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Abstract

One of the primary objectives of early visual processing is the detection of luminance variations, often termed image
contrast. Normal observers can differ in this ability by at least a factor of 4, yet this variation is typically overlooked, and has
never been convincingly explained. This study uses two techniques to investigate the main source of individual variations in
contrast sensitivity. First, a noise masking experiment assessed whether differences were due to the observer’s internal
noise, or the efficiency with which they extracted information from the stimulus. Second, contrast discrimination functions
from 18 previous studies were compared (pairwise, within studies) using a computational model to determine whether
differences were due to internal noise or the low level gain properties of contrast transduction. Taken together, the
evidence points to differences in contrast gain as being responsible for the majority of individual variation across the normal
population. This result is compared with related findings in attention and amblyopia.
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Introduction

Sensitivity to contrast (variations in luminance within an

image) is a fundamental property of the human visual system.

The majority of cells in primary visual cortex (V1) respond to

contrast at various spatial scales and orientations [1]. At a

behavioural level, normal observers are highly sensitive to

contrast, being easily able to detect variations (e.g. sinusoidal

gratings) of less than 1% of the background luminance under

optimal conditions [2]. Research into this ability has been

extensive (over 9000 entries in the PubMed database include

the term ‘‘contrast sensitivity’’), and has had a huge impact in

the understanding of normal visual processes as well as clinical

visual disorders. But despite this interest, nobody has yet

attempted to answer a fundamental question: why do some

normal observers have greater contrast sensitivity than others?

Individual differences in contrast sensitivity are often overlooked

in psychophysical studies, which typically involve few observers

(,8) and often average results across observers, obscuring any

differences (though see [3,4] for an alternative approach).

However, such differences are apparent when looked for. For

example, Schefrin et al. [5] report differences in low spatial

frequency scotopic sensitivity of around 0.5 log units (a factor of

.3) in healthy young adults, and even greater differences across a

wider age range. More recently, Baker & Graf [6] measured the

sensitivity of 41 observers for detecting sine-wave gratings at 2c/

deg. They found a more than four-fold variation in sensitivity

across their population that appeared to correlate with alternation

rates in binocular rivalry. Another recent paper [7] reported

sensitivity ranges spanning a factor of .20, with interquartile

ranges of a factor of ,2, for two ‘magnocellular’ detection tasks

performed on over 1000 subjects. In the present study, data from

18 publications were reanalysed, and again revealed intra-study

individual differences approaching a four-fold variation (see

below).

There are several possible explanations for the above sensitivity

differences. Most obviously, they could be caused by differences in

optical blurring, e.g. due to myopia. This seems unlikely for two

reasons. First, psychophysical observers typically wear their

prescribed optical correction during testing, and so have nominally

normal visual acuity. Second, blur has an effect at high spatial

frequencies, leaving lower frequencies unaffected (unless it is

extreme), yet individual differences are apparent across the entire

CSF (e.g. , = 2c/deg in the studies of Schefrin et al. [5] and Baker

& Graf [6]). So, blur is not a convincing explanation. Practise

effects also seem unlikely, since differences persist between highly

experienced observers, and studies on perceptual learning or

training indicate that extensive practise provides only a marginal

[8] or nonexistent [9–12] improvement in sensitivity. Differences

in criterion or bias can also be ruled out, since modern studies use

bias-free empirical methods (e.g. two-alternative forced choice;

note that early work using yes/no or adjustment tasks is vulnerable

to criterion effects).

Here, three ‘neural’ limits on visual sensitivity are considered:

observer efficiency, internal noise, and gain control nonlinearities.

In Part I a noise masking paradigm was used to rule out differences

in efficiency. In Part II contrast discrimination functions from 18

studies were reanalysed using a computational model to reveal that

individual differences are not primarily due to differences in

internal noise. Instead, it appears that contrast gain control

nonlinearities are responsible for variations in sensitivity within the

normal population.
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Results

Part I – Noise Masking
Noise masking has been used to understand performance

differences in several domains, such as amblyopia [13], peripheral

vision [14], attention [15], dyslexia [16] and many others (see

[17]). Where a difference in performance exists in the absence of

external noise, adding white pixel noise (broadband ‘TV snow’)

can allow attribution of this difference to a variation in either

internal noise, or the efficiency with which information is extracted

from the stimulus [18].

