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1  |  INTRODUC TION

The diversity of color patterns found in the Heliconius butterfly radi-
ation is a striking example of the power of natural selection to gener-
ate biodiversity. However, while the most popular theory describing 
the evolution of these vivid color patterns proposes a framework 
dissuading from wing pattern diversity, we in fact find dozens of es-
tablished color patterns throughout the neotropics (Joron & Mallet, 
1998; Mallet & Joron, 1999; Moest et al., 2020; Müller, 1879).

Franz Müller (1879) suggested in his theory that mimicking organ-
isms which are unpalatable, venomous or toxic to predators, benefit 

from reduced predation by converging on common warning patterns. 
As these organisms become all the more similar over time, Müllerian 
mimicry theory predicts that the weight of predation will be optimally 
shared among the mimicking populations. Furthermore, the evolution 
of stark warning colorations (aposematism) increases the effective-
ness of this evolutionary strategy by providing memorable patterns 
and colors to predators (Su et al., 2015). Examples of animals that 
through natural selection have trodden this evolutionary journey are 
familiar to many of us for their striking aspects (e.g., pit vipers, poison 
dart frogs, bumblebees, and wasps (Sanders et al., 2006; Symula et al., 
2001; Williams, 2007; Boppré et al., 2016)). The main mechanism 
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driving this mimicry is known as positive frequency-dependent selec-
tion (pFDS), where the most common warning signal is more likely to 
spread through a population as it will be most avoided by predators 
(Müller, 1879). In the past decades, empirical evidence has largely val-
idated pFDS to be a principal selective force maintaining such phe-
notypic convergence throughout the animal kingdom (Borer et al., 
2010; Chouteau et al., 2016; Dumbacher & Fleischer, 2001; Mallet 
& Barton, 1989; Miller & Pawlik, 2013; Noonan & Comeault, 2008; 
Sanders et al., 2006; Symula et al., 2001).

Heliconius butterflies are a renowned example of Müllerian mim-
icry. However, as first described by Henry Walter Bates (1862), the 
genus clearly demonstrates a diverse array of warning color patterns 
established throughout several mimicry rings. This presents a chal-
lenge to Müller's theory which predicts that the selective pressures 
enacted by predators attacking novel color patterns should force the 
convergence of many warning signals into few easily recognizable color 
patterns. In contrast to this expectation, the co-mimics Heliconius erato 
and Heliconius melpomene diverged into over 25 geographic color pat-
tern morphs (Bates, 1862; Mallet and Gilbert, 1995; Turner, 1975; Van 
Belleghem et al., 2020). These mimicry rings maintain homogenous 
local warning color patterns within their borders through localized 
pFDS mostly driven by a few insectivorous birds such as rufous-tailed 
jacamars and tyrant flycatchers (Benson, 1972; Chai, 1986; Langham, 
2004; Mallet & Barton, 1989; Pinheiro, 2011). However, at the bound-
aries of these mimicry rings hybridization frequently occurs and re-
sults in narrow regions of intermediate color patterns (Edelman et al., 
2019; Mallet, 1986a; Thurman et al., 2019). Such phenomena can also 
be observed in vertebrate Müllerian mimics such as the dendrobatid 
poison dart frog radiation (Roland et al., 2017).

In contrast to the homogenous local warning color patterns, 
some species have evolved the ability to maintain multiple mimetic 
warning phenotypes in a single population, a phenomenon known 
as “polymorphic mimicry” (O'Donald & Pilecki, 1970). In these pop-
ulations, distinct morphs are locally adapted to their environment 
by sharing distribution with other Müllerian co-mimics (Arias et al., 
2016). The selective pressures that allow polymorphic mimicry to 
evolve and be maintained remains a largely unresolved question. 
Historically, polymorphy was considered to be a random occurrence 
with no obvious advantages to the organism bearing it. However, ini-
tial evidence in banded land snails (Cain & Sheppard, 1954) and later 
in a variety of other organisms such as spiders, guppies, and wolves 
(Hedrick et al., 2016; Hendrickx et al., 2015; Hughes et al., 2013), 
has indicated that polymorphism may serve an adaptive role that can 
be maintained through sexual selection and possibly promote spe-
ciation (Jamie & Meier, 2020). Such a system has been described in 
Heliconius numata, where polymorphism is considered as the result 
of competing selective pressures on the genomic architecture un-
derlying the trait (Jay et al., 2021).

