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1  | INTRODUC TION

The way that animals distance themselves from one another within 
their preferred habitats has important consequences for both the 
reproductive ecology and social structure of a species. Age, sex, 
size, and mating system can all affect the spatial distribution of 
individuals, as can seasonal effects on food abundance or nesting 
site quality (Clausen et al., 1998; Kesler & Haig, 2007; Seymour 
et al., 2003). Individual movements within a home range, territori-
ality, dispersal/philopatry, and interactions among relatives further 

affect how individuals are arranged with respect to each other in 
their habitat. Fine- grained studies of individual movements within 
populations have revealed novel insights into the behavioral ecol-
ogy of a range of vertebrate taxa (Hartman et al., 2016; Stradiotto 
et al., 2009; Winck et al., 2011). For example, such studies have un-
covered previously unknown harem mating systems in the hawkfish 
Paracirrhites forsteri (Kadota & Sakai, 2016). However, few studies 
have examined the relative importance of different competing bi-
otic and abiotic factors in driving the spatial organization of individ-
uals within a population.
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Abstract
The way that individuals are spatially organized in their environment is a fundamental 
population characteristic affecting social structure, mating system, and reproductive 
ecology. However, for many small or cryptic species, the factors driving the spatial 
distribution of individuals within a population are poorly understood and difficult 
to quantify. We combined microsatellite data, remote sensing, and mark– recapture 
techniques to test the relative importance of body size and relatedness in determin-
ing the spatial distribution of male Anolis carolinensis individuals within a focal popula-
tion over a five- year period. We found that males maintain smaller home ranges than 
females. We found no relationship between male body size and home range size, nor 
any substantial impact of relatedness on the geographic proximity. Instead, the main 
driver of male spatial distribution in this population was differences in body size. We 
also found no evidence for offspring inheritance of their parent's territories. Males 
were never sampled within their father's territory providing strong support for male- 
biased dispersal. This study introduces a novel approach by combining standard mark 
release capture data with measures of pairwise relatedness, body size, and GPS loca-
tions to better understand the factors that drive the spatial distribution of individuals 
within a population.

K E Y W O R D S

Anolis carolinensis, pedigree, relatedness, spatial distribution, territoriality

http://www.ecolevol.org
mailto:
https://orcid.org/0000-0003-2674-6815
https://orcid.org/0000-0002-2737-8682
http://creativecommons.org/licenses/by/4.0/
mailto:wweber@umd.edu


     |  2887WEBER Et al.

One common driver hypothesized to influence the distribution of 
individuals within a population is intraspecific variation in body size. 
Territoriality and home range size are positively, but not exclusively, 
correlated with body size in many animals (Campioni et al., 2013; 
Escudero et al., 2020; Haenel et al., 2003; Ramos et al., 2015). In sex-
ually dimorphic species, males will often maintain larger home ranges 
than females (Baber & Coblentz, 1986; Cranford, 1977; Kitchings & 
Story, 1984; Perry & Garland, 2002) and may demonstrate territo-
riality by defending a smaller part of that home range against other 
males (Subrahmanyam & Sambamurty, 2006). Territoriality drives 
aggressive interactions between males and in many cases leads to 
the dispersal of male offspring (Alonso & Alonso, 1992). By contrast, 
females tend to be philopatric, remaining in the same areas through-
out their lives for reasons ranging from familiarity with and access 
to parental resources, to avoidance of outbreeding or the costs of 
dispersal (Pusey, 1987). In general, males exhibit higher territoriality, 
aggression, and dispersal, whereas philopatry tends to be a female 
trait (Parish et al., 2006).

One of the potential consequences of philopatry is the future 
inheritance of a territory and its concomitant fitness benefits from 
a dominant parent (Buston, 2004; Ragsdale, 1999). Territorial inher-
itance is often considered within the context of group living spe-
cies or cooperative breeders (Desjardins et al., 2008) and can result 
from either female inheritance and male dispersal (e.g., Holekamp 
& Sherman, 1989) or male inheritance and female dispersal (e.g., 
Komdeur & Edelaar, 2001). However, even in species where off-
spring remain in their natal range and do not assist with breeding, 
those individuals that are larger, older, or more dominant stand to 
benefit through inheritance of a parental territory, whereas others, 
for whom the costs of acquiring or maintaining that territory are too 
high, may instead gain greater benefits through dispersal (Kokko & 
Ekman, 2002). Although body size, sex- biased dispersal, and pat-
terns of relatedness are key aspects of both the spatial distribution 
of individuals within their habitats and determinants of their overall 
mating success, quantifying such processes in small and/or cryptic 
species that lack a well- defined social structure remains a challenge.

