici:/:?‘ffzfﬁt Laboratory Mechanism of Action Insulin Sensitivity (NAS) &
& Values & Glucose Homeostasis Fibrosis/Steatosis
! Lipogenic markers (SREBP1, ACC,
Male NIH mice on HFD FASN) | Hepatic steatosis
Luo ] "[(;E;]ﬂ" 2021 25 mg/kg/day NTOFe(fge;tir?gE:\] L ALT T B-oxidation markers (PPAR«, CPT1a) - | Hepatic ballooning
4 (w) Regulation of lipid metabolism ! HepaticTC, TG
T pAMPK and ! pmTOR
db/db mice | Lo
. Inflammatory markers (MPO, F4/80) l Hepatic injury
Ta;ogl’;‘ [’1 2;]21 L 10 mgd/ile(? /jlay via No effect on BW llérg | Oxidative stress markers (ROS) | Plasma glucose levels | Hepatic fibrosis
- 4 (v%) 1 Fibrosis markers (FN, Col I, Col III, LM) l Hepatic inflammation
Male C57BL /6] mice on
Yabiku, K., etal,  HFD or HFD + MCDD BW laLt Improved glucose
2020 [109] 0.1 or 1.0 mg/kg /day (0.1 and 1 mg) (0.1 and 1 mg) - tolerance and insulin -
' ’ 2 (w) in both diets Mice on HFD sensitivity
No significant differences in the
expression of fatty acid oxidation markers No significant changes in
Omori, K., et al., db/db mice on ND No effect on BW I TG No s1gmf1calnt differences in the Improved glucose hepatic TG, Palmitate,
1.0 mg/kg/day . . . expression of inflammatory markers
2019 [125] | Liver weight 1 Plasma C-peptide . tolerance Oleate, and Stearate
8 (w) | Fatty acid uptake and storage markers content
(PPARY targeted genes as compared to
Gla group)
! Lipogenic markers (SREBP1, ACC1,
p-ACC)
Li L., etal, 2021 ZDF rats . IBW . 171G, TC, 1 Fatty acid oxidation markers (ACOX1, ! Plasma glucose and | Hepatic 11.p1d
[85] 1 mg/kg/day 1 Liver weight LDL. HDL CPT1, pACOX) insulin levels accumulation
9 (w) | Liver weight/BW ! Autophagy-related markers | Hepatic steatosis
(1 LC3B, Beclin1, activation of
AMPK/mTOR pathway and | P62)
Male Wistar rats on s
EIMahdy, MK, HCHEF diet No s1gn1f1c.ant VALT, AST 1 Inflammatory markers (TNF-«, IL-1§3, . .
etal, 1 me /ke/da effects on liver 1 TC, TG, LDL 1L-18) - 1 Hepatic steatosis
2020 [130] g5 ( ﬁ) y weight t HDL
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Table 4. Key animal studies regarding the impact of ipragliflozin, remogliflozin, tofogliflozin and luseogliflozin on NAFLD/NASH/HCC.

Animal Model Effect on Body Effect on Insullirflf;‘;;(:iltivi ¢ NAFLD Activity Score (NAS)
Study/Reference D &aD ° t.e Weight &Body Laboratory Mechanism of Action & Glucose y &
ose uration Composition Values . Fibrosis/Steatosis
Homeostasis
Ipragliflozin
TG | Inflammatory Markers | Hepatic TG, TC
KK-Ay mice on HFD (0.3, 1& 3 mg) [serum TNF-e, IL-6, MCP-1 and CRP Improve glucose (1& 3 mg)
Tahara, A. & 0.1,0.3,1and 3 1 BW weight l1c (1 and 3mg); Liver "l,”NF-oc (3 mg) and intolerance } Hepatic Hyperthrophy
Takasu, T mg/kg/da (1&3mg) (1 &3 mg) 1.6, MCP.1 and CRP (1 & 3 aag)] Improved Insulin (1 &3 mg)
2020 [1’00']' Alone orgwit;o: Meilformin 1 Liver weight lAsT | Seru/m and hepatic oxidative st%ess resistance 1 Hepatic Inflammation
4 (w) (0.3,1 & 3 mg) (1 &3 mg) markers [TBIjARS and protein Improved (1 & 3 mg)
LALT carbonyl (1 & 3 mp)] hyperlipidemia | Hepatic fibrosis & steatosis
(03,1 & 3 mg) y & (3mg)

