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Abstract

Background: Species in the ascomycete fungal genus Cordyceps have been proposed to be the teleomorphs of
Metarhizium species. The latter have been widely used as insect biocontrol agents. Cordyceps species are highly
prized for use in traditional Chinese medicines, but the genes responsible for biosynthesis of bioactive
components, insect pathogenicity and the control of sexuality and fruiting have not been determined.

Results: Here, we report the genome sequence of the type species Cordyceps militaris. Phylogenomic analysis
suggests that different species in the Cordyceps/Metarhizium genera have evolved into insect pathogens
independently of each other, and that their similar large secretomes and gene family expansions are due to
convergent evolution. However, relative to other fungi, including Metarhizium spp., many protein families are
reduced in C. militaris, which suggests a more restricted ecology. Consistent with its long track record of safe
usage as a medicine, the Cordyceps genome does not contain genes for known human mycotoxins. We establish
that C. militaris is sexually heterothallic but, very unusually, fruiting can occur without an opposite mating-type
partner. Transcriptional profiling indicates that fruiting involves induction of the Zn2Cys6-type transcription factors
and MAPK pathway; unlike other fungi, however, the PKA pathway is not activated.

Conclusions: The data offer a better understanding of Cordyceps biology and will facilitate the exploitation of
medicinal compounds produced by the fungus.

Background
The Ascomycete genus Cordyceps includes over 500
species that are pathogens of arthropods. Cordyceps
militaris (CCM) is the type species and occurs through-
out much of the Northern Hemisphere as a pathogen of
lepidopteran insect pupae [1]. C. militaris is readily
characterized by the sexual fruiting bodies forming on
mycosed pupae, the structures giving the fungus its
common name of ‘pupa grass’ in China. Anamorphic
Cordyceps species, such as Beauveria spp., Metarhizium
spp. and Paecilomyces spp., have been developed as

insect biocontrol agents [2,3]. Although C. militaris and
Cordyceps sinensis (syn. Ophiocordyceps sinensis) are
best known as traditional Chinese medicines, they are
also increasingly being studied and used in the West
[4,5]. An array of pharmacologically active components
has been identified, including cordycepin, cordycepic
acids, polysaccharides and macrolides [6]. Cordycepin
(3’-deoxyadenosine) has so far only been reported in C.
militaris and is a broad spectrum antimicrobial [5] and
polyadenylation inhibitor that is currently undergoing
clinical trials against cancers [7]. The biosynthetic path-
way of cordycepin production has not been determined.
In spite of their market values - for example, >

$10,000 per kilo for the fruiting bodies of the un-culti-
vatable C. sinensis [8] - very little is known about sex
and developmental processes in Cordyceps species, and
remedying this deficiency should help in production/
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cultivation of these enigmatic fungi. C. militaris is nota-
ble as it readily performs sexual reproduction on artifi-
cial media and is thus a good target for studying the
molecular underpinnings of sex and development in
Cordyceps spp. (Figure 1). C. militaris also has the
potential to be a versatile new model for studying the
evolution of sex and reproductive structures. While cur-
rent fungal models have provided numerous insights
into the evolution of sex [9], there is still much to be
understood about the mechanisms, evolution and ecolo-
gical impact of sexuality in fungi. This is, in part,
because fungal mating and sexual cycles are often com-
plicated; for example, aspergilli have both self-fertile
(homothallism) and self-sterile (heterothallism) mating
systems [10].
There is also much to be learnt about the nature and

evolution of interactions of Cordyceps spp. with their
hosts and with the wider environment. As entomo-
pathogenicity appears to have evolved independently in
Cordyceps and two Metarhizium species [11], compara-
tive genomics will provide independent assessments of
what is required to be entomopathogenic, identify the
degree to which evolution between these fungi has
been convergent, and identify the genomic basis of
their differing physiologies and host-specificity. Last
but not least, genomic sequencing of C. militaris will
enable a systematic exploration of the biology and

pharmaceuticals underlying the widespread medical
impact of Cordyceps spp., and identify potential safety
hazards, including genes for known human mycotoxins.

Results
Genome sequencing and general features
The C. militaris genome was shotgun sequenced to 147
× coverage and assembled into 33 scaffolds with an N50
of 4.6 Mb and a total genome size of 32.2 Mb. The gen-
ome is smaller than either the broad host range Metar-
hizium anisopliae (MAA) or the locust-specific
pathogen Metarhizium acridum (MAC) that we
sequenced previously (Table 1). The characteristic telo-
meric repeats (TTAGGG/CCCTAA)n were found at
either 5’ or 3’ terminal of 13 scaffolds, including the
terminal anchoring of two scaffolds, that is, the com-
plete chromosomes. From mapping > 5,000 expressed
sequence tags [12], the C. militaris genome was esti-
mated to be > 99% complete. The genome was predicted
to encode 9,684 protein genes, which is slightly fewer
than M. anisopliae and M. acridum (Table 1). Conse-
quently, many protein functional categories are smaller
in Cordyceps than in Metarhizium spp. (Figure 2a).
However, like M. anisopliae (17.6%) and M. acridum
(15.1%), C. militaris has a higher proportion of its genes
encoding putatively secreted proteins (15.9%) than other
sequenced ascomycetes (5 to 10%) [10,13,14].

Figure 1 Life cycle and phenotypic polymorphism of C. militaris. The round conidia (from a solid culture) or the bar shaped blastospores
(from a liquid culture) were inoculated onto caterpillar pupa or rice medium and incubated for up to 60 days. The resulting fertile fruiting
bodies have protruded perithecia that contain asci. The ejected linear ascospores fragment and germinate to produce secondary pear-shaped
conidia under nutrient poor conditions, that is, micro-cycle conidiation. Both the ascospores and secondary conidia can infect caterpillars. Scale
bar: 5 μl.
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An InterproScan analysis identified 2,736 conserved
protein families in C. militaris (containing 6,725 pro-
teins), fewer than those in M. anisopliae (7,556 proteins
in 2,796 families) or M. acridum (6,948 proteins in
2,746 families) [11]. In particular, the number of trans-
posases is much fewer in C. militaris (4) than in Metar-
hizium spp. (148 in M. anisopliae and 20 in M.
acridum) or other sequenced ascomycetes (15 to 426)
(Table S1 in Additional file 1). The C. militaris genome
lacks retrotransposase (Table S2 in Additional file 1),
and has more than three-fold fewer pseudogenes than
Metarhizium spp. (Table S3 in Additional file 1). About
16% of the predicted C. militaris genes (1,547) are puta-
tively involved in pathogen-host interactions; this pro-
portion is slightly lower than for Metarhizium spp.
(17.3% in MAA and 16.5% in MAC) but is higher than
four plant pathogens (10.8 to 15.5%; P = 0.0476; false
discovery rate (FDR) = 0.0152) (Table S4 in Additional
file 1).
More than 50% of M. anisopliae and M. acridum pro-