Offspring dispersal affects the genetic structure of a popula-
tion (Wright, 1946) which in turn impacts gene flow (Slatkin, 1987). 
Population density within a habitat also influences population 
characteristics such as disease transfer rates (Hales et al., 2002) 
and inbreeding depression (Huisman et al., 2016). Dispersal of an 
individual from its natal range will therefore alter the degree of 
genetic differentiation (and conversely the level of relatedness) ex-
pected between individuals. Evidence for an effect of geographic 
distance on pairwise relatedness between individuals can be in-
directly quantified through tests of isolation by distance (IBD), 
whereby the relatedness of individuals is inversely proportional to 
the distance between them (Loiselle et al., 1995). However, there 
may not be any clear IBD relationship if close relatives do not 
disperse or if juvenile dispersal is very high. Furthermore, social 
familiarity may also influence the spatial distribution of individu-
als in their habitats. For example, territorial males (Jaeger, 1981; 
Lancaster & Jaeger, 1995; Qualls & Jaeger, 1991) are often more 

tolerant of their neighbors than nomadic individuals, regardless of 
their relatedness (i.e., the Dear Enemy Hypothesis [Fisher, 1954]). 
Nonetheless, combining IBD with long- term, fine- scaled observa-
tions of territory ownership and habitat use across multiple gen-
erations could potentially shed light on the drivers of habitat use, 
territory ownership, and, ultimately, spatial distribution of individ-
uals within their habitats.

The green anole lizard (Anolis carolinensis) has long been estab-
lished as a model system in ecology and evolution, yet relatively little 
is known regarding the factors influencing the spatial distribution of 
individuals within populations of this species. Green anoles exhibit 
a polygynous, female defense mating system whereby females es-
tablish a home range and defend small, resource- based territories 
while males defend a territory containing multiple females (Jenssen 
et al., 2001; Jenssen & Nunez, 1998; Ruby, 1984) leading to a high 
degree of male territoriality and accompanying high frequency of 
male– male combat (Lailvaux & Irschick, 2007; Orrell et al., 2004). 
A recent study by Kamath and Losos (2017 & 2018) questioned 
the phenomenon of territoriality in Anolis in general; however, 
that study has in turn received criticism (Bush & Simberloff, 2018; 
Stamps, 2018), and there is clear empirical evidence that the green 
anole mating system in particular is dominated by male territoriality 
and combat (e.g., Jenssen et al., 1995, 2001; Jenssen & Nunez, 1998; 
McMillan & Irschick, 2010; Nunez et al., 1997). Jenssen et al., (1995) 
showed that adult males maintain the same territory throughout the 
breeding season, with incursions and takeovers appearing to be rare. 
While male territories do not overlap, females traverse the territo-
ries of different males.

Previous studies of green anole populations in the New Orleans area 
have documented the presence of an intraspecific dimorphism based 
on male head morphology and bite force. Males with a snout– vent 
length less than 64 mm are considered “lightweights,” whereas those 
of 64 mm or more are considered “heavyweights” (Husak et al., 2009; 
Lailvaux et al., 2004; Vanhooydonck et al., 2005). Heavyweight males 
have relatively larger heads and bite forces for their size and are clearly 
distinguishable based on head morphology alone. This intraspecific di-
morphism in adult male size also indicates that territory ownership in 
nature might be skewed heavily toward larger and competitively supe-
rior heavyweight males; indeed, previous studies have suggested that 
smaller lightweights are excluded from holding prime territories until 
they become large enough to compete with resident heavyweights 
(Irschick & Lailvaux, 2006; Lailvaux et al., 2004). This further suggests 
that smaller males should cede territories to larger males and disperse 
to an area either to establish their own territory or acquire mates 
by employing a sneaker strategy (Orrell & Jenssen, 2003). Previous 
studies in the Caribbean lizard Anolis roquet have shown evidence 
for male- biased dispersal (Johansson et al., 2008). In contrast, stud-
ies on the brown anole Anolis sagrei indicate that while both sexes are 
highly philopatric, male dispersal is dependent on body size whereas 
female dispersal is more likely to be dependent on resource availabil-
ity (Calsbeek, 2009). However, no studies to date have examined the 
effect of either relatedness or body size on home range behavior and 
inheritance in the green anole.
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In the present study, we tested the influence of both variables 
(body size and relatedness) on the spatial distribution of males within 
an urban population of green anoles in Washington Square Park, New 
Orleans. By marking and genotyping every captured individual over 
a five- year period, we built a partial pedigree and used locations of 
capture sites to construct spatial distribution maps of individuals in 
the population for each sampling season. We tested four hypotheses 
and associated predictions regarding the spatial distribution of indi-
viduals at this site: (a) Home range sizes differ significantly between 
males and females. Specifically, we predict that home range size will 
be greater for males than females. (b) Home range size is correlated 
with body size. We predict that the largest males will have the largest 
home ranges. (c). Male– male spatial distribution is driven by body size. 
Here, we predict that geographic distance between males is positively 
correlated with differences in body size. (d) Dispersal is sex- biased. We 
predict that male offspring will disperse from natal home ranges more 
than female offspring. We further predict that, because of this male- 
biased dispersal, females will inherit territories from their mothers, but 
males will not inherit territories from their fathers.