| Genes involved in regulation of
insulin

dTc sensitivity (Plasma adipocytokines
KK-Ay mice on HFD I BW weicht 03, } ?g mg) Leptin & FGF-21) ! Iilg)eat;cﬁ"i(%é() (?i' é?in;g)
0.1,0.3,1and 3 welg l Inflammatory Markers 1 Plasma glucose and p . &
Tahara, A., (1 &3 mg) (1 &3 mg) . . | Hepatic Hyperthrophy
mg/kg/day . : [serum TNF-«, IL-6, MCP-1 and CRP insulin levels
etal., 2019 [113] : ! Liver weight | AST . (1 & 3 mg)
Alone or with (1 and 3 mg); Liver TNF-« (3 mg) and (0.3,1and 3 mg) . .
L (0.3,1 & 3mg) (1& 3 mg) l Hepatic Inflammation (3 mg)
Pioglitazone 4 (w) VALT IL-6, MCP-1 and CRP (1 and 3 mg)] 1 Hepatic fibrosis (3 mg)
(1 & 3 mg) 1 Serum and hepatic oxidative stress P &
& markers [TBARS and protein
carbonyl (1 & 3 mg)]
. L] Lipogenic markers genes .
. ob/ob and WT mice l Hyperphagia LALT (SREBP1, Fasn, Accl, Scd1) Tmp roxfed Insulin l Hepatic TG
Komiya, Ch, on HFD . e . resistance Lo
etal, 2016 [112] 11 me/ke /da | BW weight ! Plasma | Gluconeogenic markers (Pck1) Improved fastin | Hepatic lipid
v &/ </ day ! Liver weight  Inflammatory markers (F4/80, P & | Hepatic steatosis
4 (w) glucagon glucose levels
Cdllc)
1 B-oxidation
. | Hepatic TG & FFA
C57BL/6] male.rruce on (PPAR-«, CPT1, MTTP.) . 1 Hepatic fibrosis
Honda, Y., AMLN diet No effect on BW VALT, AST l Hepatocytes apoptosis Improved Insulin 1 Hepatocvte balloonin
etal., 2016 [114] 40 mg/kg/day ! Liver weight VFFA (TUNEL) resistance 1 ngilari’n oot s
8 (w) ! Lipogenic markers genes INAS

(SREBP1 & Accl)
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Table 4. Cont.

