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Serum apolipoprotein (apo)AI and -B have been shown to be
associated with diabetic retinopathy, but the underlying mecha-
nisms are unclear. We investigated whether apoAI and apoB levels
are associated with measures of systemic and retinal microvascu-
lar function in patients with diabetes. We recruited 224 diabetic
patients (85 type 1 and 139 type 2) and assessed serum lipids and
lipoproteins from fasting blood, skin responses to sodium nitro-
prusside (endothelium independent) and acetylcholine (ACh)
(endothelium dependent) iontophoresis, flicker-light–induced reti-
nal vasodilatation, and retinal vascular tortuosity. After adjustment
for age and sex, every SD increase in apoAI level was associated
with ACh-induced skin perfusion (mean change 1.27%; P , 0.001
for apoAI) and flicker-light retinal arteriolar vasodilatation (0.33%;
P = 0.003) and was associated inversely with arteriolar tortuosity
(22.83 3 1025; P = 0.044). Each SD increase in apoB was associ-
ated with arteriolar tortuosity only (1.75 3 1025; P = 0.050). These
associations, except for apoB, remained in multivariate models.
Serum apoAI was associated with increased vasomotor respon-
siveness to ACh and flickering light and inversely related to retinal
vessel tortuosity—a characteristic that has both structural and
functional dimensions. These findings provide additional insights
into the potential mechanisms of apos in the pathogenesis of dia-
betic retinopathy and other diabetic microvascular complications.
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D
iabetic retinopathy and other microvascular
complications are major causes of morbidity in
patients with diabetes. Recently, we have re-
ported that serum apolipoprotein (apo)AI and

apoB levels were strongly associated with the presence
and severity of diabetic retinopathy (1), and these associ-
ations were more prominent than those of traditional lipids
(e.g., total cholesterol). However, the underlying mecha-
nisms in which apos influence diabetic retinopathy remain
unclear (1,2).

There is limited evidence that lower apoAI or higher
apoB levels are correlated with signs of microvascular
dysfunction (3), one of the key events in the pathogenesis
of diabetic retinopathy (4). We therefore hypothesize that

impaired microvascular function may be an underlying
mechanism for the association between apoAI and apoB
with diabetic retinopathy.

Systemic and retinal microvascular function can now be
assessed noninvasively via dynamic and static vascular
assessment. Skin capillary flow during sodium nitroprusside
(SNP) and acetylcholine (ACh) iontophoresis reflects
endothelium-independent and endothelium-dependent mi-
crovascular response, respectively (5,6). It has been sug-
gested that good vasomotor function is associated with
sizable vasodilation in response to both ACh and SNP
iontophoresis (7), and reduction in Ach- or SNP-induced
skin microvascular responses may therefore indicate re-
duced endothelial- or nonendothelial-related microvascular
function, respectively. In addition, reduced retinal vessel
response to diffuse luminance flickering and assessment
of retinal vascular tortuosity from retinal photographs
has been proposed to reflect some degree of functional
and structural impairment of retinal microvasculature in
people with diabetes (8–11). We previously demonstrated
that these measures of microvascular function were as-
sociated with diabetic retinopathy in people with diabetes
(9,11,12), implicating the role of impaired systemic and
retinal microvascular dysfunction in diabetic retinopathy
pathogenesis (13).

In this study, we aimed to investigate the association of
serum apoAI, apoB, and traditional lipid levels in a cohort
of diabetic patients with and without diabetic retinopathy
with systemic and retinal microvascular function, assessed
using three measures: skin iontophoresis, flicker-light–
induced vasodilatation, and retinal vascular imaging.

