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Here, we studied how protist predation affects cooperation in the opportu-

nistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum

sensing (QS) cell-to-cell signalling to regulate the production of public

goods. By competing wild-type bacteria with QS mutants (cheats), we

show that a functioning QS system confers an elevated resistance to preda-

tion. Surprisingly, cheats were unable to exploit this resistance in the

presence of cooperators, which suggests that resistance does not appear to

result from activation of QS-regulated public goods. Instead, elevated resist-

ance of wild-type bacteria was related to the ability to form more predation-

resistant biofilms. This could be explained by the expression of QS-regulated

resistance traits in densely populated biofilms and floating cell aggregations,

or alternatively, by a pleiotropic cost of cheating where less resistant cheats

are selectively removed from biofilms. These results show that trophic inter-

actions among species can maintain cooperation within species, and have

further implications for P. aeruginosa virulence in environmental reservoirs

by potentially enriching the cooperative and highly infective strains with

functional QS system.
1. Introduction
The costs and benefits of cooperation and cheating are dependent on environ-

mental context [1–3]. Here, we investigate how a ubiquitous selection pressure,

predation, affects selection for cooperation in the bacterium Pseudomonas
aeruginosa, which cooperates by secreting and responding to quorum sensing

(QS) signal molecules in the surrounding environment [4]. Once a threshold

signal concentration is reached, bacteria switch on production of fitness-enhan-

cing ‘public goods’. By regulating the production of public goods in this way,

QS determines that they are released at high cell densities when they will be

most beneficial [5]. Production of QS-dependent public goods can be exploited

by cheats which do not produce the costly public goods because they do not

respond to QS signal molecules [6].

Recent studies have reported a benefit of QS in the context of antipredator

toxin production [7–9], and, where investigated, this toxin production can be

exploited by social cheats [7]. However, in addition to regulating a large

amount of secreted compounds that could act as public goods, transcriptomic

and proteomic studies have also shown that QS regulates many intracellular

metabolic functions [10], which could have direct fitness benefits to self (private

goods), for example in terms of more efficient resource acquisition [2,5,10,11].

Given the massive effect of QS on gene regulation in P. aeruginosa, we investi-

gated whether QS can confer direct or indirect fitness benefits against predation

by culturing cooperating (PAO1) and QS-cheating (lasI and lasR mutants)
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P. aeruginosa bacterial strains in mono- and co-cultures, both in

the absence and presence of a predatory protist, Tetrahymena
pyriformis, in different resource concentrations. We show that

a functioning QS system confers elevated resistance to preda-

tion that cheats are unable to exploit, probably through the

production of more resistant cell aggregations and biofilms.

Importantly, this elevated resistance does not appear to result

from the activation of QS-regulated public goods. This suggests

that antagonistic trophic interactions can indirectly favour

QS-mediated cooperation, potentially leading to lower cheat

frequency in natural microbial communities.
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Figure 1. The relative density of cooperator (PAO1) to lasI ( filled circles) and
lasR (open circles) cheats in different experimental treatments in the lowest
resource concentration. Values above the reference line denote relatively
higher cooperator fitness and values below the line relatively higher cheat
fitness. Bars show +1 s.e.m.
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2. Material and methods
(a) Study species
QS-positive, cooperating PAO1 and QS-defective, cheating lasI
(signal-negative) and lasR (signal-blind) P. aeruginosa strains

were used in this study [6]. The ‘signal-negative’ lasI mutant

does not produce N-(3-oxododecanoyl)-L-homoserine lactone-

(3O-C12-HSL) signal but still responds to signal, whereas the

‘signal-blind’ lasR mutant does not produce or respond to extra-

cellular signal. Both types of mutants have been found in natural

populations [6,11]. A single-celled Ciliate protist, T. pyriformis
(CCAP 1630/1W) was used as a predator.

(b) Mono- and co-culture experiments
Co-culture experiments were performed in 24-well plates (VWR).