In this study, with test sites throughout Central and South 
America, we set out to characterize the ecological pressures that 
drive polymorphism in aposematic butterflies. The Müllerian 
mimic Heliconius doris is known for being polymorphic across its 

entire geographic distribution that spreads across most of South 
and Central America (Constantino et al., 2005; Mallet, 1999), 
with both red and blue color morphs found throughout its range. 
While these two morphs are ubiquitous to all H. doris populations, 
personal observations point out blue morphs being more abun-
dantly found than red morphs in coastal areas of French Guiana. 
Additionally, red morphs show a divergence in the red rayed pat-
tern where rays have a broader shape in Central America where 
red banded co-mimics are common and thinner rays in South 
America which perfectly match those of the thin red ray mim-
icry ring of the amazon basin (see Figure 1). Here, we tested if 
red and blue morphs of H. doris reflect predictions of a balanced 
polymorphism, which we define as a genetic polymorphism that 
is stable and maintained in a population by natural selection. We, 
therefore, expected both morphs to experience a similar predation 
pressure wherever they are both local. We also used the regional 
color pattern difference in the red H. doris morphs between South 
and Central America to assess the ability of pFDS to drive adap-
tive divergence of a balanced polymorphism at varying geographic 
scales. Furthermore, we tested if the differences in co-mimic fre-
quency in French Guiana from rayed phenotypes in the interior to 
nonrayed in the coast (Blum, 2008), can drive local differences in 
predation on H. doris morphs.

Even though Müllerian mimicry theory predicts warning signal 
monomorphy over time, we have found the selective pressures that 
allow H. doris to maintain multiple warning colors across its range. 
We have further observed how the same selective forces maintain-
ing this polymorphism also act to drive divergence in warning color-
ation at large geographical scales.

2  |  METHODS AND MATERIAL S

2.1  |  Experimental locations

Experiments were conducted at three locations, with two tran-
sects at each location. At all sites, Heliconius butterflies, particu-
larly the H. doris co-mimics H. erato and H. sara, are some of the 
most abundant butterflies present (Figure 1). In addition, H. doris 
has been observed at each of the three locations. Therefore, 
the local predators should be well-trained for avoiding the local 
morphs. In Panama we conducted the experiments along Pipeline 
Rd. near Gamboa Panama (9.12542, −79.71459). In Panama, red 
(broad rays) and blue H. doris morphs are present, as well as co-
mimics for red and blue morphs. In French Guiana, experiments 
were conducted in two locations, inland (4.57768, −52.39848) and 
coastal (4.87316, −52.26627). At the interior French Guiana sites 
both the red (narrow rays) and blue H. doris morphs are present, as 
well as red and blue co-mimics. At the coastal sites, both the red 
(narrow rays) and blue H. doris morphs are present, but only co-
mimics of the blue morph are present. In French Guiana, at around 
20 km inland there is a sharp transition in the co-mimic H. erato 
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color patterns, with solid black hindwings (nonmimetic to H. doris) 
along the coast and red rayed morphs in the interior (mimetic to 
H. doris). (Blum, 2008). Based on personal observations and availa-
ble collections, Heliconius with red ray morphs appear to be largely 
absent from the coastal areas, therefore, predators in the coastal 
sites have likely had more training to avoid blue, than red warning 
color morphs.

2.2  |  Artificial butterfly models

We used artificial butterflies to assay the predation of H.  doris 
warning colorations in three distinct geographic locations with 
known divergence in H.  doris wing colorations (Panama versus 
French Guiana red hindwing pattern). Artificial butterfly experi-
ments in natural populations have proven to be efficient means to 
record predator attacks for several Heliconius species and warning 
colorations (Arias et al., 2016; Chouteau et al., 2016; Finkbeiner 
et al., 2018; Seymoure et al., 2018). At each of the three locations 
in Panama and French Guiana, we used artificial butterflies of three 
H. doris warning colorations and the palatable Pierella hyceta, which 
we used as a control following the method in Chouteau et al. (2016). 
This model allowed us to obtain additional data on the intensity of 
selection at each locality, however, it also provided a comparative 
insight on the selection against a palatable phenotype versus an 
aposematic phenotype.