RESEARCH DESIGN AND METHODS

This was a clinic-based observational study. Details of study population have
previously been described (1,9,11,12). We consecutively recruited 224 patients
(18–70 years old) with diabetes (85 with type 1 and 139 with type 2) between
October 2006 and April 2008 from the eye clinics at the International Diabetes
Institute, Melbourne, Australia. We excluded participants who had a history of
epilepsy or glaucoma, had undergone previous vitreal surgery, or had a cata-
ract on examination. Type 1 and type 2 diabetes in this study were diagnosed
by the treating attending physician and confirmed with participants’ history of
age at diagnosis and previous test findings of type 1 diabetes–related markers
(e.g., urine ketones). The study followed the tenets of the Declaration of
Helsinki and was approved by the institutional ethics committee, with written
informed consent from each participant.
Assessment of lipids and apos. Fasting (.8 h) blood samples were obtained
from each participant during clinical examination to assess blood glucose
and HbA1c levels, serum lipid (total, HDL, and LDL cholesterol and triglyceride),
and apoAI and apoB levels within 2 weeks of eye examinations. Non-HDL
cholesterol was calculated by total cholesterol minus HDL cholesterol level.
Details of the blood specimen handling and apoAI and apoB assessments have
previously been published (1). Serum apoAI and apoB were assessed using rate
immunonephelometry (BN II Nephelometer Dade Behring; Siemens Healthcare
Diagnostics, Eschborn, Germany) with kits from the same company at the De-
partment of Medicine, University of Melbourne, (St. Vincent’s Hospital). Intra-
assay coefficients of variation for apoAI and apoB were 2.2 and 1.9%, respectively,
and interassay coefficients of variation were 5.7 and 2.4%, respectively (1).
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Skin microcirculatory function. Skin microcirculatory function was mea-
sured using a laser Doppler flowmetry technique to assess response to ionto-
phoresis of SNP and ACh (6). Iontophoresis delivers vasodilators (SNP and ACh)
across the skin using a weak electrical current, with blood flow measured by
laser Doppler flowmetry. These assessment procedures have also previously
been described (12). All tests were performed on both forearms. Laser Doppler
flowmeter (Moor Instruments, Axminster, U.K.) was used to measure the skin
blood flux (a function of volume of blood multiplied by velocity). Skin micro-
vascular responses to SNP (endothelial-independent vasodilator) and ACh
(endothelial-dependent vasodilator) iontophoresis were recorded. SNP 1% and
ACh 1% solutions in distilled water were used for iontophoresis. “Mean baseline
flux” was the term for mean flux measured over 120 s preiontophoresis, and
“mean response flux” was the term for mean flux over 240 s after the ionto-
phoresis. The responses to SNP or ACh were calculated from the difference
between mean response and baseline flux divided by the baseline flux (per-
centage change relative to baseline measure) for SNP and ACh separately (12).
Flicker-light–induced vasodilatation. Assessment of flickering-light–
dependent vasodilatation was performed in a dark room using the Dynamic
Vessel Analyzer (DVA; IMEDOS, Jena, Germany). The detailed examination
procedures have previously been published (11,14). Briefly, each participant
underwent fundus examination under green light. A selected segment of arte-
riole and venule was initially measured for 50 s as the baseline, followed by
stimulation with flickering light of the same wavelength for 20 s and then
a nonflicker period for 80 s. This measurement cycle was repeated twice, with
a total duration of 350 s per eye. Retinal arteriolar and venular dilation in
response to flickering light was calculated automatically by the DVA built-in
software. It was represented as an average increase in the vessel diameter
in response to light flicker during the three measurement cycles and was
expressed as the percentage increase relative to the baseline diameter size.
Retinal photography and measurement of retinal vascular tortuosity.

Two-field fundus images (disc and macula centered) were taken from each
participant before the flicker-light assessment using Canon CF-60UVi equipped
with Canon EOS 10D (Canon, Tokyo, Japan). Retinal vessel tortuosity, or cur-
vature of vessel course, was quantitatively measured from digital disc-centered
retinal photographs (field 1 of the Early Treatment Diabetic Retinopathy Study
[ETDRS] photographic fields), using a semiautomated computer program
(Singapore I Vessel Assessment [SIVA], Singapore). Detailed measurement
procedures have previously been described (8–10). In brief, a trained grader
who was masked to participants’ characteristics applied SIVA to each image
and automatically identified the center of the optic disc as well as arterioles
and venules within the measurement zone (between 0.5- and 2-disc diameter
away from the optic disc). The average of measures from all arterioles and
venules was summarized into tortuosity index of arterioles and venules, re-
spectively. Vessel tortuosity index was calculated using the integral of the total
squared curvature along the path of the vessel divided by the total length of
the vessel arc (15).
Assessment of diabetic retinopathy. Diabetic retinopathy was graded from
two-field fundus photographs at the Centre for Eye Research Australia by
graders masked to clinical characteristics (1). The diabetic retinopathy grading
was performed following the modified Airlie House Classification system (16),
and the presence of diabetic retinopathy was defined as having any retinop-
athy signs in either the right or the left eye.
Assessment of other risk factors. All participants underwent a standardized
clinical examination and interview using a detailed questionnaire to obtain
information including past medical history, current cigarette smoking status,
and the use of antihypertensive or lipid-lowering medications or oral hypogly-
cemic agents. Hypertension was defined as systolic blood pressure (SBP) $140
mmHg, diastolic blood pressure (DBP) $90 mmHg, or current use of antihy-
pertensive medications. Height and weight were measured to determine BMI (1).
Statistical analysis. Analyses were performed using Intercooled STATA
version 10.1 for Windows (StataCorp, College Station, TX). Clinical charac-
teristics of participants with and without diabetic retinopathy were compared
using x2 test for proportions and t test or Mann-Whitney U test for means. We
analyzed serum apos and traditional lipids as independent variables and skin
iontophoresis, flicker-light–induced vasodilatation, and tortuosity index as
dependent variables. Responses to iontophoresis of SNP and ACh of right and
left arm were used in the analyses. Similarly, flicker-light–induced vasodila-
tation and tortuosity index of right and left eyes were also used. Both arteri-
olar and venular tortuosity indexes were positively skewed; therefore, log
transformation was applied. We used t test for clustered data for the analyses
of skin iontophoresis, flicker-light–induced vasodilatation, and retinal vessel
tortuosity to account for within-cluster correlation between right and left
sides. Independent variables were assessed categorically (in quartiles) to ex-
plore any potential threshold values and continuously (per SD increase).
General linear model with additional cluster command was used to estimate
the mean difference of dependent variables, and every SD increase in serum
apos and lipids was used to account for the correlation between right and left