Bacteria were cultured alone and in 50 : 50 cooperator–cheat

pairs (PAO1 versus lasI or lasR) in the absence and presence of

protist in three different resource concentrations (1, 10 and

100% King’s B (KB) medium: M9 salt solution supplemented

with 10 g l21 glycerol and 20 g l21 proteose peptone). All wells

were first inoculated with 1.5 ml of fresh KB medium after

5.1 � 105 bacterial cells per strain were added to mono- and co-

cultures, respectively. Half of the microcosms were inoculated

with 60 cells of T. pyriformis. Cultures were propagated at 288C
in non-shaken conditions for 48 h before sampling. All popu-

lations were mixed throughout before estimating bacterial

densities as colony forming units on KB plates after 24 h

growth at 288C. The cooperator–cheat co-cultures were also

plated on gentamicin–KB plates (15 mg ml21 of gentamicin)

to estimate the proportion of gentamicin-resistant cheats. All

treatments were replicated three times.

(c) Resistance assays
Bacterial defence, that is susceptibility, was measured (i) as

protist ability to reduce bacterial biofilm (growth as cell aggrega-

tions on surfaces) and (ii) as an increase in protist cell numbers

after 24 h of co-cultivation (N ¼ 4 in both cases). Overnight-

grown bacterial strains were first diluted to even densities.

Biofilm formation was measured by growing bacteria alone

and in the presence of predator (inoculum of 60 protist cells)

on 96-well plates at 288C. After 24 h growth, protist densities

were counted under microscope (10� magnification, Leica DM

IL Led), and attached bacterial cells stained (50 ml of 1% crystal

violet solution; VWR) and subsequently detached with 96% etha-

nol to measure the amount of biofilm with spectrophotometer

(optical density at 600 nm). Bacterial toxicity to protist was

measured as follows: overnight-grown bacterial monocultures

were sterile filtered (0.22 mm millipore), and approximately

60 protist cells were inoculated to 200 ml of supernatant (includ-

ing all exoenzymes; specific harmful compound not defined) to

measure bacterial toxicity (protist cells counted after 24 h).

Bacterial ability to form floating cell aggregations in the liquid
phase of the culture media was visualized and imaged with

Leica EC3 digital camera and Leica DM IL Led microscope

(10� magnification).

(d) Statistical analysis
Data were analysed with two-way ANOVA with focal species

(bacterial strain), bacterial community composition, predation

and resource concentration as categorical explanatory variables.

Bacterial cell numbers were log transformed and proportional

data arcsine transformed.
3. Results
Cooperative and cheat strains reached similar cell densities

in monocultures regardless of the resource concentration

(strain � resource: F4,27 ¼ 0.4, p ¼ 0.8, electronic supplemen-

tary material, figure S1a). Surprisingly, protists were driven

to extinction in 10 and 100% resource concentrations by all

bacterial strains during the co-culture experiments. Accord-

ing to separate resistance assays, bacterial supernatant was

only toxic when it was derived from cooperator monocultu-

res grown in 100% resource concentration (strain: F3,11 ¼ 4.2,

p ¼ 0.03, electronic supplementary material, figure S1b).

These results thus suggest that some other toxicity mechanism

unrelated to QS signalling was also activated with both the

cheats and cooperator when in direct contact with protist in

intermediate and high resource concentrations (e.g. type

three secretion system [9,12]). Thus, we concentrated on

the effects of predation only within 1% resource concen-

tration where protists were not driven extinct during the

co-culture experiment.

All strains reached lower densities in the presence of com-

petitor versus when grown alone (F1,30 ¼ 72.8, p , 0.001,

electronic supplementary material, figure S2), this effect

being asymmetrical in favour of cooperator probably owing

to difference in growth rate, interference competition or

ability to use private goods. Similarly, predation decreased
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Figure 2. Bacterial traits measured in monocultures in the lowest resource concentration. (a) Protist ability to reduce cooperator and cheat biofilm. (b) Protist growth
on cooperator and cheat strains. Bars show +1 s.e.m.
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the densities of all strains both in the absence (F1,12¼ 384,