Animal Model Effect on Body Effect on Insulliiifgce:;riltivi t NAFLD Activity Score (NAS)
Study/Reference Dose & Duration Weight &Body Laboratory Mechanism of Action & Glucose y &
Composition Values Homeostasis Fibrosis/Steatosis
Hayashizaki- Male Wistar rats on L] Hepatic TG (3 mg)
Someya, Y., CDAA diet I BW weight No effect on ALT, ) No effect on fasting 1 Hepatic lipid droplet size
etal., 2015 0.3 and 3 mg/kg/day (3 mg) AST blood glucose levels | Hepatic fibrosis (0.3 & 3 mg)
[144] 5 (w) | Hepatic HP
| Lipogenic markers genes (Fasn in
non-tumor)
Mc4r KO mice on HFD | Fibrosis marki”s (Err)‘rl' Ttgaxin ! Hepatic TG
and injected with single 1Cell senescr;(;:;e l;nn;)iers (Cxdll in 1 Lobular inflammation
Yoshioka, N., dose of I BW weight L ALT, AST t lesion: p21. Cxcll. MMp12 | Plasma glucose & 1 Hepatocyte ballooning
etal., 2021 [126] diethylnitrosamine | Liver weight lLDH umo};nfilolné fn r{on)—(tcun’lor) ps insulin levels I NAS
5mg/kg/day P . | Hepatic steatosis & fibrosis
12 (w) 1 B-oxidation (PPAR-« in tumor 1 Hepatic tumor number & siz
lesion; PPAR-ot, CPT1, PGC1 in epatic timo er Sesize
non-tumor)
1 Cell apoptosis (Bax and Pcna)
(Remogliflozin)
C57BL/6] mice on | Inflammatory markers
HFD32 . . [Hepatic TNF-o (13.2 mg), hepatic . .
Nakano, S., I Liver weight Improved non fasting | Hepatic TG
etal., 2015 [134] 13.2+2.2and 33.9 +2.0 1 Liver/BW LALT & AST .MC.P-l (13.2and 33.9 mg)] . glucose levels l Hepatic fibrosis
mg/kg/day | Oxidative stress (serum and hepatic
4 (w) TBARS)
Tofogliflozin
{ Foci of cellular alteration
db/db mice on HFD and (10 mg)
Obara, K., mJic;e?d }xlmlth single fiose ! Liver weight (10 LALT (10 mg) ! Inflammatory markers (10 mg) | Plasma glucpse llgvels | Hepatic pre-neoplastic lesions
etal,, 2017 [$9] of diethylnitrosamine me) LFFA (1 & 10 mg) (F4/80) Improved insulin (10 mg)
! 1 and 10 mg/kg/day insensitivity | Hepatocyte balooning (10 mg)
14 (w) 1 Hepatic steatosis (10 mg)

I NAS (1 & 10 mg)
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Table 4. Cont.

. Effect on Body Effect on Effecton NAFLD Activity Score (NAS)
Animal Model . . . Insulin Sensitivity
Study/Reference . Weight &Body Laboratory Mechanism of Action &
Dose & Duration o & Glucose . . .
Composition Values . Fibrosis/Steatosis
Homeostasis
Luseogliflozin
C57BL/6 mice injected | Hepatic fibrosis markers
Qiang, Sh with STZ on HFDT VALT (collagenlal,
otal 20g1’5 [ ]’42] Mixing in food at 0.1%. I Liver weight 1 TG. NEFA collagenla2, TGF, SMA, TIMP1) | Plasma glucose levels | Hepatic TC, TG &NEFA
v w/w food ! l Inflammatory markers (MCP-1, IL1,
8 (w) IL-12, IL-6, £4/80)

Abbreviations: W: week, BW: Body Weight, STZ: streptozotocin, WT: Wild Type, Gla:insulin glargine, ALT: Alanine aminotransferase, AST: Aspartate aminotransferase, TG: Triglycerides,
TC: Total cholesterol, FFA: Free fatty acids, GA: glycated albumin, STAT3: Signal Transducer And Activator Of Transcription 3, ROR: RAR Related Orphan Receptor, Bax: BCL2 Associated
X, IRE: Inositol-requiring enzyme 1, -Xbp1: X-box binding protein 1, ATF4: Activating transcription factor 4, CHOP: C/EBP homologous protein, ATF-6:Activating transcription
factor 6, ChREBP: Carbohydrate response element binding protein, SREBP1: Sterol regulatory element-binding transcription factor 1, Scd1: Stearoyl-CoA desaturasel, ACC1: Acetyl-
CoAcarboxylase 1, ACOX: Peroxisomal acyl-CoA oxidasel Fasn: Fatty acid synthase, IL: Interleukin, TNF-&: Tumor necrosis factor, NFxB: Nuclear factor kappa-light-chain-enhancer of
activated B cells, MCP-1:Monocyte chemoattractant protein-1, CRP:C-reactive protein, PPAR-a: Peroxisome proliferator activated receptor alpha, CPT1: Carnitine palmitoyltransferase 1,
PGC1: PPARY coactivator 1, TOS: Total Oxidant Status, TAS: Total antioxidant status, p21: cyclin-dependent kinase inhibitor, Cxcl: Chemokine (C-X-C motif) ligand, MMP: Matrix
metalloproteinases, TIMP: Tissue inhibitors of matrix metalloproteinases, CYP: Cytochromes P450, MDA: Malondialdehyde.
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4.2. Human Trials