side of the arms or eyes. We controlled for age and sex in the analyses (model 1)
and further for diabetes duration, HbA1c, SBP, use of insulin, oral diabetes
and lipid-lowering medications, and presence of diabetic retinopathy (except
for analysis stratified by diabetic retinopathy presence) (model 2). Covariables
were selected for model 2 to include established diabetic retinopathy risk
factors (duration of diabetes, HbA1c, and SBP) and diabetes and lipid-related
medications that may be associated with either microvasculatural changes or
apo levels. Presence of diabetic retinopathy was also chosen as a covariable in
model 2 to ensure that these associations were independent of diabetic reti-
nopathy status. Further analyses were performed to stratify according to the
absence and presence of diabetic retinopathy or type 1 or type 2 diabetes.

RESULTS

Of 224 patients with diabetes, the median (interquartile
range [IQR]) age was 59 years (51–66), 59.4% were male,
median duration of diabetes was 15 years (9–21), 38%
(n = 85) had type 1 diabetes, and 64.3% (144) had diabetic
retinopathy. Compared with patients without diabetic reti-
nopathy, those with diabetic retinopathy had lower apoAI
and higher apoB and apoB/AI levels, reduced retinal vas-
cular responses to flickering light, reduced skin capillary
response to iontophoresis of SNP and ACh, and more
tortuous retinal arterioles (Supplementary Table 1) (1).

Tables 1 and 2 show the associations of serum apo levels
with skin capillary responses to iontophoresis of SNP and
ACh, flicker-light–induced retinal vasodilatation (Table 1),
and retinal vascular tortuosity index (Table 2). In model 1,
every SD increase in apoAI level was positively associated
with ACh-induced skin perfusion (mean change 1.27%; P ,
0.001) and flicker-light–induced arteriolar vasodilatation
(mean change 0.33%; P = 0.003) (Table 1) but was inversely
associated with retinal arteriolar tortuosity index (mean
change 22.83 3 1025; P = 0.044) (Table 2). ApoB was only
significantly associated with increased arteriolar tortuosity
(mean change of tortuosity index 1.75 3 1025 per-SD in-
crease in apoB; P = 0.050) (Table 2). ApoB/AI was in-
versely associated with ACh-induced skin perfusion (mean
change 20.94% per-SD increase in apoB/AI; P = 0.002) and
arteriolar vasodilatation (mean change 20.21%; P = 0.049)
but was positively associated with arteriolar tortuosity
index (mean change 3.75 3 1025; P = 0.006) (Table 2). In
model 2, these associations remained statistically signifi-
cant or stronger, except for the association of apoAI with
arteriolar tortuosity index, which became marginally non-
significant (P = 0.056), and the association of apoB with
arteriolar tortuosity index, which showed no association
(Tables 1 and 2). No association was found for SNP-induced
skin perfusion, venular dilatation, and venular tortuosity.