Standardized photographs of the ventral and dorsal wings of 
each butterfly were used and printed on two-sided matte pho-
tographic paper. (Epson C135041569 paper and L110 Printer). In 
order to produce a high volume of standardized models, a silicon 
mold (Mold Star, Smooth-on) was fabricated using clay bodies that 
were shaped to resemble Heliconius bodies. The paper wings were 
inserted into each mold along with a thin 20-cm metal wire before 
pipetting a mixture of high melting point wax with a black dye and 
then left to solidify. The different colors on the printed wings were 
calibrated in Photoshop (Adobe Inc.) and then contrasted with 
the colors on actual H. doris wings by measuring the reflectance 
spectra of red, black, yellow, and blue using a spectrophotome-
ter (HR2000+ES, Ocean Optics) and a deuterium/halogen light 

source (DH-2000; Ocean Optics) connected to a 3.175-mm diam-
eter sensor (QR600-7-UV125BX; Ocean Optics) inserted in a min-
iature black chamber. Reflectance spectra were taken at 90° for all 
colors except for the blue structural coloration which was taken 
at 45° incidence relative to a 99% reflectance standard (300–
700 nm; Spectralon) and to a dark current. Spectra were recorded 
with SpectraSuite 1.0 software (Ocean Optics). Color spectra from 
real and printed wings were then compared using the method 
described by Vorobyev and Osorio (1998) in Avicol v.6  software 
(Gomez, 2006). We contrasted blue, black, red, and yellow, under 
two main avian vision systems: blue tit (Parus caeruleus) for UV 
vision, with cone proportion and sensitivity as described by Hart 
et al. (2000), and wedge-tailed shearwater (Puffinus pacificus) as 
described by Hart (2004) for violet (V) vision. Photoreceptor ac-
tivity was computed from the Weber fraction (Osorio, 1998), and 
set to 0.05 for all artificial models. Small gap light conditions, as 
defined by Endler (1993) from French Guiana were included in all 
calculations (Thery et al., 2008). Chromatic (Delta S) and achro-
matic differences (Delta Q) for all colors were found to be under 
the noticeable threshold for avian vision in UVS and VS (<1.00 Just 
Noticeable Difference units, as in Llaurens et al. (2017), thereby 
confirming the accuracy in color of our printed wings to real wings 
(See Table A1).

Using the attached thin metal wire, models were placed on 
leaves, trunks, or twigs in visible, well-lit areas at 10-m intervals 
along a 4-km transect in each site. The placement of each model was 
carried out so as to mimic the natural perching behavior of Heliconius 
butterflies and provide a visible target for potential avian predators. 
The distinct model morphs were placed along the transect in a reg-
ular order. From 376 to 416 models were placed per site and left for 
72 h, after which models were collected. Damage was clearly visi-
ble in the malleable wax bodies and paper wings of several models. 
Damages were catalogued as either (a) “invertebrate attack” when 
bearing the visible fine marks of arthropod mandibles, often on the 
wax bodies, (b) “Avian Attack” when bearing the characteristic U or 
V shape marks on the wax, or (c) “Unknown Predator” when a severe 
attack was evident, but a specific mark was not found, such as when 
wings were torn or wax bodies broken in pieces. Models that bore 
attack marks characteristic of invertebrates were not included in the 

F I G U R E  1  Heliconius doris polymorphic 
forms and co-mimics. (a) Distribution of 
blue and divergent red morphs compared 
to widespread blue morph distribution. 
(b) Heliconius doris morphs (top row) with 
respective co-mimics (below)
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data analysis (n = 97 out of 2271), as there is currently no literature 
regarding invertebrates carrying the cognitive capacity necessary 
to make the associations between unpalatability and warning color 
patterns central to Müllerian mimicry. Furthermore, missing models 
were also excluded from the analyses as we are unable to determine 
if they were displaced by falling forest debris, human action, or at-
tacked by natural predators.