A number of clinical studies have highlighted the benefit of SGLT-2i in patients
with T2DM and NAFLD (Table 5) [145-169]. In the majority of them, the administration
of SGLT-2i has resulted in improvement of serum levels of liver enzymes and hepatic
steatosis, as evaluated by magnetic resonance imaging (MRI), ultrasound (U/S), non-
invasive biomarkers, such as AST to platelet ratio (APRI) index, NAFLD fibrosis score
(NFS) and Fibrosis-4 (FIB-4) score, or even by liver biopsy (LB). In some of these studies,
improvement in hepatic fibrosis was found, using transient elastography (TE) or LB, even
though this finding was not univocal [146,153,158,159,164,165,168].

Of note, the overall improvement in hepatic steatosis is also found in patients treated
with other classes of anti-diabetic drugs, like thiazolidinediones and dipeptidyl peptidase-4
(DPP-4) inhibitors, raising the question of steatosis improvement due to glycemic con-
trol [148,160,162,170]. Moreover, the vast majority of the aforementioned studies are limited
by the small sample size, heterogenous inclusion criteria, especially regarding the presence
of NAFLD, as well as the duration of follow up, thus meta-analyses have been conducted to
better assess the true benefit of SGLT-2i in patients with DM and NAFLD [171-173]. In the
largest one, comprising 9 randomized trials, with 7281 and 4088 patients in the SGLT-2i and
control arm, (standard of care (SOC) or placebo), respectively, the use of SGLT-2i resulted
in improvement of serum transaminases, body weight, and liver fat as measured by proton
density fat fraction. Accordingly, the authors discuss that this improvement derives mainly
from the achievement of glycemic control and weight loss. However, in a 2020 study
by Kahl et al., including 84 patients with DM and excellent glycemic control, randomly
assigned to empagliflozin or placebo, patients on empagliflozin had improved liver fat
content, as assessed by MRI [161], strongly suggesting that the good glycemic control and
weight loss are not the only mechanisms associated with the beneficial effects of SGLT-2i
treatment on hepatic steatosis.

In non-DM patients, only a small single center study exists which studied 12 patients
under dapagliflozin and 10 patients under teneligliptin, a DPP4 inhibitor, for a total of
12 weeks, showing that after this intervention period, serum transaminases were decreased
in both groups, while in the dapagliflozin group, total body water and body fat decreased,
leading to decreased total body weight [174].

Regarding the pathophysiology of NAFLD improvement under SGLT-2i treatment,
various mechanisms have been suggested. Treatment with SGLT-2i results in decreases
in both glucose and insulin levels (especially in patients with DM), which lead to a large
reduction of hepatic de novo lipid synthesis [175]. Moreover, glucagon-secreting alpha
pancreatic cells also express SGLI-2, thus the administration of SGLT-2i stimulates glucagon
secretion [175-177]. In turn, the subsequently elevated plasma glucagon levels stimulate
[3-oxidation, and this shift from carbohydrate to fatty acid metabolism leads to reduced liver
triglyceride content and consequently hepatic steatosis [175,178,179]. Another potential
mechanism is mediated by the antioxidant effects of SGLT-2i. Apart from their ability
to reduce high glucose-induced oxidative stress, SGLT-2i reduce free radical generation,
suppress pro-oxidants, and upregulate antioxidant systems, such as superoxide dismutases
(SODs) and glutathione (GSH) peroxidases (Figure 1) [116,180-184].
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Table 5. Studies on the impact of SGLT-2i on NAFLD in patients with T2DM.