teins have > 90% identity [11]. Although the rarely
observed sexual stages of Metarhizium spp. have been
identified as a Cordyceps species [1], the analysis
revealed that < 2% of C. militaris genes were highly con-
served in comparison with those from Metarhizium
spp., that is, had Blast score ratio (BSR) values close to
1 (Figure 3a). A similar pattern was observed when
comparing C. militaris, M. anisopliae and the plant
pathogen Fusarium graminearum (Figure 3b). Compara-
tive genomic analysis of the three insect pathogens
found that the percentage of species-specific genes is
much higher in C. militaris (13.7%) compared to M.
anisopliae (4.8%) and M. acridum (3.5%) (Figure 2b).
Based on the identities between orthologous proteins, C.
militaris displays an average of approximately 63%

amino acid identity with either M. anisopliae or M. acri-
dum, slightly higher than with the plant pathogens F.
graminearum (61.6%) and Magnaporthe oryzae (56.0%)
(Table 2). Thus, the three insect pathogenic fungi are
more highly diverged than F. graminearum, Fusarium
oxysporum and Fusarium verticillioides, which share an
average of 85% nucleotide sequence identity [14], and
Aspergillus nidulans, Aspergillus fumigatus and Aspergil-
lus oryzae, which share an average of 68% amino acid
sequence identity [13], and Trichoderma reesei, Tricho-
derma virens and Trichoderma atroviride, which share
an average of > 70% amino acid sequence identity [15].
The regions containing at least three contiguous open

reading frames that are not present in the reference gen-
ome are designated as genomic islands (GIs) [16].
Whole genome reciprocal analysis of three insect patho-
gens demonstrated that, in comparison to Metarhizium
spp., C. militaris has 52 GIs (2% coverage of its genome,
harboring 21% of its species-specific genes), which is
many more than M. anisopliae (8 GIs, 0.3%) or M. acri-
dum (5 GIs, 0.2%) when referenced to C. militaris. As
in aspergilli [17], many C. militaris species-specific
gene-encoding proteins do not have conserved domains
and the genes are clustered together to form GIs (Table
2). A phylogenomic analysis established that the Cordy-
ceps lineage is more closely related to the wheat patho-
gen F. graminearum (divergence time of 200 to 260
million years ago (MYA)) than it is to Metarhizium spp.
(26 to 34 MYA) (Figure 3c). Thus, the lineage leading to
C. militaris appears to have diverged from plant patho-
gens around the Triassic-Jurassic boundary (200 MYA),
while M. anisopliae and M. acridum diverged after the
Cretaceous Extinction Event (65 MYA) [18]. Analysis of
paralogous genes found only one pair of C. militaris
genes with > 90% nucleotide sequence similarities (Fig-
ure 3d), which is similar to Neurospora crassa (one pair)
[13] and F. graminearum (two pairs) [19]. Analysis of 24
paired C. militaris genes showing > 70% nucleotide
identities found a strong overall C:G to T:A mutation
bias (Figure S1 in Additional file 2), consistent with
repeat-induced point mutations, the DNA methylation-
linked processes that cause mutations of repeated fungal
sequences [15,20].

Protein family analysis
We identified gene family expansions for proteases, chit-
inases, lipases and protein kinases in C. militaris when
compared with phytopathogenic fungi, whereas gene
family contractions occurred for glycoside hydrolases
(GHs; P = 0.0144; FDR = 0.02), cutinases (P = 0.0065;
FDR = 0.0226) and pectin lyases (P = 0.0245; FDR =
0.0284) (Table S1 in Additional file 1). The largest
family expansions were for proteases. The C. militaris
genome contains 61 families of proteases but most of

Table 1 Comparison of genome features among three
insect pathogens

Features C. militaris M. anisopliae M. acridum

Size (Mb) 32.2 39.0 38.1

Coverage (fold) 147 × 100 × 107 ×

Percentage G+C
content

51.4 51.5 50.0

Percentage repeat rate 3.04 0.98 1.52

Protein-coding genes 9,684 10,582 9,849

Gene density (genes
per Mb)

257 271 259

Exons per gene 3.0 2.8 2.7

Percentage secreted
proteins

16.2 17.6 15.1

tRNA 136 141 122

Pseudogenes 102 363 440

NCBI accession AEVU00000000 ADNJ00000000 ADNI00000000

Mb, mega base pairs.
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Figure 2 Comparative genomics analysis of three insect pathogens. (a) Functional classification and comparison of C. militaris (CCM), M.
anisopliae (MAA) and M. acridum (MAC) proteins, showing that C. militaris has fewer genes in each category. Each circle represents the relative
fraction of genes represented in each of the categories for each genome. (b) Reciprocal blast analysis of the predicted proteins among three
insect pathogens. The cut-off E value is at ≤ 1e-5.
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them were included in families of serine proteases (180/
381) and metallopeptidases (108/381) (Table S5 in Addi-
tional file 1). Gene expansions within the subtilisin (P =
0.0109; FDR = 0.0189) and trypsin (P = 0.0077; FDR =
0.0178) families are consistent with their being virulence
factors in insect pathogens [11]. However, different
families of proteases are expanded in Metarhizium spp.
and C. militaris, consistent with each lineage ‘reinvent-
ing the wheel’ during the evolution of entomopathogeni-
city. Thus, relative to Metarhizium spp., the S01 trypsin
and S08 subtilisin subfamilies are smaller and the S53
subfamily is larger (Table S6 in Additional file 1). The
C. militaris genome has 12 trypsin genes compared to 4
or less in plant pathogens. It lacks four subfamilies of
trypsins present in M. anisopliae. Interestingly, the

bacterial-like chymotrypsin identified in M. anisopliae
[21] is absent in M. acridum [11] but present as two
copies in C. militaris. The A01 aspartyl proteases are
virulence factors of both mammalian and plant patho-
gens because of their ability to cleave an array of host
proteins [22]. Compared to phytopathogenic fungi (aver-
age 17), their number is significantly (P = 0.0059; FDR =
0.0057) expanded in the three insect pathogens (average
24) (Table S4 in Additional file 1).
Compared to many plant pathogens, Metarhizium spp.

and C. militaris have fewer cutinases for degrading plant
cell walls (Table S1 in Additional file 1). They also have
fewer (average 137, P < 0.05) GHs than plant pathogens
(average 199), including the lack of 20 GH families used
by most plant pathogens and saprobes to target plant