2.3  |  Data analysis

Variation in predation rates among the different models in the differ-
ent regions (consisting of two transects made in the same area), was 
assessed by a χ2 test of independence in R Studio (RStudio Team, 
2020). When significant, the Freeman–Tukey deviate (FT) was com-
pared with an alpha, from 0.05 to 0.01, criterion corrected for mul-
tiple comparisons using a Bonferroni correction, to identify which 
model morph was attacked significantly more or less than expected 
based on the null hypothesis of equal attack probability.

3  |  RESULTS

We placed an average of 392 models per site over 6 sites from a 
total of 2356 throughout all our field sites of which 2271 were 

recovered (96.39%) with 158 showing evidence of an attack event 
(6.96%). In French Guiana, of 1604 model placements throughout 
4 field sites, 1524 were recovered (95.01%) and 123 models were 
attacked (8.07%). In Panama, we placed 752 models throughout 2 
field sites of which 747 were recovered (99.34%) and 35  models 
were attacked (4.69%). Attacks were recorded as damage caused 
on the wax bodies or paper wings by either avian, unknown, or in-
vertebrate predators.

3.1  |  Balanced polymorphism of aposematic wing 
colors in H. doris

We tested the prediction that blue and red H. doris morphs expe-
rience similar predation where they are both native. For this we 
conducted FT tests to determine if there were significant differ-
ences in attacks on native blue morphs, native red morphs, and the 
controls. In French Guiana, using data from all sites, we found no 
significant differences in attacks (N = 1145, p >  .467). In Panama, 
we also found no significant differences in attacks between native 
morphs and controls (N = 560, p > .306), see Figure 2. This suggests 
that the blue and red morphs enjoy similar protection from preda-
tors wherever they naturally co-occur in populations. Before pool-
ing data and to confirm that proportions of attacks were consistent 
between coastal and inland locations in French Guiana, we carried 

F I G U R E  2  No significant attack differences between H. doris coexisting morphs. (a) Distribution of Heliconius doris morphs. (b) Percentage 
of attacks on individual models representing local H. doris morphs in French Guiana and Panama. Statistical analyses used raw attack 
numbers, percentages shown here for clarity. Bar plots represent two separate FT tests
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out a χ2 test of independence which validated the uniformity of the 
data (N = 1145, p > .1).

3.2  |  Regional divergence in balanced polymorphism

Next, we tested for evidence of adaptive divergence of warning col-
oration among populations for H. doris. For this, we tested the pre-
diction that divergence in red color morphs between Panama and 
French Guiana H. doris populations resulted in greater predation on 
non-native red morphs at each locality.

Of the two red morphs with differing hindwing rays correspond-
ing to Central America or South America, we expected predation 
rates to show signs of differential avoidance based on frequency of a 
given signal in each region. Specifically, we predicted that local phe-
notypes would be significantly avoided relative to the exotic pheno-
types. For this test we used FT tests to detect differences in attacks 
on native, non-native reds, and controls. In French Guiana, we found 
significant differences in attacks on red morphs at coastal and inland 
sites. At coastal sites we found significantly greater attacks on the 
non-native red morph than native reds and controls, as would be 
expected since the local predators would have been naive to this 
red warning wing pattern (n = 560; p <  .0365; Figure 3). However, 
at the inland sites the non-native morphs were not attacked signifi-
cantly more than the controls. Rather, we found that the native reds 
were attacked significantly less at inland sites (n = 584; p <  .023; 
Figure 3). Interestingly, this finding fits the expectations of pFDS, as 
red co-mimics are known to be at higher frequencies at inland than 
in coastal sites in French Guiana. In Panama, we found no evidence 
of differences in attacks on native reds, non-native reds, or controls 
(Table A2).