. SGLT-2i/Drug Used Treatment NAFLD
Study Study Design No of Pts (No of Pts) Control Group Duration (Weeks) Diagnosis ** Key Results
Randomised Reduction of serum
Eriksson, J., etal, double-blind, 84 Dapaglifiozin (42) ~ OM-3CA or placebo 12 MRI fransaminases, CK-18, FGF-21 in
2018 [150] rospective Dapagliflozin group and liver fat
prosp in Dapagliflozin + OM-3CA group
Kahl, S., et al., 2020 Randomised, LFC improvement only in
Ty v ! double-blind, 84 * Empagliflozin (42) Placebo 24 MRI e
[161] - empagliflozin
prospective
Chehrehgosha, H., Randormged, ‘ . Pioglitzone or Better CAP, LS, no difference vs.
double-blind, 78 Empagliflozin (21) 24 TE pioglitzone for serum
et al., 2021 [165] . placebo .
prospective transaminases or FIB-4
Gaborit, B., et al Randomised,
5 021’ [1'é7] v double-blind, 34 Empagliflozin (18) Placebo 12 MRI Reduction in liver fat vs. placebo
prospective
. Improvement in serum
Bando, Y, et al,, 2017 Randomised, open 62 Ipragliflozin (40) SOC 12 C/T transaminases. VFA, L/S ratio
[145] label, prospective
compared to SOC
Improvement of L/S ratio, ALT,
Ito, D., et al., 2017 Randomized, open il T ferritin not statistically significant
[147] label, prospective 66 Ipragliflozin (32) Pioglitazone 2 C/TorU/3 between 2 groups; ipragliflozin
more weight and VFA reduction
Kuchay, M.S,, et al,, Randomized, open o . .
2018 [152] label, prospective 42 Empagliflozin (22) SOC 20 MRI Reduction of liver fat and ALT
Shibuya, T., et al., Randomized, open . . 26 Improvement in L/S ratio
2018 [154] label, prospective 32 Luseogliflozin (16) Metformin (6 months) C/TorU/S compared to baseline
. . Improvement of CAP and LS
Shimizu, M., et al., Randomized, open . . . . Y
2019 [155] label, prospective 57 Dapagliflozin (33) SOC 24 u/s especially for h}gh LS at the trial
beginning
. Ipragliflozin . .
Han, E., et al., 2020 Randomized, open m (+metformin Metformin + o u/s Better FLI, CAP, NAFLD liver fat

[160]

label, prospective

+pioglitazone) (29)