2  | METHODS

2.1 | Study site

We conducted this study on a population of free- ranging green anole 
lizards in Washington Square Park (N29.965005°, W90.057302°), 
located in New Orleans, Louisiana, USA. The park is one hectare 
in size and is surrounded by an iron fence, the exterior of which is 
bordered by a concrete side- walk adjacent to the roads that entirely 
delimit the park. Aside from the area within the park, there is lit-
tle ideal habitat that would maintain a population outside of the 
park making dispersal from the park, while likely, rare. Green anole 
habitat primarily comprises bushes of the common cast- iron plant 
(Aspidistra elatior) which fringe the interior of the park fence. These 
bushes stretch on average two meters into the park and represent 
the preferred habitat of green anoles within the city of New Orleans 
(Irschick et al., 2005). The interior of the park consists of open lawn 
and live oak trees (Quercus virginiana) found along the edges of the 
park. Although green anoles are observed on the trunks of the oak 
trees, the fences and cast- iron plant bushes serve as primary habitat 
in this population, as this is where the vast majority of lizards were 
captured, and because previous studies have shown that individu-
als were not observed high on tree trunks or inhabiting the canopy 
(Irschick et al., 2005).

2.2 | Animal mark– release– recapture

We sampled the green anole population of Washington Square Park 
(see supplemental image S1) in the spring (mid- April to early May) and 
the fall (mid- September to early October) of each year from 2010 until 
2014. We captured lizards either by lassoing them with dental floss 

or by cupping them in hand, marked (with tape) each specimen's lo-
cation in the bush, and gave it a unique identification number. After 
GPS coordinates of the capture site were recorded, we transported 
lizards to the laboratory at the University of New Orleans where they 
were permanently marked by a unique identification mark with in-
jected visual implant elastomer tag (Northwest Marine Technology, 
Inc.) (Losos, 2009). We removed a tail tip of no more than 10mm from 
each individual with sterilized scissors and placed it into a vial of 95% 
ethanol. We sexed the lizards and then weighed them to the nearest 
0.01g, with a Type XS107 Mettler- Toledo scale (Mettler- Toledo, LLC). 
We measured snout– vent length (SVL) to the nearest 0.01 mm with 
Rok digital calipers (Rok International Industry Co., Limited). Before 
their release, individuals were marked with a fade and water- resistant 
marker just above the dorsal tail- base to facilitate visual identification 
on subsequent collection days within the same season and to prevent 
recapture within the same sampling period. The marking was elimi-
nated on the individual's next molting. Finally, we released lizards the 
morning after collection at the exact point of capture as indicated by 
the tape marker placed at the capture location. All methods were ap-
proved under IACUC protocol (UNO- 11- 004).

2.3 | Home range assessment

We first constructed maps of individual capture locations using 
QGIS v 2.4.0.0 (QGIS Development Team, 2015) and a “Google 
Maps” overlay as the template for park boundaries, defined as the lo-
cation of the perimeter fence. After measuring the length and width 
of each cast- iron bush, we represented individual bushes as polygon 
shape files that were each assigned a number from 1 to 38 (Figure 1). 
This general habitat map served as a base map for all other analyses. 
Using the GPS coordinates obtained from each individual's capture 
location, we created a vector file for each cohort and overlaid those 
vectors on the base map. Cohorts could then be assigned locations 
and sorted by sex. We also incorporated the size of each male in the 
cohort vectors, so as to be able to segregate individuals according to 
their size (Figure 1; see also Figure S1). The limited accuracy of our 
GPS device (a device with an error rate of 0.08% equates to ±1.30 m) 
meant that we were only able to assign the location of an individual 
to the bush where captured.