3.3  |  Co-mimics drive local variation in pFDS on 
balanced polymorphism

Lastly, we tested for variation in local selection to explain the geo-
graphic differences in the balanced warning color polymorphism in 
H.  doris. For this, we leveraged differences in the presence of red 
co-mimics at coastal versus inland sites in French Guiana. At coastal 
sites, H. erato and H. melpomene morphs are characterized by an all-
black hindwing that lacks red rays. However, at inland sites, H. erato 
and H. melpomene morphs have red rays that are strikingly similar to 
H. doris red rays. At coastal and inland sites, H. sara, which is a co-
mimic of the blue warning color, is found at high frequencies. Similar 
to the analyses above, we used FT tests to determine if attacks were 
different on red morphs, blue morphs, or controls, in either coastal 
or inland sites. We predict that pFDS would result in red morphs 
being attacked more at coastal sites that lack the red co-mimics.

We found no evidence of red morphs being attacked signifi-
cantly more than blue morphs or the controls at the coastal sites 
(n = 557; p > 1.0). However, at the inland sites we found that the 
red morphs were attached significantly less than blue morphs and 

controls (n = 588; p < .027). These results suggest that the presence 
of co-mimics confers greater protection for red morphs, however, 
a lack of co-mimics does not appear to result in greater predation 
pressures for the red morphs.

4  |  DISCUSSION

4.1  |  Striking similarity of predation pressures 
across Heliconius species and populations

Our results of predator attacks on Heliconius models correspond 
to the attack patterns observed in mark–release–recapture experi-
ments, where naïve predators significantly attack novel, exotic pat-
terns relative to native, common warning patterns (Langham, 2004; 
Mallet & Barton, 1989). As may be expected, attacks of live prey 
showed much greater differences for exotic and native morphs (36–
37% vs. 0%, respectively), than we observed with artificial models 
(5–11.5% vs. 4–6.5%, respectively; see Figure 3). This difference be-
tween model and live prey experiments likely results from the inabil-
ity of models to replicate physical and behavioral cues recognized 
by potential predators (i.e., crawling, wing flapping, flight). Although 
the attack numbers on models likely do not reflect realized predation 
rates of live butterflies, they do provide reliable means to compare 
relative predation pressures due to differences in visual cues.

Importantly, there is a remarkable similarity in attacks of 
Heliconius models in studies that span a variety of species and geo-
graphic locations over the past decade (Arias et al., 2016; Chouteau 
et al., 2016; Finkbeiner et al., 2012, 2014, 2018; Merrill et al., 2012; 
Seymoure et al., 2018). Attack percentages in these studies range 
from 4% to 15%, which overlaps our observed attack percentages 
that ranged from 4% to 12% on H. doris morphs. This consistency in 
attacks of models may reflect the similarity in avian predation pres-
sures among Heliconius species and populations. The rufous-tailed 
jacamar (Galbula ruficauda) has been reported as a common preda-
tor of Heliconius in western South America (Mallet & Barton, 1989) 
and Central America (Dell’Aglio et al., 2016; Langham, 2004). In line 
with these reports, we observed a rufous tailed jacamar successfully 
attack a Heliconius (likely Heliconius sara) at one of our inland exper-
imental sites in French Guiana. Collectively, this supports that jaca-
mars may be a common predator driving similar attack rates in the 
various Heliconius model experiments. Therefore, we can make di-
rect comparisons among these studies and general inferences about 
the relative effectiveness of specific aposematic color patterns and 
corresponding selective pressures.

For studies measuring the effectiveness of FDS, abundancy data 
of the organisms being investigated can be useful for better under-
standing training of local predator populations. In organisms such as 
Heliconius butterflies, such abundance data can be quite difficult to 
collect and interpret. For example, species such as H. erato and H. sara 
tend to be quite abundant and broadly dispersed across their ranges, 
while species such as H. doris tend to be very localized and their local 
densities can vary dramatically between generations. This is likely due 
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to life-history differences among the co-mimics, with H. doris being 
a species where multiple females lay eggs in aggregate and gregari-
ous larval feeding that tends to fully consume local host plants, caus-
ing the next generation to disperse to find new suitable host plants. 
Existing collection records lack the locality and color pattern details 
to inform us of H. doris local abundances. The difficulties in acquiring 
such abundance data highlight the usefulness of predation experi-
ments such as that presented here in assessing FDS pressures.

