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Investigating the most likely causal variants identified by fine-mapping analyses may improve the power to detect gene–envi-

ronment interactions. We assessed the interplay between 70 single nucleotide polymorphisms identified by genetic fine-scale

mapping of susceptibility loci and 11 epidemiological breast cancer risk factors in relation to breast cancer. Analyses were

conducted on up to 58,573 subjects (26,968 cases and 31,605 controls) from the Breast Cancer Association Consortium, in

one of the largest studies of its kind. Analyses were carried out separately for estrogen receptor (ER) positive (ER1) and ER

negative (ER–) disease. The Bayesian False Discovery Probability (BFDP) was computed to assess the noteworthiness of the

results. Four potential gene–environment interactions were identified as noteworthy (BFDP < 0.80) when assuming a true prior

interaction probability of 0.01. The strongest interaction result in relation to overall breast cancer risk was found between

CFLAR-rs7558475 and current smoking (ORint 5 0.77, 95% CI: 0.67–0.88, pint 5 1.8 3 1024). The interaction with the strongest

statistical evidence was found between 5q14-rs7707921 and alcohol consumption (ORint 51.36, 95% CI: 1.16–1.59, pint 5 1.9

3 1025) in relation to ER– disease risk. The remaining two gene–environment interactions were also identified in relation to

ER– breast cancer risk and were found between 3p21-rs6796502 and age at menarche (ORint 5 1.26, 95% CI: 1.12–1.43, pint

51.8 3 1024) and between 8q23-rs13267382 and age at first full-term pregnancy (ORint 5 0.89, 95% CI: 0.83–0.95, pint 5 5.2

3 1024). While these results do not suggest any strong gene–environment interactions, our results may still be useful to

inform experimental studies. These may in turn, shed light on the potential interactions observed.

In 1968, MacMahon stated that “In no field are there more
complex examples of the gene–environment relationship than
in experimental cancer research.”1. Following his words and
the general opinion that genetic and non-genetic risk factors do
not give rise to the disease solely by acting on independent
pathways, several studies have investigated gene–environment
interplay in relation to breast cancer risk. Studies of this type
are motivated by the fact that the identification of gene–envi-
ronment interactions in relation to breast cancer could provide
insight into the biological mechanisms underlying the disease,
allow the distinction of women at high risk from women at
lower risk and improve the accuracy of risk prediction models.
However, despite large-scale, international efforts, to date, there
are few single nucleotide polymorphisms (SNPs) for which the
effect on breast carcinogenesis has been found to be modified

by an epidemiological risk factor, and only one of these has
been replicated.2,3

Several breast cancer risk loci that were previously identified
in genome-wide association studies (GWAS) were recently
investigated further by genetic fine-scale mapping in the frame-
work of the Collaborative Oncological Gene-Environment
Study (COGS) using samples from studies participating in the
Breast Cancer Association Consortium (BCAC). The SNPs
identified in the fine-mapping studies were further investigated
in subsequent functional studies to identify potential causal
associations. The consideration of causal variants may improve
power to detect gene–environment interplay. However, if no
interactions are detected, the weight of evidence against
gene–environment interactions for the locus in question is
strengthened. Additionally, new susceptibility alleles were

What’s new?

Although it is widely acknowledged that genes and environment may interact to cooperatively modify breast cancer risk, no

such interaction is known at the single nucleotide polymorphism (SNP) level. Here, the authors assessed the interplay of 70

SNPs with 11 known breast cancer risk factors in estrogen receptor-positive and -negative disease. Weak interactions were

found with individual SNPs and current smoking or alcohol consumption but no strong gene–environment interaction was

identified. These data do not support the model of strong modification of genetic cancer risk by environmental factors.
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identified from genotypes generated by imputation using the
1000 Genomes Project reference panel. Therefore, in this analy-
ses, multiplicative gene–environment interaction in relation to
breast cancer risk was assessed between 55 potentially causal as
well as 15 newly identified SNP alleles, and the following 11
established epidemiological risk factors: age at menarche, oral
contraceptive (OC) use, parity, age at first full-term pregnancy
(FTP), number of FTPs, breastfeeding, use of menopausal
hormone therapy (MHT), body mass index (BMI), adult
height, smoking and alcohol consumption. We also investi-
gated interactions in relation to estrogen receptor (ER) specific
breast cancer risk since different disease subtypes may arise
through different pathways. The analyses reported in this
article are based on the largest, currently available dataset with
genetic data and extensive epidemiological information.