Figure 3 Comparative genomics and evolutionary analysis of C. militaris. Scatter plots of Blast score ratio (BSR) analysis of (a) C. militaris
(CCM), M. anisopliae (MAA) and M. acridium (MAC) genomes, and (b) CCM, MAA and F. graminearum (FG) genomes. The numbers in red at the
lower left corners are the percentages of C. militaris species-specific sequences and the numbers at the upper left or lower right are the
percentages of lineage-specific genes between pairs of genomes. (c) A maximum likelihood phylogenomic tree constructed using the Dayhoff
amino acid substitution model showing the evolutionary relationship of C. militaris with different fungal species. Three insect pathogens are
highlighted by the green shading. (d) Distribution of paralogous gene numbers with different levels of nucleotide similarity in C. militaris and
other fungi. MY, million years.
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cell walls - for example, GH6, GH7 and GH61 cellu-
lases, GH10 and GH11 xylanases, GH28 pectinases and
GH78 rhamnosidases (Table S7 in Additional file 1).
There are also significant differences in the spectrum of
enzymes produced by the entomopathogens. For exam-
ple, compared to M. anisopliae, C. militaris has few
xyloglucosyl transferases (GH16) for xyloglucan catabo-
lism and lacks a-glucuronidases (GH115) active on
xylan oligomers or polymeric xylan [23]. Consistent with
this, C. militaris grows very poorly on xylose when com-
pared with M. anisopliae (Figure S2 in Additional file 2).
A phosphoketolase MPK1 involved in pentose metabo-
lism is required for full virulence of M. anisopliae [24],
but the homolog is absent in C. militaris. However,
GH18 chitinases similar to those used by Metarhizium
to degrade insect cuticles [11] are well represented in
the C. militaris genome (20 in CCM versus 30 in MAA
and 19 in MAC) relative to plant pathogens (average 11)
(Table S7 in Additional file 1).
Cytochrome P450s (CYPs) play essential roles in fun-

gal physiologies, including detoxification, degradation of

xenobiotics and the biosynthesis of secondary metabo-
lites [25]. C. militaris has only about half as many CYPs
as Metarhizium spp., and most other fungi (Table S8 in
Additional file 1). Seventy CYP subfamilies present in
M. anisopliae and/or M. acridum are absent in C. mili-
taris. Of particular interest, C. militaris lacks CYP55,
CYP58 and CYP65. CYP55 is a nitric oxide reductase
required for denitrification [25]. Thus, unlike most fila-
mentous fungi, C. militaris may not respond to hypoxia
through the bacterial ammonia fermentation mechan-
ism. The absence of CYP58 (trichodiene oxygenase) and
CYP65 (trichothecene C-15 hydroxylase) suggests that
C. militaris will not produce the mycotoxin trichothe-
cene [26]. M. anisopliae can efficiently metabolize insect
epicuticle alkanes [27]. The CYP52 subfamily for alkane
hydroxylation [25] is well represented in Cordyceps.
The major facilitator superfamily (MFS) and ATP-

binding cassette (ABC) transporters are the two biggest
families of fungal transporters. Members of the former
typically function as nutrient symporters and drug anti-
porters, whereas the latter are more often implicated in

Table 2 Genome-wide analysis of C. militaris gene sets

Characteristics C. militaris CMM corea CMA restrictedb CMC restrictedc CCM specific

Number of genes 9,684 7,981 217 158 1,328

Mean gene length (bp) 1,742 1,885 1,445 1,440 967

Mean number of introns per gene 1.99 2.05 1.77 1.69 1.71

Percentage genes without introns 21.3 20.1 22.6 28.5 27.5

Percentage GC content (excluding introns) 58.6 58.6 70.7 58.7 58.3

Number of InterproScan protein families 2,644 2,552 69 52 112

Number of secreted proteins 1,572 1,250 45 13 264

Number of PHI genesd 1,547 1,539 4 2 2

Number of TSA proteases 68 65 3 0 0

Number of MFS genes 245 242 0 2 1

Number of cytochrome P450s 57 56 0 1 0

Number of Pth11-like GPCRs 18 18 0 0 0

Number of protein kinases 167 167 0 0 0

Number of transcription factors 123 120 2 1 0

Number of glycoside hydrolases 105 103 2 0 0

Number of SM backbone genes 28 28 0 0 0

Number of horizontally transferred genes 49 30 5 1 12

Number of orthologs in M. anisopliae 6,863 6,705 158 NA NA

Number of orthologs in M. acridum 6,762 6,644 NA 118 NA

Number of orthologs in F. graminearum 6,740 6,376 106 89 169

Number of orthologs in M. oryzae 6,219 5,937 90 80 112

Percentage identity to M. anisopliae orthologs 63.4 63.7 51.3 NA NA

Percentage identity to M. acridum orthologs 63.4 63.6 NA 51.2 NA

Percentage identity to F. graminearum orthologs 61.6 62.3 51.9 52.8 46.7

Percentage identity to M. oryzae orthologs 56.0 56.4 48.3 48.0 45.3
aCMM core: C. militaris (CCM), M. anisopliae and M. acridum genes grouped with a cutoff E value of 1e-5 during reciprocal Blast analysis. bCMA restricted: C.
militias and M. anisopliae restricted genes grouped with a cutoff E value of 1e-5. cCMC restricted: C. militaris and M. acridum restricted genes grouped at a cutoff
E value of 1e-5. dPHI genes, pathogen-host interaction genes predicted by blast analysis against the PHI database [72]. Identity was estimated at the amino acid
level. GPCR, G-protein coupled receptor; MFS, major facilitator superfamily; NA, not available; SM, secondary metabolite; TSA, trypsin, subtilisin and aspartyl
protease.
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defense against toxic metabolites [28]. C. militaris has
approximately half (123) the number of these transpor-
ters as Metarhizium (269 in MAA and 236 in MAC)
(Table S9 in Additional file 1). The MFS transporters
that are underrepresented in Cordyceps include the car-
bohydrate symporters (37 in CCM versus 48 in MAA,
51 in MAC and an average of 58 in plant pathogens),
vitamin B2 (riboflavin) transporters (2 in CCM versus
17 each in Metarhizium species and an average of 4 in
plant pathogens) and multidrug antiporters (23 in CCM
versus 110 in MAA, 77 in MAC and an average of 10 in
plant pathogens). Consistent with their having many
multidrug transporters, Metarhizium spp. are resistant
to diverse antibiotics and fungicides [29]. Cordyceps has
more ABC-type drug and metal resistant proteins than
Metarhizium and plant pathogens (63 in CCM, 56 in
MAA, 51 in MAC and an average of 54 in plant patho-
gens). The amino acid and dipeptide transporters are
similarly represented in the three insect pathogens and
other fungi (46 in CCM versus 53 in MAA, 49 in MAC
and an average of 45 in plant pathogens).
Fungal G-protein coupled receptors (GPCRs) are

required for pheromone/nutrient sensing and host
recognition [11]. Thus, the Pth11-like GPCR of Magna-
porthe mediates cell differentiation in responses to plant
inductive cues [30]. C. militaris has fewer GPCRs than
Metarhizium spp. and is particularly impoverished in
Pth11-like GPCRs (Table S10 in Additional file 1). C.
militaris has a similar number (167) of protein kinases
as M. anisopliae (161) but less than M. acridum (192)
(Table S11 in Additional file 1). Like other fungi, fungal
specific transcription factors (TFs) and zinc finger TFs
represent the two largest classes of TFs in C. militaris
and their numbers are similar to those of other fungi
(Table S1 in Additional file 1).

Mating-type and sexuality analysis
The fruiting bodies of Cordyceps spp. are the most com-
monly sold traditional Chinese medicine products [5].
However, the sexual cycle and fruiting of C. militaris is
poorly understood. We only identified a MAT1-1 mat-
ing-type locus, including MAT1-1-1 and MAT1-1-2
genes, in the sequenced Cm01 strain, suggesting that C.
militaris is heterothallic (Figure 4a). A single mating-
type locus was also found in M. anisopliae (MAT1-1)
and M. acridum (MAT1-2). Like aspergilli [10], the idio-
morphic regions of the three insect pathogens are highly
divergent (Figure 4a). The MAT1-1 locus of M. aniso-
pliae contains a MAT1-1-3 gene but lacks the MAT1-1-
2 gene present in C. militaris. Except for the mating-
type locus region, most A. nidulans and N. crassa genes
involved in mating, fruiting, karyogamy and meiosis are
also present in insect pathogens (Table S12 in Addi-
tional file 1).