4.2  |  The paradox of polymorphic mimicry in 
H. doris

The strong selective forces that drive Müllerian mimicry are pre-
dicted to result in monomorphism among mimicking species, yet as in 
H. doris, there are many examples of polymorphic mimicry in nature. 
Our study sheds some light on how this paradox may be achieved. 
Our results suggest that pFDS can vary at regional scales, and is con-
strained to knowledgeable predator communities which are savvy to 
the aposematic forms found only in their local ecosystem (Chouteau 
et al., 2016; Langham, 2004). For example, over the relatively short 
distance of ~30 km, we found significant differences in the attacks 
on native red morphs of H. doris, with significantly less attacks oc-
curring at the sites where other red co-mimics are present. This sug-
gests the predator community knowledge was quite distinct at the 

different sites and corresponds to reports of jacamars having rather 
narrow home ranges (Chai, 1986). However, this begs the question of 
“how do the red H. doris persist in areas lacking red co-mimics?,” as we 
would expect the lack of co-mimics to result in higher predation and 
eventual removal of the red morph from the population.

A possible explanation lies in the dispersal behavior from nearby 
populations where red co-mimics are present and the red H.  doris 
morphs have greater protection. Other Heliconius species such as 
H. erato and H. melpomene have an estimated dispersal range of only 
~2.5–5 km (Mallet, 1986a; Mallet et al., 1990), as a result of their “trap-
line” behaviors as adults (Young & Montgomery, 2020). However, it 
has been suggested that Heliconius doris may disperse much larger dis-
tances immediately post pupal eclosion, which could reduce chances 
of sib-competition and sib-matings (Mallet, 1999). Heliconius doris 
females are known to gather in groups and lay eggs on single plants, 
often even the same leaf, which we observed firsthand in French 
Guiana. This results in a mass of gregarious larvae that will often fully 
consume all leaves and tendrils on the Passiflora host. After consump-
tion, an individual host plant can require several years to reach a size 
sufficient to host another population of H. doris eggs. It would then 
likely benefit newly eclosed females to disperse larger distances than 
other Heliconius species that tend to oviposit much fewer eggs in close 
proximity. Therefore, it is possible that group egg laying, and relatively 
greater dispersal in H. doris could drive a “mismatch” of warning colors 
in the distribution of Heliconius co-mimetic species, as seen in French 

F I G U R E  3  Differences in attacks on native and foreign red morphs. (a) Divergent red morphs of H. doris at study sites (Panama and 
French Guiana). (b) Percentage of attacks on native and exotic red phenotypes shows a significantly higher predation on exotic phenotypes 
in the coastal region of French Guiana and significantly lower predation on native phenotypes in the interior zone, where red co-mimics 
are abundant (*1p < .0365, *2p < .023, Freeman–Tukey [FT] test). Statistical analyses used raw attack numbers, percentages shown here for 
clarity. Barplots represent two separate FT tests
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Guiana. This dispersal-based hypothesis would result in sink popula-
tions for H. doris morphs, where the red co-mimics are lacking, that are 
continuously replenished from source populations where red morphs 
have greater protection. It is difficult to understand how this could be 
an evolutionarily stable strategy, and dispersal data for H.  doris are 
lacking to support such a source-sink model for the presence of red 
H. doris morphs where the co-mimics are absent.