Methods
Study subjects

Data on subjects of European descent derived from 21 studies
participating in the BCAC were pooled. A brief description of
each study can be found in Supporting Information Table S1.
There were 12 population-based and 9 non-population based
studies, each contributing at least 200 cases and 200 controls
with available SNP data and information on at least one
epidemiological risk factor. Subjects were excluded from the
gene–environment interaction analyses if they were male, of
non-European origin, a prevalent case or had missing data on
age at diagnosis or age at interview, the epidemiological risk
factor in question or any of the adjustment variables. Hence,
the number of study subjects for each SNP-risk factor pair var-
ied with the availability of epidemiological data. Analyses were
based on between 11,342 subjects (5,445 cases and 5,897 con-
trols) for effect modification by alcohol consumption and
58,573 subjects (26,968 cases and 31,605 controls) for effect
modification by number of FTPs. The set of study subjects that
were included in at least one gene–environment interaction
model comprised 30,000 cases and 34,501 controls. All studies
were approved by the relevant ethics committees and informed
consent was obtained from all participants.

SNP selection and genotyping

Genotyping was carried out using an Illumina iSelect array
(iCOGS) in the framework of the COGS project (www.
nature.com/icogs). With the aim of detecting causal variants,
a number of loci known to confer breast cancer risk at the
time of the design of the iCOGS array were further investi-
gated using fine scale genetic mapping. To improve SNP den-
sity, imputation of the respective regions was performed
using the March 2012 release of the 1000 Genomes as refer-
ence panel. The functional follow-up work was not carried
out centrally for all regions but divided between the different
working groups of BCAC and thus the methods used varied
somewhat.4–17 In addition, imputed genotypes for 15 new
susceptibility loci identified through a meta-analysis of 11
GWAS with genotypes SNPs generated by imputation using

the 1000 Genomes Project March 2012 release as the refer-
ence panel were used.5 A list of the 70 SNPs included in the
analyses for this report can be found in Supporting Informa-
tion Table S2.

Data filtering

Data from the participating studies were centrally cleaned and
harmonized. The information on epidemiological factors was
collected at date of reference. In the case–control studies, this
was defined as the date of diagnosis for cases and the date of
questionnaire for controls, and in the three cohort studies
(Cancer Prevention Study II [CPSII], Melbourne Collaborative
Cohort Study [MCCS] and UK Breakthrough Generations
Study [UKBGS]) information at baseline was used, unless
follow-up information was available. Women who were 54
years or younger at reference were considered pre-menopausal
and women who were older than 54 years at reference were
considered postmenopausal. Subjects who were smokers within
1 year before reference date or used MHT within 6 months
before reference date were considered to be current smokers
and current MHT users. For the case–control studies, BMI was
calculated using usual adult weight or weight 1 year before ref-
erence (Australian Breast Cancer Family Study, CECILE Breast
cancer Study, Gene-Environment Interaction and Breast Can-
cer in Germany, kConFab, Kuopio Breast Cancer Project,
Mammary Carcinoma Risk Factor Investigation, Mayo Clinic
Breast Cancer Study, NCI Polish Breast Cancer Study and Sin-
gapore and Sweden Breast Cancer Study), or weight around the
age of 20 years (ESTHER Breast Cancer Study, Karolinska
Mammography Project for Risk Prediction of Breast Cancer-
prevalent cases and Study of Epidemiology and Risk Factors in
Cancer Heredity). For the cohort studies (CPSII, MCCS and
UKBGS), BMI was calculated using information from baseline
or the latest available questionnaire before diagnosis, if
available.

Statistical analysis

Association analyses of SNP alleles and breast cancer risk
were carried out using logistic regression models adjusted for
age at reference, study and ethnicity. In all models used in
this study, genotyped SNPs were treated as ordinal variables
(counts of minor alleles) and imputed SNPs as continuous
variables.

The main effects of the epidemiological risk factors were
also investigated using logistic regression models adjusted for
reference age, study and self-assessed ethnicity. Heterogeneity
across studies was explored by means of Cochrane’s Q-test.
The epidemiological variables used in this analyses were cate-
gorized as follows: age at menarche (per 2 years), ever use of
OC (yes or no), ever parous (yes or no), number of FTPs for
parous women (1, 2, 3 and �4 FTPs), ever breastfed (yes or
no), age at first FTP (per 5 years), adult BMI for pre- and
postmenopausal women, respectively (per 5 kg/m2), adult
height (per 5 cm), current use of MHT in the form of estro-
gen and progesterone or estrogen only (yes or no), lifetime
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average alcohol intake (per 10 g/day), current smoking (yes
or no) and pack-years of smoking (per 10 pack-years).