The noise masking paradigm assumes a noisy linear observer

model, in which the filter (e.g. neural) response to the stimulus is

corrupted by additive internal noise. Under this model, variations

in internal noise will produce (i) sensitivity differences in the

absence of external noise, and (ii) equal sensitivity when external

noise is strong. In other words, noise masking functions will

converge at high noise levels (compare solid and dashed curves in

Figure 1). Alternatively, differences in the efficiency with which

information is extracted from the stimulus (e.g. the match of the

perceptual template) will produce vertical translations of the noise

masking function (compare solid and dotted curves in Figure 1).

This technique was applied using four varieties of external

noise, for two observers with a substantial, stable difference in

sensitivity. Four varieties of noise were used for several reasons.

There is evidence that pixel noise also produces suppression via

contrast gain control [19], so a 0D noise condition (see Methods)

that avoids this was also included. However, it seemed worthwhile

to also include more standard noise masks for comparison with

previous studies. Finally, showing the same behaviour consistently

across diverse mask types makes the findings more convincing.

The results for all four mask types are shown in Figure 2, with

curves giving two-parameter fits of equation 1. The inter-observer

difference in sensitivity at threshold (noise contrast of 0%) of

around a factor of 2 is clear, and remains stable at the lower mask

contrasts in each panel. At higher mask contrasts the masking

functions approximately converge, consistent with a difference in

internal noise (see Figure 1). Masking functions have a slope of

unity, consistent with previous results [17] and theoretical

expectations [18,20]. The poorer performance for observer

DHB (purple squares) at threshold does not persist at high mask

contrasts. Indeed, for some mask types (0D noise and 1D white

noise), observer DHB appears to be slightly more sensitive at high

mask levels than observer LP (orange circles). This is consistent

with a small difference in the efficiency parameter (b is slightly

larger for DHB, see Table 1), but it is clear that the main cause of

poorer threshold performance for DHB is the internal noise

parameter (sint), that is on average twice as large for DHB relative

to LP (see Table 1).

Comparison of noise masking functions for two observers, using

four varieties of external noise, implies that the main source of

variability is in the level of internal noise. This makes a major role

for differences in calculation efficiency unlikely, at least between

these two observers. But to what extent does the conclusion of

internal noise differences rely on the assumption of a noisy linear

observer? The following section demonstrates that well established

nonlinearities of early visual processing suggest two equally

plausible interpretations of apparent differences in the sint

parameter.

Beyond a Linear Observer
There is abundant evidence that the human response to contrast

is not linear, but instead accelerates at low contrasts, and saturates

at high contrasts. This nonlinearity is consistent with contrast

discrimination data (e.g. [21]), fMRI responses [22] and ERP

recordings [23]. It most likely emerges from the combined output

of many single neurons, with properties similar to those found in

visual cortex [24,25].

A widely used equation [21] that describes the contrast response

function is:

resp~
Cp

ZzCq
zsint, ð1Þ

where C is target contrast, the exponents p and q have values of 2.4

and 2 respectively, Z is a constant (often termed the saturation

constant), and sint is the observer’s internal noise (see above). This

equation can be used stochastically to simulate performance in

noise masking experiments by making C equal to the activity in the

detecting mechanism (e.g. target plus mask), and sampling sint

from a zero-mean normal distribution, on each interval of every

trial (see [20]). However, doing so reveals a problem of

interpretation for noise masking experiments. In Figure 3a,

comparing the solid curve to the dotted curve shows the effect

of increasing the saturation constant, Z, whereas the dashed curve

shows the effect of increasing the level of internal noise, sint. It is

clear that both of these parameters shift the noise masking function

upwards and to the right, such that the handles of the masking

functions converge. This means that empirical results such as those

in Figure 2 could be produced by a change in either parameter.

Estimates of sint from noise masking experiments are therefore

relative, not absolute, and are confounded by differences in Z.