Another important aspect that could explain the distribution of 
red morphs and polymorphic mimicry in H. doris is the genetic basis 
for the color variation. In H. numata, polymorphic color patterns result 
from allelic changes at a single locus, P (Joron et al., 2006). More spe-
cifically, the different color patterns result from varying combinations 
of chromosomal inversions across the P locus (Joron et al., 2011). The 
color pattern variation is maintained in local populations through dis-
assortative mating (Chouteau et al., 2017; Maisonneuve et al., 2021), a 
form of negative frequency-dependent selection where rare morphs 
are preferred mates resulting in offspring of variable colorations. Since 
the color pattern differences are controlled by a single locus, and the 
different alleles cannot recombine due to the inverted orientations 
(Jay et al., 2021), disassortative mating will keep producing color pat-
tern variation in perpetuity. In H. numata, each of the different color 
patterns also corresponds to local co-mimics, and different morphs 
appear to share similar predation pressures (Chouteau et al., 2016). 
We propose that a similar system may have evolved in H. doris, with 
nonrecombining alleles at a single locus controlling color pattern varia-
tion coupled with disassortative mating as such a system would result 
in distinct red and blue morphs in each generation across the H. doris 
range. The lack of intermediate phenotypes encountered among 
H. doris, lends support to such a genetic architecture for this polymor-
phism as if it were controlled by multiple unlinked genes, we would ex-
pect to find mismatched recombinants and nondistinct morphs (Jamie 
& Meier, 2020), which are extremely rare and slight in H. doris.

Alternatively, it is also possible that polymorphism in H. doris may 
be maintained without the need of chromosomal inversions or a su-
pergene type architecture, just as it is maintained in Heliconius cydno 
through positive FDS (Davey et al., 2017; Kapan, 2001). This can es-
pecially be so in a butterfly such as H. doris that can lay many eggs in 
a single plant and whose gregarious larvae can result in a large single 
brood where the frequency of a rare, exotic phenotype can be high 
enough to train local predators. In this case, the high frequency of 
individuals with an exotic pattern would influence the local mimetic 
signal, and polymorphism could be maintained. Currently, there are 
no data for the inheritance of color patterns or mate preference in 
H. doris, which would be vital for determining how polymorphic mim-
icry is maintained in the species.

4.3  |  Positive FDS as an agent of convergence and 
divergence

Positive FDS is the evolutionary force that drives mimicry in Heliconius 
butterflies (Chouteau et al., 2016). It is the result of local predators 
learning through experience to avoid the aposematic signals of the 

most common unpalatable prey. Müllerian mimicry posits that unpal-
atable prey will benefit by sharing similar aposematic signals thereby 
allowing them to share the cost of training the local prey popula-
tion. As we saw in our study, local pFDS can be a strong evolutionary 
force that can vary over relatively short distances. Within Heliconius 
populations, pFDS will drive mimics to a local optima color pattern 
that often varies little within or between species. In our study, this is 
clearly seen in the French Guiana red morphs whose hindwing rays 
are near perfect copies of the hindwing rays of H.  erato, the most 
common Heliconius in French Guiana with a red rayed color pattern. In 
contrast, the blue H. doris are co-mimics of H. sara, which do not have 
blue rays, but rather a blue iridescence that extends broadly from 
the proximal region of the forewings (Figure 1). Correspondingly, the 
shape of the blue rays of H. doris are starkly different from the shape 
of the red rays. Therefore, not only has pFDS driven a difference in 
hindwing color, but also the shape of the color pattern. This is further 
seen in Panama, where again the red H. doris morphs are shaped dif-
ferently than those in French Guiana, where the red ray shape is a 
near perfect to red co-mimics in Panama (Figure 1). This variation in 
color pattern shape exemplifies the power of pFDS to drive conver-
gence (or advergence) within local populations (Figure 4).

In contrast to our results indicating local advergence, the dif-
ference in color pattern shape between regions demonstrates the 
ability of pFDS to drive divergence within species. Across its range, 
H.  doris presently exhibits divergent red color pattern morphs, 
that in French Guiana were distinguishable by the local predator 
community.

In Panama, local predators attacked the models much less and 
did not show evidence that they distinguished between the native 
and exotic morphs. We suggest this may be a result of a more gen-
eralized avoidance in Panama, which would result in less attacks on 
all morphs, as we saw. A similar difference in prey discrimination be-
tween South and Central America has also been noted by Finkbeiner 
et al. (2018). Additionally, our Panama transect has been the loca-
tion of many Heliconius studies (live and model based) in recent years 
(Dell’Aglio et al., 2016; Finkbeiner et al., 2014; Merrill et al., 2012; 
Seymoure et al., 2018), this could also explain predator avoidance of 
artificial models if these had an earlier exposure to artificial butter-
fly models. Panama is also a known Heliconius hybrid zone (Mallet, 
1986b). Therefore, local predators often encounter intermediate 
phenotypes which makes precise pattern recognition a nonviable 
strategy for avoiding distasteful prey. Thus, it may benefit potential 
predators to adopt general avoidance of aposematic wing colors (red, 
black, yellow, blue) and flight behaviors common of unpalatable prey.