The capture location of each individual for our purposes is there-
fore the geographic center of the bush where it was captured. In 
cases where individuals were captured as part of more than one co-
hort, multiple capture locations were compiled into another vector 
that displayed all the locations where those individuals were cap-
tured on the same map. Maps of individual capture locations were 
then used to assess home range. Because individuals rarely occur in 
the middle of the park, most likely due to the lack of suitable habi-
tat, we used only the bushes and fence as dispersal routes. Due to 
the low number of recaptures (Rose, 1982), we created polygons of 
the area between an individual's farthest points of capture (cf. Lance 
et al., 2011). In short, when one individual is captured in one season, 
that capture location represents one data point, when captured in 
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subsequent seasons, those locations become additional datapoints. 
The two datapoints farthest from one another are assumed to be 
the distal limits of the home range. We then created a polygonal 
area using the “Measure Line” tool in QGIS which included the dis-
tal data points, and all area in between (see Figure S3). QGIS then 
calculated the area within that polygon to give us an estimated 
individual's home range. We chose to use the method employed 
by Lance et al., (2011) because other models— for example that of 
Jennrich and Turner (1969)— will tend to overestimate actual home 
ranges (Stone & Baird, 2011). Home range data were normalized by 
log transformation. We then correlated home range size with an in-
dividual's SVL using the “cor.test” command in R (Version 3.3.3; R 
Core Team [2017]).

2.4 | Spatial distribution of heavyweight versus 
lightweight males

We quantified spatial distribution of individuals in the park using the 
QGIS “Measure Line” tool and measured the geographic center of 
each bush to geographic center of every other bush in the habitat, 
creating a matrix of distances. As green anoles have not been ob-
served in the center of the park, this area was not considered to 
be corridor of dispersal. The average geographic distance of each 
individual male from all other individual males within its cohort was 
then calculated using the average distance formula:

As with home range assessment, due to the limited accuracy of 
our GPS device, individual locations were assigned to a bush habitat, 
not to specific locations within the bush.

Once average geographic distances for all individuals were com-
piled, we tested for significant differences in this measure between 
heavyweight and lightweight males by conducting general linear 
models on the whole data set in R and controlled for male density in 
a given cohort by treating it as a covariate with body size. We per-
formed this model on the whole male dataset and then separately 
with only heavyweights and again with only lightweights. We also 
tested average distance within each cohort using a pairwise Wilcox 
test corrected for multiple hypothesis testing.

2.5 | Microsatellite genotyping and pedigree 
construction

We extracted genomic DNA from tail tips using the QIAGEN 
DNeasy Blood and Tissue extraction kit (QIAGEN, CA) using the 
manufacturer's protocol. Genotyping was conducted using eight 
highly polymorphic microsatellite loci located across five autoso-
mal chromosomes and assembled into two multiplex assemblies of 
four loci each. Each reaction contained primers from previously 
published loci (Wordley et al., 2011) labeled with a fluorophore 
tag on the 5′ end (Table S1). We carried out both multiplex PCRs in 
a total volume of 10 μl using 5 µl 2X Multiplex PCR Kit (QIAGEN), 
0.01 µl of each forward and reverse primer at a concentration of 
1mg/ml, and 1µl of DNA [4– 7 ng/µl] using the following conditions: 
Step 1, an initial denaturation at 95°C for 15 min followed by 35 
cycles of step 2. Step 2, 94°C for 30 s, primer annealing at 55°C 
for 90 s, and an extension at 72°C for 60 s followed by a final 60°C 
extension period for 30 min. Microsatellite genotyping was carried 
out using an ABI 3100 Genetic Analyzer (Applied Biosystems) with 
the ROX- 500 size standard (GeneScan). Next, we visually inspected 
electropherograms using GENEIOUS (Biomatters) and binned the 
genotypes with FLEXIBIN (Amos et al., 2007). We tested all loci 
for deviations from Hardy– Weinberg and linkage equilibrium 
using ARLEQUIN, applying a Holm's- Bonferroni sequential correc-
tion (Rice, 1989) with an initial alpha value of 0.0065 (Excoffier 
& Lischer, 2010). We also tested for the presence of null alleles, 
short allele bias, and the effects of stutter using MICROCHECKER 
v. 2.2.3 (Van Oosterhout et al., 2004).

For pedigree construction, we used the software program 
COLONY (Wang, 2013). We set mating system parameters for male 
and female polygamy, in a dioecious, diploid population, with the 
possibility for inbreeding. The run was set for “long” with a full- 
likelihood analysis method set at medium precision, and no sib- ship 
priors. Because we were unable to assess parentage through obser-
vation, the data set of 846 unique individuals was broken down into 
seasonal cohorts. For each cohort, we assumed all individuals to be 
potential offspring, all males as potential fathers, and all females as 
potential mothers. We then combined cohorts in a sequential, step-
wise manner in which all the previous seasons’ cohorts were added 

�d =

�

(

d1 + d2 + d3 +…

)

n − 1

F I G U R E  1   Study Site Maps map of Washington Square 
Park, New Orleans, LA, USA. This example of a sampling map 
from the spring of 2012 shows the “capture location” layers 
added atop habitats, blue dots indicated the capture location 
of a male and red dots a female. All dots are labeled with the 
individual's identification. Additional cohort maps can be viewed in 
supplemental material



2890  |     WEBER Et al.

to the succeeding cohort so that the parentage of all the previous 
cohorts served as the known paternity and maternity priors of the 
next. This procedure was conducted until we constructed an entire 
pedigree of all cohorts and individuals. The probability of a parent 
being included in the candidate genotypes was set at 50%, and a 
genotyping error rate of 1% was used in all constructions. The same 
analysis was run in triplicate and only parent– offspring relationships 
recovered in all three replicate runs with a p- value less than 0.05 
were retained for further analysis (Hoffman & Amos, 2005; Jones 
& Wang, 2010).