Part II – Contrast Discrimination
Although both the saturation and internal noise parameters in

equation 1 affect the signal-to-noise ratio of the model (one by

reducing signal, the other by increasing noise), their operations are

distinct: Z changes the gain of the nonlinearity at low contrasts,

whereas sint determines the increase in activity required to reach

threshold. Noise masking experiments cannot distinguish between

these two possibilities (Figure 3a), but an alternative paradigm

exists that can.

Figure 1. Canonical noise masking functions showing the effect
of changing model parameters. The dashed and dotted curves
show the effect of changing the level of internal noise (sint in equation
2– see Materials and Methods section) or the observer’s efficiency (b in
equation 2), relative to the solid curve.
doi:10.1371/journal.pone.0069536.g001

Individual Differences in Contrast Sensitivity
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Contrast discrimination experiments, in which observers detect

a contrast increment on a fixed contrast ‘pedestal’, tap directly into

the contrast response function (they measure its derivative). The

characteristic ‘dipper’-shaped nonmonotonic functions produced

by such experiments [26,27] are affected in different ways by the

two parameters. Increasing Z translates the dipper upwards and to

the right, resulting in converging dipper handles (compare solid

and dotted curves in Figure 3b), whereas a change in sint shifts the

dipper vertically (compare solid and dashed curves in Figure 3b).

A clear advantage of using contrast discrimination functions to

investigate individual differences is that many existing studies

contain such data for a number of observers. A non-exhaustive

search produced 18 studies, and 63 dipper functions in total (see

Figure S1). By fitting equation 1 to these data, it is possible to

estimate whether individual differences in detection threshold are

mainly due to differences in either Z or sint. This was done by first

fitting the equation to the entire dipper function of one observer,

with both parameters free (see circles and solid curve in Figure 3b;

the exponents p and q were fixed at standard values of 2.4 and 2).

Each parameter was then adjusted separately to exactly predict

only the detection threshold of a second observer (leftmost pink

diamond in Figure 3b). These two versions of the model, one

where Z was changed (dotted curve), one where sint was changed

(dashed curve), then predict performance over the remainder of

the dipper function for the second observer with no further degrees

of freedom. By comparing the accuracy of these two predictions

(assessed by the RMS error, see Materials and Methods), the

parameter that best explains individual differences at detection

threshold is revealed (in Figure 3b it is clearly a change in Z).

Figure 4a shows a scatterplot of RMS errors indicating the

relative success of manipulating the two parameters. Points falling

below the diagonal line indicate that differences in internal noise

(sint) best explain individual variation in detection thresholds,

whereas points above the line support differences in the gain

parameter, Z. It is clear that the majority of points (95/138) fall

Figure 2. Noise masking functions for two observers and four varieties of external noise. Insets to each panel show examples of the noise
stimuli. (a) 0D noise, (b) 2D white noise, (c) 1D white noise, (d) 2D pink noise. The 0D noise had the same spatial waveform as the target. Error bars
show standard deviations of a population of bootstrap resamples. The curves are fits of a noisy linear observer model detailed in the text, that had
two free parameters per curve. The oblique dashed line in panel (a) gives the prediction of the ideal observer.
doi:10.1371/journal.pone.0069536.g002

Table 1. Parameters for best fits of equation 2 to the data in
Figure 2, and ratios of those parameters across observers
(bold).

0D noise
2D white
noise

1D white
noise

2D pink
noise Mean

b (DHB) 1.0760.36 8.3761.07 2.3460.33 2.0060.19

b (LP) 0.6760.15 5.6860.93 1.5460.24 1.7960.21

b ratio 1.59 1.47 1.52 1.12 1.43

sint (DHB) 1.7160.36 12.2161.70 3.4360.58 2.9060.33

sint (LP) 0.6060.27 5.3561.16 1.4860.32 1.6960.27

sint ratio 2.85 2.28 2.32 1.72 2.29

Standard deviations of the bootstrapped parameter values are also given based
refitting the model to synthetic data sets generated by 1000 bootstrap
resamples per empirical threshold.
doi:10.1371/journal.pone.0069536.t001

Individual Differences in Contrast Sensitivity
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above the line, often markedly so. This difference is highly

significant (paired t-test on log values, t137 = 5.6, p,0.01).