Alternative explanations for the regional differences in preda-
tion pressures involve variation in local prey composition, mimicry 
rings and chemical defenses. Regional differences in prey composi-
tion and abundance have been previously shown to impact preda-
tion. For example, predators can show higher rates of avoidance of 
both models and imperfect mimics when alternative prey is abun-
dant (Kokko et al., 2003; Lindström et al., 2004). Differences in 
mimicry ring compositions and densities between South American 
and Central America could certainly also contribute to the regional 
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differences we observed in selection pressures. This could be exac-
erbated by regional differences in differences in toxicity, which is 
known for several Heliconius species (de Castro et al., 2021; Mattila 
et al., 2021; Sculfort et al., 2020). Current data show little variation 
in toxicity of H.  doris from Panama to Peru (Sculfort et al., 2020). 
However, H. doris shows higher toxicity than its co-mimics H. sara 
and H.  erato in Panama, relative to South America. This suggests 
H. doris predation in Panama may be lower due to the higher unpal-
atability of co-mimics but a more in-depth study on predation which 
included co-mimic toxicity data would be needed.

We found that even at small regional scales, selection on mi-
metic warning patterns differs depending on local predator com-
munities. Although Müllerian mimicry theory predicts mimicking 
species to achieve monomorphism in color patterns over time, we 
demonstrate that H. doris maintains a balance of multiple warning 
colors across its range. Furthermore, we find that the same selec-
tive forces acting to maintain the balanced polymorphism, also 
drive divergence in warning coloration across its range. These re-
sults highlight the complex nature of pFDS and the impacts it has on 
interspecific variation of mimetic warning colorations. Collectively, 
our study as well as other model studies, such as those of color 
polymorphisms in H. numata (Chouteau et al., 2016) and Peruvian 
dart frogs (Chouteau & Angers, 2011), have demonstrated that 
pFDS can simultaneously be an agent that both limits and facilitates 
diversification of mimetic traits.
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APPENDIX A

Attacked models
(a) Model displaying characteristic invertebrate minute jaw marks distributed throughout the body (common on models placed on cecropia 
trees which are often inhabited by colonies of Azteca ants). (b) Unknown vertebrate predator attack (or mixed predators). (c) Avian predator 
attack (damage usually concentrated on anterior or posterior extremities of the main body). (d) Avian attack showing peck marks.
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French Guiana
Panama Red 
Morph

Blue 
Morph

French Guiana Red 
Morph Control

Coastal sites (red co-mimics absent)

Site 1 12 12 9 8

Site 3 10 4 3 4

Interior sites (red co-mimics present)

Site 2 8 13 7 15

Site 4 8 3 2 5

Panama

Site 5 5 3 4 6

Site 6 4 4 5 4

TA B L E  A 2  Total attacks by avian and 
unknown predators (invertebrate attacks 
excluded), in all study sites in French 
Guiana and Panama

Black VS UVS

DeltaS DeltaQ DeltaS DeltaQ

0.779014 0.665228 0.904758 0.679434

Yellow VS UVS

DeltaS DeltaQ DeltaS DeltaQ

0.864394 0.30895 0.754856 0.619833

Red VS UVS

DeltaS DeltaQ DeltaS DeltaQ

0.834949 0.291156 0.541547 0.27452

Blue VS UVS

DeltaS DeltaQ DeltaS DeltaQ

0.845082 0.587016 0.754856 0.619833

TA B L E  A 1  Chromatic (Delta S) and 
achromatic differences (Delta Q) for 
all colors were under the noticeable 
threshold for avian vision in UVS and VS 
(<1.00) Just Noticeable Difference units, 
confirming the accuracy in color of our 
printed wings to real wings