The associations of serum apos with SNP- and ACh-
induced skin microvascular responses, flicker-light–induced
retinal vasodilatation, and retinal vascular tortuosity in
stratified subgroups by the presence of diabetic retinopa-
thy are shown in Tables 3 and 4. Increased apoAI level, but
not apoB and apoB/AI levels, was significantly associated
with increased ACh-induced skin perfusion and flicker-
light–stimulated arteriolar vasodilatation in both the non-
diabetic retinopathy and diabetic retinopathy groups and
in both models 1 and 2 (all P , 0.05) (Table 3). Increased
apoAI and apoB/AI levels were significantly associated with
decreased and increased arteriolar tortuosity, respectively,
in patients without diabetic retinopathy only (Table 4).

In the analyses of traditional lipids, only HDL cholesterol
was associated with response to iontophoresis of SNP (mean
change 0.68%; P = 0.049 per-SD increase in HDL cholesterol)
and ACh (mean change 1.27%; P , 0.001 per-SD increase in
HDL cholesterol). No association was found for other tradi-
tional lipids (Supplementary Tables 2 and 3).
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DISCUSSION

In this study, we have demonstrated that serum apoAI
and apoB/AI levels were associated with three measures
of vascular function: 1) ACh-induced skin microvascular
responses, 2) flicker-light–induced retinal arteriolar vasodi-
latation, and 3) retinal arteriolar tortuosity. These associa-
tions, particularly of apoAI, remained significant in patients
without diabetic retinopathy. By contrast, we demon-
strated limited association of traditional lipid levels with
ACh-induced skin microvascular responses, except for HDL
cholesterol, which contains apoA1. Our findings suggest
that an adverse profile of serum apos, but not traditional
lipids, is a marker of systemic and retinal microvascular
dysfunction, possibly endothelium related, and may play
a role in diabetic retinopathy—as previously observed (1).

We recently demonstrated that apoAI and apoB levels
are strongly associated with diabetic retinopathy and there-
fore may be better biomarkers of diabetic retinopathy than
traditional lipids (1). Yet, the mechanisms underlying these
associations remain elusive. ApoAI and apoB have been
increasingly recognized for their important role in cardio-
vascular disease risk (17,18), and these mechanisms have
mainly been studied in relation to large vessels. Previous
studies have shown that higher level of apoAI may improve
the vascular endothelial function in coronary arteries (19),
while apoB has opposite effects (20,21). In keeping with
this, animal studies also demonstrated an improvement in
endothelium-dependent vascular responses among rats
being treated with an apoAI mimetic (22) and accelerated
vascular endothelial dysfunction in pigs fed an apoB-rich
diet (20). Nevertheless, these apos have not been given
much attention in small-vessel diseases. There is limited
evidence that apoAI may improve endothelium-mediated
response of small peripheral arteries (3).

Our findings provide first-line evidence showing that
apoAI and apoB/AI may affect systemic and retinal mi-
crovascular function, consistently shown by responses to
iontophoresis of Ach, flicker-light–induced arteriolar vaso-
dilatation, and arteriolar tortuosity. ACh-induced skin mi-
crovascular responses, in contrast to SNP, are specifically
endothelium dependent (5,6). During the iontophoresis,
ACh may stimulate nitric oxide (NO) production, while SNP
is an NO donor to vascular smooth muscle cells (5,6). Since
NO is a mediator of endothelium-derived relaxing factor
(23,24), NO production during ACh iontophoresis provokes
endothelium-dependent vasodilatation in skin microcircu-
lation, which has been proposed to reflect systemic micro-
circulation (6). Retinal arteriolar vasodilatation in response
to flicker-light stimulation has been demonstrated to signify
retinal vascular capacity to adapt to increased blood supply
to active neurons in stimulated neuroretina (25,26). Ad-
ditionally, retinal arteriolar tortuosity may indicate in-
capability of blood vessels to adapt to intravascular
pressure and increased shear stress (27–29). The failure to
perform such adaptive changes can be due to the loss of
vascular flexibility as a result of vascular cell damage and
can thus appear as vessel undulation (9,27,29).