It is also interesting to ask whether the greater predictive power

of Z is related to the magnitude of the threshold difference to be

explained. This can be assessed by plotting the error difference

against the absolute difference in detection threshold for each pair

of observers (Figure 4b), it is clear that the largest differences (e.g.

those .6dB) are almost all best described by a change in Z.

Performing linear regression on the data in Figure 4b with the

regression line constrained to pass through [0,0] revealed the

significant positive relationship (R2 = 0.62, p,0.001) shown by the

solid black line. The significantly positive slope confirms the

hypothesis that changing the Z parameter provides the better

description of the data.

Fitting 63 dipper functions using a computational model, and

making pairwise comparisons between them, demonstrates that

the major source of individual differences at detection threshold is

the saturation constant, Z. Although there will inevitably be

contributions from other factors, such as internal noise, optical

blur, template efficiency and attention, the principal individual

difference appears to be in the low level gain properties of contrast

transduction.

An alternative analysis of the contrast discrimination data leads

to the same conclusion. Figure 5a shows all of the raw (un-

normalized) contrast discrimination data (i.e. pedestal contrasts

.0%, so omitting baseline detection thresholds) plotted in a single

panel. If the main source of differences were due to internal noise

(sint), the vertical translation that this implies (compare solid and

dashed curves in Figure 3b) could be compensated for by

normalizing thresholds (the y-axis) by the baseline detection

threshold for each observer. This is shown in Figure 5b, and on

average (solid line) does produce a better approximation of a

dipper function than the raw data (Figure 5a).

It is much less convincing than the average function in Figure 5c,

however. This was produced by normalizing both thresholds and

pedestal contrasts to the baseline detection thresholds, so that both

axes are in relative units [28]. This is approximately consistent

with the diagonal translation of the dipper produced by varying

the saturation parameter (Z) (note that because the slope of the

dipper handle is typically ,1, these two operations are not

precisely identical, but they are sufficiently similar for the present

exposition). The average function has several familiar properties.

The slope of the ‘handle’ region (calculated by linear regression) is

0.6, consistent with previous work [21]. Furthermore, the lowest

point of the facilitatory ‘dip’ region occurs at around the detection

threshold for the target alone (0dB on these normalized axes).

These observations support the main conclusions from the

previous section.

Discussion

The main source of individual differences in contrast sensitivity

was investigated using noise masking experiments, and by re-

analysis of a large corpus of contrast discrimination data. Neither

observer efficiency or internal noise appear to be primary factors.

Instead, the evidence indicates that gain properties of the system

are responsible for individual variation. The following section

considers sensitivity differences in three other situations, discusses

possible causes of individual differences, and alternative interpre-

tations of the present findings.

Attention
Using a similar logic to the comparison of dipper functions

above, Huang & Dobkins [29] measured contrast discrimination

under conditions of attention and inattention. Their most striking

finding was that inattention (induced by observers performing a

resource intensive concurrent task) caused a vertical shift of the

dipper function, consistent with a change in internal noise (see also

[30] for similar findings and [31] for a counterexample).

The finding that attention modulates internal noise rather than

contrast gain means that individual differences in attention (or

motivation) are unlikely to explain the present dipper results.

Interestingly, Huang and Dobkins [29] attribute their findings to a

change in response gain (e.g. a multiplicative scaling of the output

from the nonlinear transducer), which is mathematically indistin-

guishable from a change in internal noise in the dipper paradigm.

However, the noise interpretation is supported by other work (e.g.

[32]) which has demonstrated that attention appears to primarily

reduce internal noise (or, equivalently, to decorrelate the

spontaneous firing of neurons [33,34]), rather than amplify

internal responses.

Figure 3. Behaviour of a nonlinear gain control model for noise masking (a) and contrast discrimination (b). The data in (b) are
replotted from Henning & Wichmann [62] and are for observers NAL (circles) and GBH (diamonds). In both panels, green dotted curves show the
effect of increasing the Z parameter of equation 1, and red dashed curves show the effect of increasing sint, relative to the solid curves.
doi:10.1371/journal.pone.0069536.g003

Individual Differences in Contrast Sensitivity
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Adaptation
When a stimulus is viewed for a long period of time, sensitivity

to subsequent similar stimuli is reduced [35]. Several studies have

shown that this adaptation effect corresponds to a change in

contrast gain (the Z parameter), producing a diagonal shift in the

dipper function [36–39]. Since the visual system continually

adapts to its surroundings (e.g. [40]), it may be that individual

differences are influenced by some global adaptation state, perhaps

determined during development. Alternatively, adaptation might

operate over shorter timescales, and vary across observers. For low

spatial frequency stimuli, adaptation to (or masking from [41]) the

mean luminance of the display is a potential candidate mechanism

to explain individual differences.