p , 0.001; electronic supplementary material, figure S2) and

presence of competition (F1,12¼ 842, p , 0.001; electronic

supplementary material, figure S2). While both predation and

competition reduced relatively more the frequency of cheats

(predation� strain: F2,30¼ 9.6, p ¼ 0.001; competition �
strain: F2,30¼ 10.9, p , 0.001; figure 1; electronic supplemen-

tary material, S2), their interactive effects led to the greatest

reduction in cheat frequency (predation� competition �
strain: F2,30¼ 4.8, p ¼ 0.015, figure 1; electronic supplementary

material, S2). In other words, cheats were unable to exploit the

resistance mechanism of cooperators. The mechanism of resist-

ance is not known for certain, but biofilms, which are known to

confer resistance to protist predation, were more vulnerable

to predation in cheat populations, (F2,12¼ 16, p ¼ 0.001;

figure 2a) and this led to higher protist yield (F2,12¼ 4.8,

p ¼ 0.02; figure 2b). Moreover, cooperators formed larger and

denser cell aggregations in the liquid phase of the culture

medium compared with both lasI and lasR cheats (see electronic

supplementary material, figure S3).

Surprisingly, the increased resistance associated with an

intact QS system appears to be independent of social aspects

of QS itself: the presence of cooperator did not increase

the growth of the signal-negative cheat (F1,10 ¼ 1, p ¼ 0.34,

figure 1; electronic supplementary material, S2).

4. Discussion
Here, we show that protist predation provides a large fitness

benefit to an intact QS system, which ultimately controls a

range of social and non-social traits in the opportunistic pathogen

bacterium P. aeruginosa. In contrast with the situation for many

other QS-regulated traits, such as the production of proteases

and toxins [7], here cheats were unable to gain afitness advantage

from the presence of cooperators; indeed, the negative impact of

predation on cheats was increased in the presence of cooperators,

presumably because of increased resource competition. More-

over, the presence of wild-type bacteria did not enhance the

growth of the signal-defective lasI mutant. This suggests that

QS signalling resulted in the expression of increased individual

resistance (non-social resistance), and/or that resistance was

social, but cheats were unable to exploit this social resistance.
How could such exclusivity of QS signalling, and poten-

tially of public goods production, occur? The most likely

explanation is the tendency of P. aeruginosa cells to form

aggregations, either on surfaces (biofilms) or in the liquid

phase of the culture (flocs). Even though exogenous signal

did not affect the growth of signal-defective (lasI) cheats in

the liquid phase of the microcosms, it is known that signal-

ling occurs in biofilms [13], and concentration of signal in a

biofilm may be sufficient for QS, even when concentrations

in the media are not [5]. Mutations in QS genes reduce bio-

film strength [14,15], and while cheats can invade biofilms

[13], growth within an aggregation will, by definition,

spatially structure the population, increasing the probability

of cooperators being spatially associated with other coopera-

tors. Crucially, being in a large cell aggregation has been

shown to increase resistance against predation by ciliate pro-

tists [16,17]. We found here that cheat biofilms were more

vulnerable to predation by protists yielding higher protist

cell numbers, whereas cooperators formed larger and

denser cell aggregations in the liquid phase of the culture

medium. We therefore suggest that wild-type bacteria were

more resistant because they could produce and respond to

QS signals in biofilms, resulting in larger and stronger cell

aggregations. Cheats were presumably unable to exploit

these aggregations because of population structure: biofilm

growth mode could exclusively favour cooperators by

increasing relatedness [18]. Alternatively, biofilms containing

both the wild-type and cheat could have been less resistant,

and thus more readily consumed by protists [13]. In the

case of signal-blind (lasR) mutants, it is also possible that

their inability to QS even in the presence of wild-type bacteria

made them individually more vulnerable to predation even

when associated with an aggregation. Unfortunately, directly

assessing the importance of cell aggregations to resistance is

extremely difficult: P. aeruginosa forms aggregations even in

constantly disturbed environments (shaken tubes [18])

making it hard to find a biofilm-free control environment.

In summary, our results demonstrate that trophic inter-

actions, for instance predation, can affect the evolution of

social interactions within species, potentially affecting the

evolution of QS-signalling-regulated P. aeruginosa virulence

in aquatic environmental reservoirs poor in nutrients.
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