Strain Cm01 forms fruiting bodies on caterpillar
pupae that lack perithecia and ascospores (Figure 5a-e).
Thus, it is the first ascomycete species reported to fruit
without an opposite mating-type partner. Other C. mili-
taris isolates could also fruit sterilely with a single mat-
ing-type locus (Figure 6a, b). However, a hybrid strain,
Cm06, with both MAT1-1 and MAT1-2 loci produced
sexual perithecia and ascospores (Figure 5f, g). In addi-
tion, the sexual structures could be similarly re-formed
after inoculation of the caterpillar pupae with different
ratios of MAT1-1 and MAT1-2 isolate conidia (Figure
6c-e), confirming that C. militaris is heterothallic. PCR
examination of 18 field-collected strains identified three
containing both MAT1-1 and MAT1-2 loci (Figure 5h).
However, 28 out of 30 single spore isolates of the Cm06
strain belonged to the MAT1-1 mating-type (Figure 5i).
A similar unequal prevalence of mating types occurs in
the dermatophyte fungus [31].

Metabolism of medically active components and
mycotoxins
One of the main pharmaceutically active components of
C. militaris is cordycepin [5,6], which is structurally
similar to 2’-deoxyadenosine (Figure 7a). C. militaris
possesses most of the genes required for metabolism of
adenine and adenosine except for lacking a ribonucleo-
tide trisphosphate reductase (RNR; converts ATP to
dATP) and a deoxyadenosine kinase (converts deoxyade-
nosine to dAMP) (Figure 7b; Table S13 in Additional
file 1). It has been suggested that the biosynthesis of
cordycepin proceeds through a reductive mechanism as
described for the formation of 2’-deoxyadenosine [32].
However, C. militaris resembles Metarhizium and other
cordycepin non-producing fungi in having only two
highly conserved subunits of class I RNRs (Figure S3 in
Additional file 2). The substrates for class I RNRs are
ADP, GDP, CDP and UDP but not TDP or nucleosides,
and as the reductive reaction proceeds via a free radical
mechanism [33], C. militaris RNRs will not be involved
in cordycepin production.
Contamination of food and feed by mycotoxins is a

longstanding threat to the health of humans and animals
[26]. C. militaris has been consumed for hundreds of
years, implying safety, but the genome data allowed us
to make the first comprehensive inventory of Cordyceps
genes involved in biosynthesis of secondary metabolites
for comparison with known mycotoxins. There are
fewer secondary metabolite core genes in C. militaris
relative to Metarhizium spp. or plant pathogens (Table
3). In comparison to Metarhizium spp., Cordyceps has
fewer terpenoid synthases, polyketide synthases (PKSs)
and non-ribosomal peptide synthetases (NRPSs). Phylo-
genetic analysis of Cordyceps PKS and PKS-like genes
using the ketoacyl CoA synthase (KS) domain sequences
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Figure 4 Comparative analysis of the C. militaris mating-type (MAT) locus. (a) Comparative analysis of the C. militaris MAT locus with those
of sexually heterothallic and homothallic fungal species. Genes labeled in the same color have orthologous relationships. (b) Syntenic
relationship of the MAT loci and their flanking regions between the three insect pathogens C. militaris (CCM), M. anisopliae (MAA) and M.
acridum (MAC).
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Figure 5 Fruiting body development, sexuality and mating-type analysis. (a-c) Chinese Tussah silkmoth pupae were inoculated with
conidia from the C. militaris Cm01 strain and incubated for 14 days (a), 29 days (b) and 59 days (c) to produce nascent, mid-term and
developmentally mature fruiting bodies. (d-g) The mature fruiting bodies of the Cm01 strain do not produce perithecia (d, e) but those of strain
Cm06 are completely covered with protruded perithecia (f, g). (h) PCR examination of different strains (numbers labeled on the top) showed
that strains Cm06, Pm36 and 80399 contain the MAT1-1-1, MAT1-1-2 and MAT1-2-1 genes while Cm01 and other strains lack the MAT1-2-1 gene.
(i) PCR examination of 30 randomly selected single spore isolates from the hybrid strain Cm06 showed that only 2 out of 30 isolates contain the
MAT1-2-1 gene.

Zheng et al. Genome Biology 2011, 12:R116
http://genomebiology.com/2011/12/11/R116

Page 9 of 21



Figure 6 Fruiting structures of different mating-type isolates. (a, b) Sterile fruiting bodies formed on caterpillar pupae after inoculation of
MAT1-1 (a) and MAT1-2 (b) isolates acquired by single conidial spore isolation from a MAT1-1/MAT1-2 hybrid strain, Cm06. (c-e) Fertile fruiting
structures formed on caterpillar pupae after inoculation of the mixed conidia of MAT1-1 (Cm01) and MAT1-2 (Cm06) at ratios of 1:9 (c), 1:1 (d)
and 9:1 (e), respectively. The right panels represent close-up views of corresponding sterile (without protruded perithecia) or fertile (with
protruded perithecia) fruiting bodies. After inoculation, the pupae were incubated at 22°C with a 12:12 hour light:dark cycle for 60 days.
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found that the C. militaris proteins grouped into differ-
ent clusters compared to PKSs for known mycotoxins
(Figure 8a). In addition, modular analysis indicated that,
except for CCM_00603, which has a similar domain
organization to the Aspergillus clavatus PatK gene for
patulin biosynthesis, C. militaris PKSs are structurally

different from mycotoxin PKSs (Figure 8b). The further
survey showed that the CCM_00603 protein has only
27% identity with PatK and the gene cluster for patulin
biosynthesis is absent in C. militaris (Table S14 in Addi-
tional file 1). This suggests that C. militaris PKSs do not
produce patulin or other known human mycotoxins.