2.6 | Relatedness analysis

We used the program SPAGeDi to estimate pairwise relatedness coef-
ficients between all male– male dyads and to assess patterns of relat-
edness as a function of distance (Hardy & Vekemans, 2002; Loiselle 
et al., 1995). We calculated pairwise relatedness values between each 
heavyweight male and all other males of its cohort, and then to males 
captured within a given male's home range within a given cohort. A 
regression analysis was used to assess the relationship between the av-
erage pairwise relatedness of each male to all others in a given cohort 
with (a) the average geographic distance it was captured from all other 
males of that cohort, and (b) the average body size difference between 
it and all other males within a given cohort.

We then constructed spatial auto- correlograms using the out-
put from SPAGeDi and the five distance classes it produced in each 
cohort to determine at what spatial scale IBD was evident. Spatial 
auto- correlograms were plotted in the Microsoft Excel 2010. Lastly, 
we also conducted Mantel tests to assess evidence for overall IBD 
within cohorts using the “ape” package in R (Paradis & Schlieb, 2018).

2.7 | Home range inheritance

After parentage was assigned to our dataset (via the Colony pedi-
gree), we then examined the capture locations of those offspring, 
to determine whether they had ever been captured within a par-
ent's home range. Then, for each parent, we calculated the percent-
age of its offspring captured within and outside of its home range. 
Additional, with offspring presence/absence count data, we per-
formed a Pearson's chi- square test (with Yate's continuity correc-
tion) to ensure our findings were not being driven by randomness. 
This approach allowed us to assess whether offspring were philopat-
ric to the natal home range and also whether they were dispersing.

3  | RESULTS

3.1 | Home range assessment

Male home ranges varied from 18.15 m2 to 846.21 m2, with a mean 
male home range size of 260m2. Female home ranges varied from 

16.06 m2 to 1,537.67 m2, yielding a mean female home range size 
of 410 m2. A general linear model revealed that the home range size 
of males (n = 42) was smaller than it was for females although these 
differences were only marginally significant (n = 39) (F1,9 = 4.107, 
p = 0.046) (Figure 2).

3.2 | Relationship between home range size and 
body size

There was no relationship between overall home range size and 
SVL when males and females were combined (Pearson's correla-
tion = −0.107, p = 0.580), and when only females (Pearson's correla-
tion = −0.107, p = 0.511) or males (Pearson's correlation = −0.107, 
p = 0.361) were considered.

3.3 | Spatial distribution of males

Across all years, the average geographic distance between lightweight 
males, (n = 285) was 69.7 m ± 65.6 (df = 284), the average distance 
between heavyweight males (n = 105) was 70.7 m ± 45.7 (df = 103), 
and the average distance between a lightweight and a heavyweight 
males (n = 388) was 50.1 m ± 17.3 (df = 287). General linear models 
revealed that both body size (p < 0.001) and cohort (p < 0.001) in-
fluenced the pattern of spatial distancing in the whole dataset (LM; 
r2 = 0.334, F3,742 = 125.6, p < 0.001). When each cohort was evalu-
ated independently, heavyweight males maintained greater distances 
between each other than lightweights did from other lightweights in 
Spring and Fall 2010; in the Spring and Fall of 2011; the Spring of 2012; 
and in Fall 2014. In all seasons except for spring 2012, lightweights 
were not significantly more spaced from heavyweights than they were 
from other lightweights (see Figure 3). We conducted partial F tests 
using a chi- square distribution that showed inclusion of male density 
in these models, did not change or improve them, so it was not used 
as a covariant in the final analysis. This means that within this popula-
tion, heavyweight males spaced themselves more apart than do light-
weights, but lightweights do not space themselves out farther from 
heavyweights than they did from other lightweights.