pioglitazone

score
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. SGLT-2i/Drug Used Treatment NAFLD
Study Study Design No of Pts (No of Pts) Control Group Duration (Weeks) Diagnosis ** Key Results
. . . - Improvement of L/S ratio and
Kinoshita, T, et al., Randomized, open q . Pioglitazone (33) . .
2020 [162] label, prospective 98 Dapagliflozin (32) Glimepiride (33) 28 C/T ALT with ploghtaz.one and
dapagliflozin
Statistically significant
Takahashi, H., et al., Randomized, open . . SOC, except improvement in NASH resolution
2021 [168] label, prospective % Ipragliflozin (27) pioglitazone, GLP1 72 LB and fibrosis improvement in
SGLT-2i vs. SOC
. Decrease of liver steatosis in both
Yoneda, M., et al., Randomized, open . . .. . .
2021 [169] label, prospective 40 Topogliflozin (21) Pioglitzone 24 MRI groups, body wetlght.decrease in
topogliflozin
Canagliflozin (29)
Ipragliflozin (12) Decrease in LS and CAP in
Arai, T., et al., 2021 Open label, 100 Tofogliflozin (6) sOC 48 u/s SGLT-2i during treatment,
[164] Prospective Dapagliflozin (4) statistically significant decrease in
Luseogliflozin (4) SGLT-2i vs SOC in ALT, FIB-4
Empagliflozin (1)
. Improvement of NAS score, liver
Akuta, N., et al, 2017 Smgle-alim, 5 Canagliflozin (5) N/A 24 LB steatosis; fibrosis improvement in
[146] Prospective
2 pts
Itani, T., et al., 2018 Single arm, . . Improvement in ALT, ferritin,
[151] Prospective % Canagliflozin (35) N/A 26 (6 months) u/s FIB-4 at 3 and 6 months
Reduction in serum
Miyake, T, et al., Single arm, . . transaminases, CAP, not
2018 [153] Prospective 43 Ipragliflozin (43) N/A 24 121B,41U/5 statistically significant reduction
in fibrosis
Sumida, Y., et al., Single-arm, e Reduction in transaminases,
2019 [156] Prospective 40 Luseogliflozin (40) N/A 2 u/s serum ferritin and liver fat in MRI
Akuta, N., et al., 2019 Single ar'm, 9 Canagliflozin (9) N/A o LB Histological 1mProvement in all
[157] Prospective patients
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. SGLT-2i/Drug Used Treatment NAFLD
Study Study Design No of Pts (No of Pts) Control Group Duration (Weeks) Diagnosis ** Key Results
Histopathological improvement at
Akuta, N., et al., 2020 Single arm, . . 24 weeks sustained to >1 year,
[159] Prospective 7 Canagliflozin (7) N/A 2 LB transaminases and ferritin better
at 24 weeks
Significant decrease in serum
Seko, Y., etal., 2017 . Canagliflozin (18) . L transaminases with both drugs,
[148] Retrospective ® Ipragliflozin (6) Sitagliptin 2 LB not statistically significant
between SGLT-2i and sitagliptin
102 (all 444 4 18.4 for
Choi, D.H., et al,, . Dapagliflozin + . dapagliflozin and Statistically significant decrease in
2018 [149] Retrospective abnormal Metformin (50) DPP4 + Metformin 50.4 + 21.6 for u/s dapaglifiozin vs. DPP4
ALT)
DPP4
Ipragliflozin (18) Lower serum transaminases levels
Yamashima, M., et al., . Dapagliflozin (2) 52 (22 pts) and 104 at 12 and 24 months, better CAR
2019 [158] Retrospective 22 Tofogliflozin (1) N/A (15 pts) 121B,10U/5 and shear wave velocity at
Empagliflozin (1) 12 months
Yano, K., et al., 2020 ]?:ﬁiglfﬂﬁziﬁf(ly? Improvement of serum
T i Retrospective 69 g1ioz SOC 162 LB transaminases in both groups (No
[163] Ipragliflozin (3) :
o head to head comparison)
Empagliflozin (2)
Dapagliflozin (58) : Statistically significant reduction
Euh, W. et al, Retrospective 283 Empagliflozin (34) SOC, except C.;LP 1 39 u/s in ALT and body weight in SLT2i
2021 [166] o . and Insulin
Ipragliflozin (3) vs. SOC

* All patients with excellent glycemic control. ** Test used to diagnose/assess NAFLD.Abbreviations: RCT: Randomised controlled trial, L/S ratio: Liver to spleen ratio, VFA: Visceral fat
area, C/T: Computed tomography, MRI: Magnetic Resonance Imaging, OM-3CA: omega-3 carboxylic acids, LFC: Liver fat content, FIB-4: Fibrosis-4 index, ALT: Alanine aminotransferase,
FLI: Fatty liver index, CAP: Controlled attenuation parameter, SGLT-2i: Sodium-glucose co-transporter type-2 inhibitors, NAS score: NAFLD Activity Score, LB: Liver biopsy, GLP-1:

Glucagon-like peptide-1, pts: patients.
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5. Conclusions

There is increasing interest regarding the promising effect(s) of SGLT-2i for the treat-
ment of NAFLD, regardless of the co-existence of T2DM. In addition to weight loss, the
beneficial effect(s) of SGLT-2i on NAFLD development and progression appear to be medi-
ated directly through regulation of multiple processes, including ER stress, oxidative stress,
low-grade inflammation, autophagy and apoptosis, as revealed by in vitro, animal and
clinical studies. Moreover, the observed different effects between members of the SGLT-2i
class suggest that there are features specific to individual drugs of this class regarding the
underlying mechanism(s) of action and their corresponding effects on NAFLD.
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