Figure 7 Cordycepin analogues and the C. militaris adenine metabolic pathway. (a) The structures of cordycepin analogues. (b) The C.
militaris adenine metabolic pathway. Abbreviations for different enzymes: ADA, adenosine deaminase; ADE, adenine deaminase; ADEK, adenylate
kinase; ADK, adenosine kinase; ADN, adenosine nucleosidase; AMPD, AMP deaminase; APRT, adenine phosphoribosytransferase; DADK,
deoxyadenylate kinase; DAK, deoxyadenosine kinase; NDK, nucleoside-diphosphate kinase; NT5E, 5’-nucleotidase; PK, pyruvate kinase; PNP, purine
nucleoside phosphorylase; 3’-RNR, ribonucleotide triphosphate reductase. The red dashed lines show metabolic pathways present in other
organisms but absent in C. militaris.
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Similarly, phylogenetic and modular analyses indicated
that Cordyceps NRPSs had different protein structures
than any NRPSs involved in production of known myco-
toxins like enniatin, HC-toxin and gliotoxin (Figure S4
in Additional file 2).
The mycotoxin ergot alkaloids have a wide range of

biological activities and are important in pharmaceuti-
cals and agriculture [26]. Dimethylallyl tryptophan
synthase (DMAT) catalyzes the alkylation of L-trypto-
phan, the first committed step in the ergot alkaloid bio-
synthetic pathway [34]. C. militaris has one putative
DMAT gene (CCM_04410), in contrast to five in M.
anisopliae and three in M. acridum (Table 3). A phylo-
genetic analysis showed that CCM_04410 is not clus-
tered with the Claviceps DMAT clade involved in ergot
alkaloid production (Figure S5 in Additional file 2). The
trichothecenes T-2 toxin and deoxynivalenol (type B tri-
chothecene) are natural fungal products that are toxic to
both animals and plants [35]. Consistent with lacking
CYP58 and CYP65, the C. militaris genome also lacks
trichodiene synthase (Table S15 in Additional file 1).
Thus, unlike Fusarium [26], C. militaris is not predicted
to produce trichothecene mycotoxins. The presence of
terpenoid cyclase, terpenoid synthase, fatty-acid synthase
and geranylgeranyl diphosphate synthase genes in the C.
militaris genome suggests that the fungus is capable of
producing an array of metabolites, but the identity of
these and their biological activities remain to be
determined.

Transcriptional regulation of fruiting body development
To identify genes associated with C. militaris fruiting
body development, we compared the expression profiles

of undifferentiated mycelia from Sabouraud dextrose
broth (SDB) culture with developmental stages on cater-
pillar pupae defined as nascent (14 days, termed as sam-
ple FB1), stalk formation (29 days, FB2) and mature
fruiting bodies (59 days, FB3) (Figure 5a-c). Of the 9,684
genes, more than 63% were expressed during both
undifferentiated hyphal growth and formation of fruiting
bodies (Table S16 in Additional file 1). Relative to the
growth in SDB, more than 900 genes were significantly
(P < 0.05; FDR < 0.001) up-regulated while around
2,000 genes were down-regulated during fungal fruiting
(Figure 9a). A Pearson correlation analysis indicated that
transcriptional profiles at the different stages of fruiting
body formation more closely resembled each other than
they resembled the transcriptomes of undifferentiated
mycelia (Figure S6a in Additional file 2). This is consis-
tent with a Venn diagram analysis of the commonest
co-expressed genes between different samples (Figure
S6b in Additional file 2). Of the 100 most highly
expressed genes in developing C. militaris fruiting
bodies, 26 (FB1), 31 (FB2) and 37 (FB3) are functionally
uncharacterized (Table S17 in Additional file 1). This
suggests that the genes with unknown function are
more likely to be stringently regulated and involved in
developmental processes than orthologs of genes with
known function. These genes are thereby the targets for
future functional studies. In general, the genes involved
in cell wall structure and biogenesis, detoxification, pro-
tein degradation and amino acid transportation were
significantly up-regulated during formation of fruiting
structures. In contrast, most of the genes specifically up-
regulated by undifferentiated SDB cultures were
involved in rapid growth and carbohydrate metabolism.
Concomitant with fruiting structure maturation, the
genes for cytoskeletal organization, cell cycle and sec-
ondary metabolism were up-regulated.
Unlike other fungi, C. militaris can fruit sterilely in

the absence of a sexual partner (Figure 5a-c). Perhaps
because of this, 31 of the 42 C. militaris orthologs of
sex-related genes identified in other ascomycetes were
not expressed or transcribed at low levels (< 10 tran-
scripts per million tags (TPM)) in sterile fruiting bodies
(Table S18 in Additional file 1). However, in some
cases, C. militaris expresses paralogous genes to those
employed by other fungi, suggesting they have co-opted
different components of the same signal transduction
pathways to fulfill similar functions. For example,
GATA-type TFs are important for fruiting in both A.
nidulans and N. crassa [36], but C. militaris fruiting
structures expressed orthologs of these genes at very
low levels or not at all (Table S19 in Additional file 1).
In contrast, the Zn2Cys6-type TFs were highly tran-
scribed during fruiting but not in undifferentiated fungal
mycelia - for example, CCM_01809 and CCM_09644

Table 3 Numbers of core genes involved in the
biosynthesis of secondary metabolites in different fungi

Core gene CCM MAA MAC FG MO BC SS NC AN

DMAT 1 5 3 0 3 1 1 1 6

TC 3 3 3 3 3 3 3 3 5

TS 2 8 6 11 8 7 1 2 5

FAS 1 2 2 1 1 1 1 1 1

GGPS 3 4 4 3 3 0 0 1 0

NRPS 5 14 13 10 5 6 5 3 11

NRPS-like 8 9 8 11 6 8 5 3 12

PKS 9 24 13 14 12 16 16 6 24

PKS-like 2 3 4 1 3 6 2 2 4

HYBRID 3 5 1 1 3 0 0 0 1

Total 37 77 57 55 47 48 34 22 69

Core genes encoding: DMAT, dimethylallyl tryptophan synthase; TC, terpenoid
cyclase; TS, terpenoid synthase; FAS, fatty-acid synthase; GGPS, geranylgeranyl
diphosphate synthase; NRPS, non-ribosomal peptide synthetase; PKS,
polyketide synthetase; HYBRID, hybrid PKS-NRPS enzyme. Fungal species:
CCM, C. militaris; MAA, M. anisopliae; MAC, M. acridum; FG, F. graminearum;
MO, M. oryzae; BC, Botrytis cinerea; SS, Sclerotinia sclerotiorum; NC, N. crassa;
AN, A. nidulans.
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(Figure 9b) - indicating that Zn2Cys6 type TFs are pre-
dominately involved in the major developmental switch
of production of fruiting structures.
Pheromone receptors, that is, GPCRs, control fungal

fruiting body formation and sexual cycle but not vegeta-
tive growth [36]. The pheromone receptor of C. mili-
taris has not been identified. In comparison to
undifferentiated mycelial growth, a putative pheromone
receptor (CCM_01499) and a Pth11-like GPCR
(CCM_03015) were significantly up-regulated (P < 0.05,
FDR < 0.001), respectively, during initiation of fruiting
body formation. Mitogen-activated protein kinase
(MAPK) genes are required for fruiting in Aspergillus
(AN1017) and Neurospora (NC02393) [36], but

orthologous genes were not transcribed (CCM_04200
versus AN1017) or transcribed at low levels
(CCM_01235 versus NCU02393) by C. militaris (Table
S19 in Additional file 1). However, Cordyceps sharply
up-regulated (P < 0.05, FDR < 0.001) a MAPK paralog
(CCM_09637) as well as a calcium regulated kinase
(CaMK, CCM_06085) (Figure 9c). These data, taken in
conjunction with the single adenylate cyclase
(CCM_06928) not being transcribed and the low level
expression of both protein kinase A (PKA; CCM_03352)
and Rap GTPase (CCM_01391), indicate that fruiting by
C. militaris in the absence of a partner is more depen-
dent on the MAPK pathway than the cAMP-dependent
PKA pathway (Figure 10).