Across all cohorts, Mantel tests showed that there was no ev-
idence for a significant relationship between differences in male 

F I G U R E  2   Home range area of green anoles in Washington 
Square Park
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size and geographic distance between males (N = 389, R2 = 0.0127, 
p = 0.083). This relationship was not significant when considering 
only heavyweights (N = 105, R2 = 0.0033, p = 0.138) or lightweights 
(N = 285, R2 = 0.0142, p = 0.109) (Figure 4). However, examination 
of QGIS spatial maps across successive years supported the find-
ing that heavyweights may space themselves out more than light-
weights in cohorts with low population densities. When the number 
of heavyweights was low (n = 3/9.2 km2), as it was in the Spring 
of 2010, heavyweights were captured at the maximum possible 
distance from one another (Figure 5a). When the number of heavy-
weights was high (n = 27/9.2 km2), distances between them were 
low and usually one heavyweight was found per bush (Figure 5b), 
although occasionally two or more heavyweights were captured in 
the same bush. Since our sampling essentially represents snapshots 
of individual locations at any given sampling time, this may indicate 
incursions by neighboring heavyweights (Figure 5c).

3.4 | Impact of relatedness on the spatial 
distribution of males and females

Genotyping produced unique microsatellite genotypes for 846 in-
dividuals. ACAR 19 was the only locus to not show deviations from 
Hardy– Weinberg equilibrium (skewed toward homozygosity), and 
there were no null alleles detected in the data set. We also observed 
10 instances of linkage disequilibrium but no consistent pattern be-
tween loci (Table S2). The number of alleles per locus ranged from 

13 to 33 with a mean of 19.14. The average observed heterozygosity 
was 0.6381 ± 0.2455, and the expected 0.7286 ± 0.2326.

Across all cohorts, relatedness assessment by SPAGeDi revealed 
that a heavyweight is on average less related to its neighbors (coeffi-
cient of relatedness [k] = −1.44 × 10– 2 ± 3.38 × 10– 4) than it is to the rest 
of the male population (k = 1.50 × 10– 3 ± 3.18 × 10– 3) (t = 0.106, 121df, 
p = 0.008). When other neighboring heavyweight males were excluded 
from this same analysis, there was no difference between the related-
ness of a heavyweight and its neighbor (which would be a lightweight) 
versus the rest of the male population (F = 1.1310,121, p = 0.366).

Spatial auto- correlograms revealed an inconsistent pattern of 
IBD across cohorts. In females, a significant pattern of IBD was 
observed in only six cohorts (Spring 2010, Fall 2010, Spring 2011, 
Spring 2013, Spring 2014 & Fall 2014), but in those cohorts there 
was no consistent distance class in which IBD was detected each 
time (see Table S4). Additionally, a general Mantel test over all dis-
tance classes in each cohort showed no significant IBD relationship 
(r2 = −0.005, p = 0.487). A nonsignificant pattern of IBD was also 
observed within all male cohorts (r2 = −0.002, p = 0.510) (Table 1) 
(see supplemental material for all auto- correlograms, Figure S2).

3.5 | Home range inheritance

Following pedigree construction (see Table S3 for constructed 
pedigree), sufficient parentage and geographic information was 
available in our dataset to evaluate 16 sires and 10 dams for 

F I G U R E  3   Average distance males maintain from other males. Acronyms for male size classification are as follows: LW = average distance 
lightweight males distance themselves from each other, depicted with pink boxplots, HW = average distance heavyweight males distance 
themselves from each other, depicted with blue boxplots, All = average distance all lightweight males distance themselves from heavyweight 
males, depicted by tan boxplots. Letters below boxplots indicate significant differences with other size classifications; those statistics are 
reported in the upper right insert
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offspring home range inheritance in 65 offspring. Results in-
dicate that 35% of female offspring and 36% of male offspring 
were found within their mother's home range. A chi- square test 
(x2 = 0.707) suggested this relationship is no different than what 
would be expected from a random sampling (Table S3). By con-
trast, 50% of female offspring and none of the male offspring 
were found within their father's home range; here, a chi- square 
test (x2 < 0.01) suggested the relationship was not at random 
(Table S3). We also observed that the inbreeding coefficient (F) of 
the population gradually increased with time and sampling, stabi-
lizing at 0.338 ± 0.0258 after 10 cohorts (Figure 6).

4  | DISCUSSION

The way individuals arrange themselves relative to each other within 
the environment is a fundamental property of population ecology 

that influences dispersal, mating system, and individual fitness. 
However, the genetic and social factors underlying spatial distribu-
tions of individuals within a given habitat are potentially complex 
and poorly understood for most animal species. Here, we used a 
combination of body size, locality, and relatedness measures to test 
four hypotheses and associated predictions regarding the factors 
influencing spatial distribution of free- ranging green anoles in an 
urban habitat.