Mechanisms explaining the beneficial associations of
apoAI and deteriorating associations of apoB/AI with mi-
crovascular function seen in this study may be similar to
findings in larger vessels (2,20,30). ApoAI is the structural
protein of usually vasoprotective HDL, and apoB is the
main component of VLDL, IDL, and LDL (31). ApoAI can
promote vasoprotective mechanisms via its ability to pro-
mote reverse cholesterol transport from peripheral tissue
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to the liver (32) and to inhibit LDL from oxidation, which
may induce smooth muscle cell cytotoxicity and vascular
endothelial dysfunction (30,32)—its antiplatelet and anti-
inflammatory effects (30). By contrast, apoB is responsible
for delivering lipids and cholesterol from the intestine and
the liver to peripheral tissue and at the same time is a re-
flection of the total number of atherogenic particles, which
if oxidized, are toxic to arterial walls (18,21). Therefore,
apoB/AI levels may reflect both damaging and protective
lipoprotein pathways (21,31). The magnitude of the apo-
associated changes in vascular measures seemed to be
very small. Nevertheless, microvasculature has a major
influence on systemic hemodynamics (33), and such small
changes have been shown to be significantly associated
with diabetic retinopathy in our previous studies (9,11,12);
thus, they are likely to be clinically meaningful.

In our analysis stratified by diabetic retinopathy, apoAI
remained significantly associated with response to ion-
toporesis of ACh and flicker-light–induced vasodilatation.
However, its association with arteriolar tortuosity was at-
tenuated after controlling for other diabetes risk factors
(e.g., diabetes duration, HbA1c, SBP) and medication. This
may be due to relatively small numbers with insufficient
power to detect modest associations—or the association
between apoAI and arteriolar tortuosity is not independent
of other factors. The latter is consistent with our previous
hypothesis that tortuous vessels may indicate early vas-
cular damage as a result of adverse systemic exposures in
diabetes (e.g., high HbA1c) (8,9), in addition to an adverse
apos profile. Nevertheless, we demonstrated significant
associations even in the absence of diabetic retinopathy,
which support our primary hypothesis that the associations
between apos and microvascular changes are independent
of diabetic microvascular complications and could play a
role in the pathways to diabetic retinopathy.

Our findings, if confirmed in future studies, have strong
clinical implications. These results suggest new insights
into underlying mechanisms for the influence of apoAI and
apoB on diabetic retinopathy and other diabetic micro-
vascular complications, which possibly affect microvas-
cular endothelial dysfunction. In addition, our findings may
also provide clues to the possible mechanisms by which
fenofibrate, which improves the apo profile (34), slowed
progression of diabetic retinopathy in recent type 2 diabetes
trials (34,35). Further research to investigate the effect of
apos modifying treatment in the development/progression
of diabetic retinopathy is therefore the key in this area.

Strengths of our study include comprehensive assess-
ments of markers of microvascular-specific endothelial
dysfunction, measurements of both apos and traditional
lipids, and photographic assessment of diabetic retinopa-
thy using standardized grading protocols. Despite the rel-
atively small sample size, our study sample was typical of
clinical diabetic populations with diabetic retinopathy and
comparable with the Multi-Ethnic Study of Atherosclerosis
(MESA) (36), which showed strong associations with di-
abetes duration and HbA1c level (1), reassuring the gen-
eralizability of our findings to other diabetic populations.
Limitations should also be noted. First, the cross-sectional
nature of this study provides no temporal interpretation of
reported associations. Second, we were unable to perform
analysis stratified by diabetes type or diabetic retinopathy
severity owing to the relatively small number of study
sample. Third, a reduction in ACh-induced skin micro-
vascular responses might also be influenced by the number
and function of cutaneous ACh receptors. Therefore,T

A
B
LE

4
A
ss
oc

ia
ti
on

s
be

tw
ee

n
se
ru
m

ap
os

an
d
re
ti
na

l
va

sc
ul
ar

to
rt
uo

si
ty

in
de

x
st
ra
ti
fi
ed

by
re
ti
no

pa
th
y
pr
es
en

ce

Se
ru
m

ap
os

(p
er
-S
D

in
cr
ea

se
)

N

R
et
in
al

va
sc
ul
ar

to
rt
uo

si
ty

in
de

x
(3

10
5 )

M
od

el
1a

M
od

el
2b

A
rt
er
io
la
r

V
en

ul
ar

A
rt
er
io
la
r

V
en

ul
ar

M
ea

n
ch

an
ge

(9
5%

C
I)

P
M
ea

n
ch

an
ge

(9
5%

C
I)

P
M
ea

n
ch

an
ge

(9
5%

C
I)

P
M
ea

n
ch

an
ge

(9
5%

C
I)

P

N
o
re
ti
no

pa
th
y

A
po

A
I
(0
.3

g/
L)