Figure 8 Phylogenetic and modular analysis of C. militaris polyketide synthases compared with those involved in the production of
human mycotoxins. (a) A neighbor-joining tree showing the relationships of ketoacyl CoA synthase (KS) domain sequences. (b) Modulation
and comparison of C. militaris PKSs with those involved in production of mycotoxins. The PKS-NRPS hybrid proteins CCM_04722, CCM_08261
and CCM_08018 are not included in the analysis. Domain definitions: ACP, acyl carrier protein domain; AT, acyltransferase domain; CYC, cyclase
domain; DH, dehydratase domain; ER, enoyl reductase domain; KR, ketoreductase domain; MT, methyltransferase domain; TE, thioesterase
domain. The accessions and references for different mycotoxins are provided in the Materials and methods.
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Discussion
We report here the first genome analysis of a Cordyceps
species, the medicinal lepidopteran pathogen C. mili-
taris, and show that the fungus is capable of fruiting
without an opposite mating-type partner. We also show
that it lacks genes known to be involved in production
of human mycotoxins. Being an insect pathogen, the C.
militaris genome contains thousands of genes putatively

involved in interactions with insect hosts. Cordyceps
resembles Metarhizium spp. in having a very high per-
centage of secreted proteins relative to plant pathogens
and saprophytes and expanded families of proteases and
chitinases with targets in insect hosts. However, insect-
killing strategies may differ between Cordyceps and
Metarhizium due to differences in gene content. Mat-
ing-type analysis indicated that sexual reproduction in

Figure 9 Differential gene expression by C. militaris in association with fruiting structure formation or growth in a liquid medium. (a)
Estimation of significantly up- and down-regulated genes between different samples. (b) Heat map of protein kinases associated with the
mitogen-activated and cAMP-dependent protein kinase pathways at different developmental stages. (c) Heat map of the highly expressed
transcription factors at different developmental stages. Genes with expression values > 100 transcripts per million tags (TPM) are also indicated in
red. Annotation information for the genes is provided in Table S19 in Additional file 1. DEG, differentially expressed gene. FB1, FB2 and FB3 are
associated with nascent, stalk formation and mature developmental stages shown in Figure 5a-c, respectively. The transcriptome of
undifferentiated mycelia harvested from SDB was included as a reference for gene expression analysis.
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Figure 10 Putative signal transduction pathways regulating fruiting body development in C. militaris. The dashed lines show the cAMP-
dependent PKA pathway, which might not be involved in control of fruiting in C. militaris. The transcription data for different components are
provided in Table S19 in Additional file 1. AC, adenylate cyclase; CaMK, calmodulin-dependent protein kinase; CDK, cyclin-dependent kinase; PLC,
phospholiapse C; RGS, regulator of G protein signaling.
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C. militaris is heterothallic. Transcriptional profiling
indicated that fruiting of the MAT1-1 C. militaris strain
involves induction of the MAPK pathway, but unlike
other homothallic or heterothallic fungi, the PKA path-
way was not up-regulated. It remains to be determined
whether this reflects the very unusual ability of C. mili-
taris to produce fruiting bodies without an opposite
mating-type partner.
Aside from knowing that C. militaris infects lepidop-

teran pupae [37], the life cycle of C. militaris in nature
is poorly understood [8]. Following disease, survival in
soil may depend on the sexual stage of Cordyceps pro-
viding resilient long-lived ascospores as described in
other fungi [38]. Micro-cycle conidiation from germi-
nated ascospores could adapt the fungus to nutrient
poor niches (Figure 1). Metarhizium does not produce
ascospores but flourishes in plant rhizospheres, which
thus provide an alternative habitat in the absence of
insect hosts. C. militaris can grow on germinated soy-
beans [39], suggesting a potential for an association with
plants. However, relative to Metarhizium and most
other ascomycetes, many protein families are smaller in
the C. militaris genome, especially serine proteases,
GHs, CYPs, MFS transporters and signal transduction
factors. These families would be involved in scavenging
for nutrients, avoidance of host defenses and toxins and
other processes related to pathogenicity and a saprobic
lifestyle. Around two-thirds of these protein families
include pathogen-host interaction genes in plant-asso-
ciated fungi (Table S4 in Additional file 1). Further stu-
dies on the ecology of Cordyceps spp. will shed more
light on the relevance of the C. militaris genome to the
evolution of gene families in relation to acquisition/loss
of capability for dual plant/insect colonization and host
range specialization.
The phylogenomic analysis demonstrated that the

lineage leading to Cordyceps spp. diverged after most
well known plant pathogens, including F. graminearum,
but 130 MYA before Metarhizium diverged from the
grass endophyte Epichloë festucae. The estimate of a
Triassic-Jurassic boundary origin for the Cordyceps line-
age and the post-Cretaceous origin of Metarhizium spp.
is consistent with the hypocrealean fungi of Cordycipita-
ceae (includes Cordyceps spp.), Clavicipitaceae (includes
Metarhizium spp.) and Ophiocordycipitaceae splitting
about the same time as insects and angiosperms were
diversifying [40]. Families of proteases and chitinases are
not expanded or lost in the E. festucae genome as they
are in Cordyceps and Metarhizium, exemplifying conver-
gent evolution to insect pathogenicity. Besides proteases
and chitinases, experimentally verified Metarhizium
virulence-associated genes with homologs in the C. mili-
taris genome include a perilipin-like protein
(CCM_06103 versus MAA_08819) to control cellular

lipid storage and appressorium penetration [41], and an
osmosensor (CCM_04885 versus MAA_01551) to med-
iate adaptation to the insect hemocoel [42]. Homologs
of these genes are broadly distributed among ascomy-
cetes, indicative of an ancient origin. However, Cordy-
ceps lacks other Metarhizium pathogenicity-related
genes, including a collagen-like protein to evade the
host immune system [43], a phosphoketolase for pentose
metabolism [24] and the adhesins to mediate spore
adhesions to insect and plant surfaces [44]. The absence
of key components of the Metarhizium entomopatho-
genicity ‘toolkit’ from C. militaris indicates that it has
evolved different determinants to mediate its interac-
tions with insects.
Like N. crassa and F. graminearum, C. miltaris lacks

highly similar paralogs, a hallmark of the repeat-induced
point mutation (RIP) mechanism [20]. C. militaris has
an ortholog (CCM_03609) of the N. crassa RIP defective
gene (NCU02034), a cytosine methyltranserase essential
for RIP [45]. The high C®T and G®A mutation bias in
the C. militaris genome and the readiness of C. miltaris
to undergo the sexual cycle suggests that RIP is com-
monplace in C. militaris like many ascomycetes
[10,15,19]. Since RIP can function effectively against
selfish DNAs [46], it likely contributes, at least in part,
to C. militaris having few DNA type transposon
encoded genes, that is, transposases [15].
There are many more orphan genes in Cordyceps than