Our first hypothesis (that home range size is greater in males 
than females) was not supported. Although males tend to maintain 
larger home ranges in most animal species (Cederlund & Sand, 1994), 
we found that female green anoles in our study population main-
tain home ranges more than 1.5 times greater on average than 
those of males (Figure 2). However, this difference was only very 
marginally significant (p = 0.05). Studies of sex differences in Anolis 
species home range or territory size are sparse but tend to show 
that males maintain both larger home ranges (e.g., Anolis lineato-
pus [Rand, 1967]) and larger territories (Anolis cristatellus and Anolis 
acutus; [Philibosian, 1975]) than females. With regard to A. carolinen-
sis, Jenssen and Nunez (1998) found that green anole males in Georgia 
maintained home ranges on average eight times larger than those 
of females, a result which contrasts sharply with ours. However, 
although Schoener and Schoener (1982) reported male- biased sex 
differences in home range for four species of Bahamian anoles, they 
also demonstrated marked intraspecific variation in those sex dif-
ferences across multiple sites, potentially driven by variation in both 
body size and population density. Jenssen et al., (1995) established 
males maintained a territory on average of 173.6 m3; however, we 
were unable to rigorously assess territory size here because animals 
were deliberately not captured multiple times within a season. The 
reason for the differences in home ranging between the Washington 
Square Park population and other populations is unclear. It could be 
driven by differences in the type and quality of habitat, which can be 
substantial (e.g., [Edwards & Lailvaux, 2012; Irschick et al., 2005]) or 
by general differences between the urban nature of the Washington 
Square Park population and the rural populations studied by Jenssen 
and others (Lailvaux, 2020).

Our second hypothesis (home range size is correlated with 
body size) was also not supported by the data. In our data set as a 
whole (including both males and females), we found no significant 
relationship between body size and home range area. In this pop-
ulation, larger individuals do not appear to maintain larger home 
ranges. This finding is contradictory to other research in lizards. For 
instance, a previous study on the side blotched lizard (Christian & 
Waldschmidt, 1984) found a positive correlation between body size 
and home range area, in both male and females. This association has 
also been demonstrated in 12 other terrestrial lizard species (Turner 
et al., 1969). In their review, Christian and Waldschmidt (1984) dis-
cuss an additional 16 lizard species, 10 if which are insectivores like 
A. carolinensis, that exhibit the same pattern and suggest that larger 
lizards with greater metabolic demands require a larger home range. 
The lack of a relationship between body size and home range size in 
this study may be due in part to the fact that individuals have a clear 

F I G U R E  4   The relationship between average distance and 
differences in body size. (a) Includes all males. (b) Lightweights only. 
(c) Heavyweights only
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preference for cast- iron plant bushes and avoid excursions into the 
urban surroundings (see also Irschick et al., 2005), thereby limiting 
foraging opportunities.

Our third hypothesis (male– male spatial distribution is positively 
correlated with differences in body size) was partially supported. 
There is ample empirical evidence that the green anole mating system 
is dominated by male territoriality and combat (Jenssen et al., 2000, 
2001; McMann, 1993; Stamps, 1983; Stamps & Krishnan, 1997 & 
1998); consequently, in this case, lightweight males might opt to posi-
tion themselves as far from heavyweights as possible to avoid injury 
causing encounters (Irschick & Lailvaux, 2006; Lailvaux et al., 2004). 
However, if this were the case, then the average distance between 
individuals should increase with differences in individual size since 

smaller males will avoid larger ones. Our data do not support this 
scenario; instead, we found that only certain heavyweight males 
maintained the greatest distances from each other, and the gener-
ally weak relationship between differences in male size and average 
distance between individuals suggest that male green anoles do not 
base their proximity to other males based on size alone. However, an 
important insight into the documented A. carolinensis male dimor-
phism contributed by these data is that the density of heavyweight 
males in this population is dynamic, and thus, the influence of heavy-
weight abundance on the spatial distribution of individual animals (if 
any) might be both variable and transient.

Because of both the size dimorphism in adult male green anoles 
and the likelihood of male offspring dispersal, we expected to see 

F I G U R E  5   Examples of male spatial distributions, with emphasis on heavyweight males. In the representation, red dots represent an 
individual heavyweight male. Every capture season can be seen in supplemental materials

Statistic
Associated 
hypothesis Software Method

Home range size as a consequence of 
sex

1 R General linear 
model

Home range size as a consequence of 
body size

1 R Pearson's 
correlation

Average distance of males from all 
others (whole dataset)

2 R General linear 
model

Average distance of males from all 
others (within cohort)