Amblyopia
In amblyopia, contrast sensitivity can be severely impaired in

one eye, but normal in the other [42]. Several studies have

attempted to account for this deficit using the noise masking

paradigm, with mixed results. For example, Huang, Tao, Zhou

and Lu [43] concluded that some amblyopes differed in efficiency,

whereas others differed in internal noise. Pelli, Levi and Chung

[44] found weak evidence for increased internal noise, but

attribute most of the deficit for letter identification to reduced

efficiency, whereas other work concludes that greater internal

noise is responsible [45,46].

The above insights regarding the usefulness of dipper functions

could be informative here: based on available data, is it possible

that apparent differences in internal noise are in fact due to

changes in contrast gain? Two studies have compared monocular

contrast discrimination functions in both eyes of amblyopes

[47,48]. In both studies, there is clear evidence of a vertical

translation of the dipper functions, such that the handles do not

converge at high contrasts (see e.g. Figure 3i of [47] and Figure 6

of [48]). This is consistent with greater internal noise in the

amblyopic eye only, a conclusion also reached by Baker et al. [47]

using computational modelling.

Source of Differences
It is reasonable to ask what might be responsible for the

differences in contrast gain between individuals. It is well

established that contrast sensitivity follows a developmental

trajectory [49], improving until around the age of 12 [50]. (Note

that the decline in contrast sensitivity in later life is typically

confined to high spatial frequencies (e.g. [2,51]) and so is most

likely optical in origin). Conceivably, environmental differences

during development might affect adult sensitivity, perhaps owing

to prolonged adaptation to a restricted range of contrasts [40]. As

an extreme example, kittens reared in impoverished visual

environments containing stripes of only one orientation exhibit

long lasting behavioural and morphological visual abnormalities

[52]. Alternatively, there could be genetic factors that determine

contrast sensitivity, perhaps mediated by neurotransmitter levels,

which have recently been shown to predict individual differences

in bistable perception [53]. Though this area is in its infancy, there

is at least one major study on the genetics of perception currently

underway that may shed light on such issues (see [54]).

A series of studies by Peterzell and colleagues exploited

individual differences in sensitivity to infer the structure of

psychophysical channels, using a factor analysis technique [3,4].

The assumption behind this method is that individual channels

will vary in their sensitivity between observers, but that such

differences will be largely uncorrelated within an observer. Such

an assumption is consistent with differences in gain or channel-

specific noise, but not with differences in global decision noise or

uncertainty (see next section).

A very different conclusion was reached by Halpern, Andrews &

Purves [55]. These authors measured performance for a group of

20 observers on a battery of visual tasks. These included

orientation, wavelength and motion direction judgements, as well

as contrast discrimination (increment detection). They performed

principal components analysis on the results, and identified a

Figure 4. Scatterplots showing RMS errors for fits to 138 pairs
of dipper functions. In (a), points above the oblique line indicate that
changing sint produced a worse fit (larger error) than changing Z. In (b),
the difference between the two errors is plotted against the absolute
difference in detection threshold for each pair of dippers. Points above
the dotted line correspond to points above the oblique line in panel (a).
For pairs with the largest threshold differences (e.g. .6dB) almost all
points favour the change in Z. The solid black line is the best fitting
regression line, constrained to pass through [0,0], and has a slope of
0.68. The shaded histograms in each panel show the density of points.
Since these exhibit positive skew, the data were log-transformed before
performing statistical tests.
doi:10.1371/journal.pone.0069536.g004
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single factor that correlated highly with visual performance on all

tasks apart from motion direction detection and Snellen acuity.