in Metarhizium spp., underscoring that much about the
proteome of Cordyceps spp. remains unknown. It is
speculated that orphan genes arise from gene duplica-
tion, shuffling of gene fragments, mobile element
effects, mutation of existing sequences, horizontal gene
transfer and de novo origination from non-coding
DNAs [47]. De novo creation of new genes is probably
rare [48]. A role for mobile element effects is also unli-
kely given how few putative transposase genes are pre-
sent in the C. militaris genome. Putative horizontal
gene transfer genes are even fewer in Cordyceps than in
Metarhizium. Thus, the numerous orphans in the C.
militaris genome most likely arose from frequent muta-
tions caused by RIP in existing (duplicated) sequences.
Just as the Metarhizium-specific collagen-like protein is
essentially required to camouflage cells from host
immune recognition [43]. The transcriptome data
showed that 428 of the 1,329 orphan genes were tran-
scribed during fruiting. Of the 100 most highly
expressed genes in developing C. militaris fruiting
bodies, about one-third are orphans (Table S17 in Addi-
tional file 1), underscoring the potential of orphans to
have specific functions. Likewise, genes that are appar-
ently unique to the mushroom Schizophyllum commune
are more likely to be expressed during mushroom for-
mation [49].
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Concern has been raised about the possibility of
harmful side effects of traditional Chinese medicines,
including Cordyceps [50]. Consistent with genotoxicity
and cytotoxicity assays that show Cordyceps products to
be safe for consumption [51], there is no evidence in
the C. militaris genome for genes involved in the pro-
duction of known mycotoxins. However, safety could
only be completely verified by meticulous profiling of
the metabolites produced by the fungus under diverse
growth conditions. The C. militaris genome data will
facilitate these processes as well as help with elucidation
of the biosynthetic pathways of different metabolites.
The analysis of C. militaris genome indicates that it is

sexually heterothallic, but strikingly, both the MAT1-1
single mating-type and MAT1-1/MAT1-2 hybrid strains
can form fruiting bodies, which means that C. militaris
is capable of fruiting without a partner. Single mating-
type (haploid) fruiting has also been observed in the
human pathogens Cryptococcus neoformans and Can-
dida albicans [52]. Given that perithecia and ascospores
are not produced by MAT1-1 fruiting bodies, C. mili-
taris haploid fruiting is different from the same-sex mat-
ing and fruiting of C. neoformans, in which
diploidization and meiosis can occur. In budding yeast,
meiotic recombination is initiated by the formation of
double-strand breaks catalyzed by SPO11, a meiosis-spe-
cific endonuclease [53]. The meiosis-specific recombi-
nase DMC1 and the DNA repair enzyme RAD51 then
co-localize to double-strand breaks and function
together for meiotic recombination [54]. The C. mili-
taris homologue of yeast SPO11 (CCM_09527) was up-
regulated more than five-fold during fruiting body
maturation (the TPM ratio of FB2/FB1 = 8.1; FB3/FB2 =
5.7). Intriguingly, the C. militaris genome lacks a yeast
RAD51 ortholog, but its DMC1 ortholog (CCM_06822)
contains a RAD51 domain. CCM_06822 was not
expressed by C. militaris during fruiting, which may
explain why the C. militaris MAT1-1 strain forms fruit-
ing bodies without meiosis. Consistent with this, a puta-
tive cyclin dependent kinase 7 (CDK7; CCM_03900) was
up-regulated during fungal fruiting (Table S19 in Addi-
tional file 1). Orthologs of CDK7 initiate DNA synthesis
and facilitate mitosis instead of meiosis [55].

Conclusions
In conclusion, we report on the genome sequencing,
comparative genome analysis and transcriptional regula-
tion of fruiting body development in the medicinal fun-
gus C. militaris. The sequence data should markedly
enhance the pace of molecular research on Cordyceps
biology, fungal sex and pathogenicity, and will have
impacts on the commercial production of fruiting struc-
tures. The genomic sequence will also be an essential
tool to unravel the mechanisms by which C. militaris

produces medicinal compounds and so further their
exploitation.

Materials and methods
Fungal strains
C. militaris strain Cm01 (CGMCC 3.14242) was selected
for genome sequencing as it is culturally stable and
commercialized in China. The culture was maintained
either on artificial medium or silkworm pupae as pre-
viously described [12]. Several different C. militaris
strains were included in this study for PCR genotyping
of mating-type genes (Figure 5h).

Genome sequencing and assembly
The genome of C. militaris strain Cm01 was shotgun
sequenced using a Roche 454 GS FLX system for mas-
sively parallel pyrosequencing for 2.25 runs at the Chi-
nese National Human Genome Center (Shanghai,
China). This resulted in 951 Mb of sequence data (29.6
× coverage) with an average read length of 385 bp.
Assembly was performed using the Newbler software
(v2.3) within the Roche 454 suite package [56], which
produced 597 contigs with a total size of 32.2 Mb. For
sequence scaffolding, a DNA library of 2- to 5-kb inserts
was generated and sequenced with an ABI SOLiD sys-
tem (Carlsbad, California, USA). This resulted in 3.8 Gb
of mate-pair reads (117.4 × coverage) to improve
sequence quality and construct scaffolds. By mapping
the reads to contigs, 578 contigs were assembled into 13
scaffolds and 19 contigs less than 2 kb left outside. The
raw data of 454 and SOLiD reads have been deposited
at NCBI’s Sequence Read Archive under accession num-
ber SRA047932 and the whole project has been depos-
ited at DDBJ/EMBL/GenBank under accession number
AEVU00000000.

Annotation
To maximize gene prediction accuracy, the gene struc-
tures of Cordyceps were predicted with a combination of
different algorithms plus manual inspections [11,57].
The inconsistent open reading frames were individually
subject to Blast searches against the NCBI curated
refseq_protein database. The prediction with the best hit
was selected. Pseudogene identification was conducted
with the pipeline of PseudoPipe with default settings
[58]. The potential secreted proteins of C. militaris and
other fungal species included for comparison were pre-
dicted by SignaIP 3.0 analysis using a hidden Markov
model [59]. Genome repetitive elements were analyzed
by Blast against the RepeatMasker library (Open 3.2.9)
[60] and with the Tandem Repeats Finder [61]. The
transposases/retrotransposases were classified by Blastp
analysis against the Repbase [62] plus manual
inspections.
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Blast score ratio test
BSR tests [14] were conducted to compare the differ-
ences between C. militaris and the sequenced Metarhi-
zum genomes and the plant pathogen F. graminearum,
respectively. The BSR index for each reference protein is
calculated by dividing the query bit score by the refer-
ence score and normalized from 0 to 1. A score of 1
indicates a perfect match while a score of 0 indicates no
Blast match of a query protein in the reference pro-
teome. The normalized pairs of BSR indices were then
plotted using the Matlab (v7.0) program (Natick, Massa-
chusetts, USA). The same analysis was conducted for
the three genomes of C. militaris, M. anisopliae and F.
graminearum.

Orthology and phylogenomic analysis
In total, 2,106 orthologous proteins were acquired by a
reciprocal Blast method with a cutoff E value of 1e-20
and a Blast alignment length greater than 60% of the
query sequence. Corresponding orthologous gene pro-
tein sequences were aligned with Clustal X 2.0 and the
concatenated amino acid sequences were used for the
generation of a maximum likelihood phylogenomic tree
with the program TREE-PUZZLE [63] using a Dayhoff
model. The divergence time between species was esti-
mated with the program r8s using a Langley-Fitch
model [64] by calibration with the origin of the Ascomy-
cota at 500 to 650 MYA [65].