2 R Wilcox test

Pedigree Construction 3 COLONY Sequential 
cohort addition

Coefficient of relatedness between 
males

3 SPAGeDi Pairwise 
relatedness 
values

Isolation by distance in males and 
females

3 R Mantel test

Pairwise relatedness between males as a 
consequence of average distance

3 R General linear 
model

Pairwise relatedness as a consequence 
of body size

3 R General linear 
model

Offspring territory inheritance 4 R Pearson's 
chi- square

TA B L E  1   Explanation of statistical test
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very little pattern of relatedness between lightweight males and the 
heavyweight males nearest them. As lightweight males mature, they 
most likely take on the “sneaker male,” running in and out of terri-
tories sneaking copulations while avoiding territorial heavyweights 
(Orrell & Jenssen, 2003). At this point, relationship structure should 
break down as a result of unrelated lightweight male incursions 
(Massot et al., 1992). This expectation was only partially supported; 
heavyweights were no more related to neighboring individuals than 
the rest of the population. However, neighboring heavyweights were 
less related to the each other than to the rest of the population, sug-
gesting that closely related heavyweights are not inhabiting territo-
ries near to each other. Although relatedness is an important aspect 
of population structure and ecology in many other terrestrial verte-
brates (e.g. Vangestel et al., 2011; Zedrosser et al., 2007]), this does 
not appear to be the case in lizards (but see Ryberg et al., 2004). Our 
result that neighboring heavyweights tend to be unrelated is unlikely 
to be a result of deliberate kin avoidance either and is probably a 
consequence of male- biased dispersal (see below).

Territory locations, as well as the identity of the holder, appear 
to be initially dictated by winter behavior in the green anole (Jenssen 
et al., 1996). After overwintering in leaf litter (and opportunistically 
basking), females may emerge and remain in the same area if the 
resources are sufficient or range further if not. Males, on the other 
hand, will emerge and evaluate areas for the presence of females 
(Jenssen et al., 2001). This, too, may be the same location as a win-
tering habitat; however, the dynamic of male size could dictate at 
this point whether an emerging male will claim that territory, or be 
forced out by a stronger male (Wiggett & Boag, 1992). In our data-
set, a given heavyweight male appears to actively defend a single 
bush, which is inhabited by unrelated lightweight males and multiple 
females, including daughters (although we again note that we could 
not rigorously estimate territory size; see above). The absence of 
male offspring within a bush of a father may be an indication that 
the male offspring are being forced out of their father's territory 
(Charnov & Berrogan, 1993; Kopp et al., 2015). A nomadic strategy 
may therefore be best for lightweights in this population roaming 
through one territory into another and sneaking copulations with fe-
males until they are large enough to attain heavyweight status and 
hold territories of their own (Orrell & Jenssen, 2002, 2003; Sinervo 
& Lively, 1996).

Our final prediction (females will inherit territories from their 
mothers, but males will not inherit territories from their fathers 
because of male- biased dispersal) was not supported by our data. 
Only 35% of daughters and 36% of sons were found in their moth-
er's territory, meaning that almost two thirds of them dispersed or 
died. This result is consistent with studies of maternal relatedness 
and social structure in some other lizard species; for example, Qi 
et al., (2012) showed that juvenile burrowing sand lizards do not 
preferentially share burrows with their parents. However, our data 
go further than this; on no occasion was a male offspring found in 
the territory of its father, yet 50% of a father's daughters were found 
within his territory. These findings indicate that the pattern seen in 
father/offspring space use was not random, while mother/offspring 
space use may have been. The absence of male offspring within his 
father's bush may be an indication that the male offspring are being 
forced out of their father's territory (Charnov & Berrogan, 1993; 
Kopp et al., 2015).

The elevated inbreeding coefficient from this analysis also sug-
gests that there is the potential for as much as two generations of 
first order inbreeding between the parents and offspring in this 
population. Female offspring hatch and seem to remain in their 
natal home range, only as long as resources permit (Wiggett & 
Boag, 1992). As females get older, they then disperse, most likely 
the result of population density increases, and avoidance of kin 
competition within the natal bush (La Galliard et al., 2003; Olsson 
& Shine, 2003). However, the female offspring that remain could be 
the offspring of that bush's occupying heavyweight, and on occasion 
it appears likely that some reproductive females may be mating with 
their fathers. Inbreeding tolerance has been observed not only in 
lizard species (Richard et al., 2009), but also in aquatic (Neff, 2004) 
and avian taxa as well (Bateson, 1982; Cohen & Dearnorn, 2004).

In conclusion, we have shown that relatedness has no effect on 
the distribution of individuals within a population of green anoles in 
Washington Square Park and that body size appears to influence the 
spatial distribution of heavyweight males, albeit more so at low pop-
ulation densities. The data showing that neighboring heavyweights 
are less related to one another, likely due to the impacts of pop-
ulation density and male offspring dispersal, not relatedness. Our 
data also support a pattern of male- biased dispersal in green anoles, 
but because IBD in female cohorts is inconsistent this data does not 
provide convincing evidence for philopatry in females. However, fe-
male presence in the home ranges of their fathers might support this 
idea with additional investigation. These results shed light on the 
factors driving home range establishment in a model organism for 
ecology and evolution and illustrate the value of integrating com-
plementary approaches to understanding the population ecology of 
cryptic species.
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