76
2
2.
35

(2
4.
16

to
2
0.
14

)
0.
03

6
2
2.
35

(2
5.
65

to
0.
09

)
0.
16

2
2.
91

(2
6.
45

to
0.
00

)
0.
05

0
2
2.
90

(2
6.
55

to
0.
09

)
0.
12

A
po

B
(0
.3

g/
L)

76
2
0.
71

(2
3.
46

to
2.
03

)
0.
61

2
1.
18

(2
4.
40

to
2.
03

)
0.
47

2
1.
13

(2
4.
19

to
1.
92

)
0.
47

2
0.
59

(2
4.
14

to
2.
97

)
0.
75

A
po

B
/A
I
(0
.2
)

76
4.
65

(0
.5
2–

8.
78

)
0.
02

7
0.
48

(2
2.
77

to
3.
71

)
0.
77

6.
07

(1
.3
7–

10
.8
)

0.
01

1
1.
60

(2
2.
09

to
5.
30

)
0.
39

R
et
in
op

at
hy

A
po

A
I
(0
.3

g/
L)

13
1

2
3.
31

(2
7.
54

to
2
0.
09

)
0.
04

2
2
0.
23

(2
2.
69

to
2.
22

)
0.
85

2
3.
78

(2
8.
46

to
0.
88

)
0.
11

2
0.
86

(2
3.
53

to
1.
79

)
0.
52

A
po

B
(0
.3

g/
L)

13
1

1.
82

(2
2.
27

to
5.
92

)
0.
38

2
2.
08

(2
4.
42

to
0.
27

)
0.
08

2.
36

(2
2.
19

to
6.
91

)
0.
31

2
1.
83

(2
4.
38

to
0.
73

)
0.
16

A
po

B
/A
I
(0
.2
)

13
1

0.
12

(2
2.
64

to
2.
89

)
0.
93

2
1.
73

(2
4.
16

to
0.
71

)
0.
16

0.
76

(2
2.
42

to
3.
95

)
0.
64

2
1.
39

(2
4.
10

to
1.
32

)
0.
32

a
A
dj
us
te
d
fo
r
ag

e
an

d
se
x.

b
A
dj
us
te
d
fo
r
ag

e,
se
x,

du
ra
ti
on

of
di
ab

et
es
,
H
bA

1
c
,
SB

P
,
an

d
us
e
of

in
su
lin

,
or
al

di
ab

et
es
,
an

d
lip

id
m
ed

ic
at
io
ns
.

Apos AND SYSTEMIC AND RETINAL MICROVASCULAR FUNCTION

1790 DIABETES, VOL. 61, JULY 2012 diabetes.diabetesjournals.org



cautious interpretation is needed, since we have no mea-
sures of cutaneous ACh receptors (6,37). Nevertheless,
there has been no previously documented evidence show-
ing that apoAI and ACh receptors are correlated. Our
results demonstrated a dose-response relationship between
apoAI and ACh-induced skin microvascular responses.
Therefore, it is likely that apoAI has influence on peripheral
microvascular function, regardless of the presence or ab-
sence of alteration in the number and function of skin ACh
receptors. As the number and function of skin ACh recep-
tors are influenced by inflammation status (38), we have
also controlled for factors (e.g., duration of diabetes,
HbA1c) that potentially excite inflammatory processes and,
additionally, an inflammatory marker (C-reactive protein
level) that we measured in this sample (data not shown).
However, the observed association remained significant.

Fourth, emerging evidence has also suggested that the
use of fenofibrate may have profound effects on microvas-
cular function (39). In this study, we did not obtain detailed
enough information regarding the use of specific lipid med-
ications (e.g., duration of the medications, dosage, frequency,
and compliance of the patients) to be able to specifically
assess the effect of fenofibrate on our outcome measures.
Nonetheless, there was only one participant treated with
fenofibrate in this study. Therefore, the possibility of con-
founding effects by lipid medications should have been very
minimal. Finally, we did not have data on serum apos and
skin iontophoresis from people without diabetes; therefore,
we were unable to perform these analyses compared with
nondiabetic subjects. Our findings are thus only applicable to
subjects with diabetes and cannot be generalized to subjects
without diabetes.

In summary, we report novel associations of serum apos
with markers of systemic and retinal microvascular dys-
function, possibly endothelium related, in patients with
diabetes without and with diabetic retinopathy. Our findings
may elucidate the role of apos in diabetic retinopathy and
support previous evidence that serum apos are stronger
biomarkers for diabetic retinopathy, and possibly other di-
abetic microvascular complications, than traditional lipids.
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