Protein family classifications
Whole genome protein families were classified by Inter-
proScan [66] and Pfam [67] analysis. The families of
proteases were identified by Blastp searching against the
MEROPS peptidase database release 9.4 with a cutoff E
value of 1e-20 [68]. The CYPs were named according to
the classifications collected at the P450 database [69].
Transporters were classified based on the Transport
Classification Database [70]. Kinases were classified by
Blastp analysis against the KinBase database with a cut-
off E value of 1e-10 [68]. Carbohydrate-active enzymes
were classified by local Blastp searching against a library
of catalytic and carbohydrate-binding module enzymes
[68]. G-protein-coupled receptors were selected from
the best hits to GPCRDB sequences [71] and by confir-
mation that they contained seven transmembrane
helices with the amino terminus outside and the car-
boxyl terminus inside the plasma membrane. Homologs
of the Magnaporthe Pth11-like GPCRs [30] were identi-
fied by local Blastp analysis with a cutoff E value of 1e-
10. Putative Cordyceps virulence factors were identified
by searching against the pathogen-host interaction data-
base [72] with a cutoff E value of 1e-5, plus additional
searches of known virulence genes reported in entomo-
pathogenic fungi. Two sample t-tests were conducted to

compare the differences in protein family sizes between
insect and plant pathogens. Estimation of FDR of P-
values was conducted using the program mafdr (Matlab
7.8.0.347(R2009a)).

Analysis of genes involved in purine synthesis and
secondary metabolism
To model the biosynthesis of cordycepin, the purine
metabolic pathway in C. militaris was constructed based
on the KEGG (Kyoto Encyclopedia of Genes and Gen-
omes) annotations [73]. To identify NRPS, PKS or
NRPS-PKS hybrid genes and gene clusters, the whole
genome data set was subjected to analysis with the pro-
gram SMURF with default settings [74]. Modulation
analysis and domain extraction of different NRPS or
PKS proteins were conducted by Blast searching against
the SBSPKS database [75]. For phylogenetic analysis, the
domain sequences were aligned with Clustal X 2.0 and
the tree was generated using a Poisson model with
1,000 bootstrap replications and pair-wise deletions for
gaps or missing data. The mycotoxin-encoding PKSs
used in the analysis include Gibberella zeae PKS4
(ABB90283) and PKS13 (ABB90282) for the biosynthesis
of zearalenones [76], Aspergillus ochraceus PKS
(AAT92023) for ochratoxin [77], A. clavatus PatK
(ACLA_093660) for patulin [78], Gibberella moniliformis
Fum1p (AAD43562) for fumonisin [79], Monascus pur-
pureus PKS (BAD44749) for citrinin [80], Aspergillus fla-
vus PksA (AAS90093) for aflatoxin [81] and A. nidulans
StcA (Q12397) for sterigmatocystin [82]. The myco-
toxin-encoding NRPSs included in the analysis are A.
fumigatus Glip (AAW03307) for gliotoxin [83], Fusar-
ium equiseti NRPS (CAA79245) for enniatin [84],
Cochliobolus carbonum NRPS (AAA33023) for HC-
toxin [85] and Tolypocladium inflatum NRPS
(CAA82227) for cyclosporin [86].

Transcriptome analysis
Conidia of C. militaris from day 14 potato dextrose agar
were inoculated into SDB and the undifferentiated
mycelia harvested after a 72-hour incubation at 25°C,
180 rpm. The transcriptome of the mycelia provided a
control for comparison with the transcriptomes of fruit-
ing bodies. Chinese Tussah silkmoth (Antheraea pernyi)
pupae were injected with 50 μl of a conidial suspension
(5 × 106 conidia/ml) and incubated at 22°C in a 12:12
hour light:dark cycle for up to 14 days to allow emer-
gence of fruiting bodies (a stage designated as FB1), 29
days for half-grown fruiting bodies (FB2) and 59 days,
by which time fruiting bodies were mature (FB3)
[11,12]. RNA was extracted with a Qiagen RNeasy kit
plus on-column treatment with RNase-free DNase I
(Germantown, Maryland, USA). Messenger RNA was
purified and after reverse transcription into cDNA, the
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libraries were constructed for tag preparation according
to the massively parallel signature sequencing protocol
[87]. The tags were sequenced with an Illumina techni-
que. We omitted tags from further analysis if only one
copy was detected or it could be mapped to a different
transcript. Other tags were mapped to the genome or
annotated genes if they possessed no more than one
nucleotide mismatch [11,88]. The abundance of each tag
was converted to the value of transcripts per million
(TPM) for each mapped gene for expressional compari-
son between samples. The significance of differential
gene expression between samples and the FDR of P-
values were estimated for each individual gene with a
cutoff of P ≤ 0.05 and FDR ≤0.001 [11,89]. The RNA_-
seq expression dataset is available at the NCBI’s Gene
Expression Omnibus under the accession code
GSE28001.

Additional material

Additional file 1: Comparative genomics analysis of C. militaris. The
file contains additional information on genomic properties and
comparative gene family analysis of C. militaris with other fungi
comprising 19 tables provided in separate excel sheets. Table S1
summarizes major protein family sizes of different fungal species. Table
S2 provides a comparison of transposase genes among three insect
pathogens. Table S3 lists the pseudogenes present in the genomes of
three insect pathogens. Table S4 summarizes the protein families
putatively involved in pathogen-host interactions. Table S5 compares the
proteases in different fungal genomes. Table S6 lists the serine and
aspartyl proteases in three insect pathogens. Table S7 lists the glycoside
hydrolase families in different fungal genomes. Table S8 compares the
cytochrome P450 genes in three insect pathogens. Table S9 summarizes
the membrane transporters in different fungal genomes. Table S10
compares the G-protein-coupled receptors in three insect pathogens.
Table S11 lists the protein kinases in three insect pathogens. Table S12
provides the information of mating- and sexuality-related genes. Table
S13 lists the genes putatively involved in purine metabolisms in three
insect pathogens. Table S14 summarizes the presence/absence of patulin
biosynthesis homologous genes in C. militaris. Table S15 summarizes the
presence/absence of T-2 toxin biosynthesis homologous genes in C.
militaris. Table S16 summarizes the information from RNAseq analysis.
Table S17 lists the 100 most highly expressed genes in C. militaris at
different growth stages. Table S18 lists the transcriptional data of
sexuality- and fruiting-related genes. Table S19 compares the expression
data of genes putatively involved in signaling and transcription controls.

Additional file 2: Figures that provide support information for the
main text. Figure S1 provides support for RIP occurring in C. militaris.
Figure S2 provides support for the lack of the pentose metabolic
pathway in C. militaris. Figure S3 provides a phylogeny analysis of fungal
ribonucleotide reductases. Figure S4 provides the phylogeny and
modular analysis of C. militaris NRPSs. Figure S5 provides a phylogeny
analysis of fungal dimethylallyl tryptophan synthases. Figure S6 provides
the gene transcription profiles between different samples.
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