Within the present context, an index of general visual ability maps

more naturally onto differences in uncertainty, decision noise or

even general intelligence. This is clearly distinct from the major

source of differences in contrast detection thresholds identified in

the present study.

Contrast Gain or Uncertainty?
In this study, contrast discrimination has been explained in

terms of nonlinear contrast gain control. However, there is an

alternative explanation for dipper functions that posits a linear

observer who is uncertain about the precise properties of the signal

[56], and so monitors both relevant and irrelevant (noisy)

mechanisms. In this model, facilitation (the dip) occurs because

the pedestal increases the activity of the relevant mechanisms

above the noise of the irrelevant mechanisms, and so reduces

uncertainty. Pedestal masking (the dipper handle) is typically

attributed to a separate process of multiplicative (i.e. signal-

dependent) noise [57,58].

Under this framework, differences in contrast gain are

reinterpreted as differences in intrinsic uncertainty between

Figure 5. Summary of 63 dipper functions, plotted three ways. Panel (a) shows the raw data from 18 studies (dots) and a binned average
(black line, bin width of 6dB). Panel (b) shows the same data with the thresholds (y-axis) normalized to the baseline detection threshold (i.e. pedestal
contrast of 0%) for each observer. Panel (c) shows the same data but with both axes normalized to the baseline detection threshold. Error bars show
61SE of the mean for each bin.
doi:10.1371/journal.pone.0069536.g005

Figure 6. Details of 18 studies that contained dipper functions used in the meta-analysis. The number of pairwise comparisons is
determined by n*(n-1), where n is the number of observers who completed a given condition.
doi:10.1371/journal.pone.0069536.g006

Individual Differences in Contrast Sensitivity

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e69536



observers. This is difficult to rule out categorically, though it

should be noted that (i) the uncertainty/multiplicative noise model

would still reject additive internal noise as an explanation for

individual differences, and (ii) highly ‘certain’ (and thus apparently

more sensitive) observers should show little or no facilitation (i.e. a

shallow dip), yet there appears to be no evidence of this (e.g. the

two observers in Figure 3b have similar sized dips). Furthermore,

explaining the sometimes large individual differences in sensitivity

(up to a factor of 4, see Figure 4b) entirely in this way implies

variations in uncertainty of approximately a factor of 1,000,000

(see Figure 9 of [59]). This seems highly improbable.

Conclusions
Understanding individual differences in performance is impor-

tant for a number of high-precision task domains, as well as being

of interest in basic and clinical research. This study has

investigated, for the first time, the main source of individual

differences in contrast sensitivity. Differences in internal noise and

efficiency are ruled out. Instead, observers appear to differ in the

low level gain parameters of the visual system.

Materials and Methods

Ethics Statement
All participants gave written informed consent, and procedures

were approved by the Aston University Ethics Committee.

Apparatus & Stimuli (part I)
All stimuli were presented on an Iiyama VisionMaster Pro 510

running at 85 Hz. A BITS++ box (Cambridge Research Systems

Ltd., Kent, UK) was used to provide 14-bit greyscale resolution.

The monitor was gamma-corrected using a photometer and had a

mean luminance of 50cd/m2. At the viewing distance of 114 cm,

one degree of visual angle subtended 60 monitor pixels.

The target stimulus was a horizontal 1c/deg log-Gabor patch in

positive cosine phase, with bandwidths of 625u and 1.3 octaves

(see [60]). There were three varieties of pixel noise mask: 1D and

2D white noise, and 2D pink noise. Each began as a 2D array of

zero-mean Gaussian noise. All were low-pass filtered in the Fourier

domain (high frequency cut-off of 15c/deg), and for the pink noise

the slope of the amplitude spectrum was adjusted to 1/f. They

were then inverse-transformed, and windowed in the spatial

domain using a 2D Gaussian window that had the same spatial

extent as the target (full-width-at-half-height of 1u).
The fourth type of noise, termed 0D noise, was a pedestal of

random contrast, determined on an interval-by-interval basis from

a zero-mean Gaussian distribution (where negative values

constitute a phase reversal). It was therefore spatially identical to

the target (i.e. the noise energy was distributed across 0 spatial

dimensions), but of variable contrast. See [19] for further details of

this condition. Example noise stimuli are shown in the insets to

Figure 2.

Contrast is reported in dB units, where CdB = 20log10(C%). For

the target stimulus, C% is the delta (or Weber) contrast of the

stimulus (DL/L0). For the pixel noise stimuli, C% is the RMS

contrast of the mask (equivalent to the luminance standard

deviation), expressed as a percentage. For the 0D noise, C% is the

standard deviation of the Gaussian noise source that determined

the interval-by-interval mask contrasts.

Procedure
A two-interval-forced-choice (2IFC) paradigm was used, with

target contrast controlled by a pair of 3-down-1-up staircases.

Stimuli were presented in the centre of the monitor for 100 ms,

with an interstimulus interval of 400 ms. In one interval a noise

mask was presented alone, and in the other interval a different

sample of noise was presented combined with the target stimulus.

The observer’s task was to identify, using a two-button mouse,

which interval contained the target. Each interval was marked by a

beep, but no feedback was given to indicate response accuracy. A

quad of fixation points was visible throughout to indicate the

stimulus location.

Seven mask contrasts were used for each mask type, and

detection thresholds (with no mask) were also measured. Each

observer repeated the experiment four times, and thresholds

(estimated by fitting cumulative Gaussian functions to the staircase

data) were averaged across repetitions.

The masking functions for the 0D noise and 2D white noise

conditions have previously been reported [19]. In that study, they

were used for a very different purpose (to estimate equally effective

mask contrasts across the two conditions for use in subsequent

experiments), so this is the first direct comparison across observers.

The additional conditions (1D white and 2D pink noise) have not

previously been reported.

Observers
Two experienced psychophysical observers completed all noise

masking conditions. Both were emmetropic, with normal binoc-

ular vision, and aged 29 at the time of testing. They were selected

because they differ in foveal contrast sensitivity by around a factor

of 2 at low spatial frequencies (1c/deg), as observed in previous

work (Figures 4, 5 and A1 in [61]). This difference has remained

stable over the past five years.

Model Fitting (part I)
The results were fitted by a widely used deterministic

approximation of a noisy linear observer model (e.g. [17]; see

also [20] for further discussion). The model response is given by,

r~
bCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
extzs2

int

q , ð2Þ

where C is target contrast, sext is external noise variance, and sint

and b are free parameters representing the observer’s internal

noise variance and calculation efficiency, respectively. Threshold is

reached when the response, r, is greater in the target interval than

in the null interval by some fixed quantity, here implicitly unity.

The model was fitted with two free parameters per function by

minimising the root-mean-squared (RMS) error between model

and data. The RMS error in decibels (dB) is defined as

RMSe~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Si~1:n(modeli{datai )

2

n

q
, where n is the number of data

points. Smaller errors indicate better fits.

Details of Computational Analysis (part II)
Data were obtained from 18 published studies that either

plotted results for individual observers separately, or were carried

out in the Aston vision laboratory (meaning that the individual

observer data were available even if they were not presented in the

published paper). In many cases, data were estimated from

published figures using a computer program (see Figure S1). All

studies measured contrast discrimination functions using standard

forced-choice methods at a range of spatial frequencies (see

Figure 6, and the individual studies for details). The fitting

procedure described in the Results section was repeated for

pairwise combinations of observers within a given experiment,

ensuring that all methodological details were constant (138
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comparisons). As previously, model predictions were compared by

calculating the RMS error for each fit.

Note that for the contrast discrimination predictions an analytic

version of equation 1 was used. Deterministic responses were

calculated for the pedestal only interval, and the pedestal+target

interval across a range of target contrasts. Threshold was defined

as the target contrast that increased the model response by a fixed

amount, which was proportional to sint. This is exactly equivalent

to the predictions of a very large number of stochastic simulations,

but is sufficiently computationally tractable to permit parameter

optimization.

Supporting Information

Figure S1 Dipper functions from 18 studies. Curves show

the best fit of a gain control model with two free parameters. The

mean RMS error of the fits was 1.53dB. These initial fits were then

adjusted to predict the results for the other observers in each study,

as detailed in the body of the manuscript. Details of the conditions

for each study are given in Figure 6 and the methods sections of

the source publications.
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