Multiplicative gene–environment interaction was assessed
by comparing logistic regression models with and without
SNP-risk factor interaction terms by means of the likelihood
ratio test. All models on which this study is based were adjusted
for study, reference age and ethnicity, so as to capture genetic
population sub-structure. An interaction term between the epi-
demiological variable and an indicator for population based
study design was included to protect against bias due to the dif-
fering selection of study participants in non-population based
versus population-based studies. Interactions of SNPs and epi-
demiological risk factors were also investigated in relation to
ER specific (ER1 or ER–) breast cancer risk, using cases and
controls. Furthermore, potentially differential gene–environ-
ment interaction according to ER status was assessed in case-
only analyses comparing ER– cases to ER1 cases. The ER-
specific models and the case-only analyses were adjusted simi-
larly as the interaction models for overall breast cancer risk. To
elucidate the results of the interaction analyses, risk association
between SNPs and breast cancer was investigated by stratifying
on the epidemiological variables.

MHT was sub-divided into estrogen only and combined
(estrogen plus progestogen) therapy and investigated in relation
to breast cancer risk using only post-menopausal women. All
statistical models involving MHT use were further adjusted for
former MHT use and current use of the MHT preparation
(estrogen only or combined) not included in the interaction
term. Additionally, interactions of SNPs and BMI for postmeno-
pausal women were assessed in never- and former users of MHT
only. All risk analyses were carried out using SAS 9.2.

Between-study heterogeneity of the interaction odds ratio
(OR) estimates was investigated using Cochrane’s Q-test and
quantified by the ratio of true heterogeneity to the total
observed variation, denoted I2. Heterogeneity was investigated
for SNP-risk factor pairs with an interaction p values below
the Bonferroni corrected threshold of statistical significance
for genetic main effects, computed by dividing the standard
threshold of 0.05 by the number of SNPs (0.05/70> 7 3

1024). Interaction ORs were tested for heterogeneity across
studies on basis of interaction p values in models of overall
or ER specific breast cancer risk, although the latter on the
condition that a heterogeneity p < 0.05 of ER1 versus ER–
disease had been observed. Heterogeneity tests were con-
ducted using the R package “rmeta” (version 2.2).

The Bayesian False Discovery Probability (BFDP) was
computed to control the number of false-positive findings
and assess the noteworthiness of the results.18 The cut-off for
noteworthiness is based on the ratio of the cost of a false
non-discovery to the cost of a false discovery. As suggested
in the literature, we set the cost of failing to discover a true
association to four times the cost of a falsely reported one,
classifying results with a BFDP< 0.8 as noteworthy. The
BFDP was calculated for all SNP-risk factor pairs with an
interaction p values below the Bonferroni-corrected threshold

given above (p< 7 3 1024). The BFDP was computed for
two different prior probabilities of this (0.01, 0.001), under
the assumption that the probability of observing a true inter-
action OR inside the interval 0.66–1.5 was 95%. As a comple-
mentary measure to the BFDP, we also computed the ABF,
which approximates the ratio of the probability of the data
given that the null hypothesis is true, to the probability of
the data given that the alternative hypothesis is true. The null
hypothesis in this case is that the coefficient of the interac-
tion term in the logistic regression model is equal to zero.

Results
The studies included in the gene–environment interaction
analyses are listed in Table 1 together with the number of
cases and controls, overall and by ER status. The median
time between questionnaire and diagnosis was 3 years in the
MCCS cohort, 2 years in the UKBGS cohort and 7 years in
the CPSII cohort.

The associations between SNP alleles and breast cancer
risk in the subset of BCAC studies with risk factor data avail-
able were consistent with earlier reports and can be found in
Supporting Information Table S3.4–14

Main effects of the epidemiological variables on breast
cancer risk across studies are presented in Supporting Infor-
mation Figure 1. These analyses were carried out using only
population-based studies and the results were consistent with
what has been reported earlier in the literature.3,19–30 Current
use of OC, MHT use (E only, as well as E1 P), alcohol con-
sumption, height as well as never having breastfed (vs. ever
having breastfed) were all factors that showed an increased
risk of breast cancer. A reduction in risk was observed for
older age at menarche, ever being parous, number of FTPs
and high BMI for pre-menopausal women. For current
smoking and pack-years of smoking, no significant associa-
tion with breast cancer risk was detected.

The complete results from the interaction analyses, show-
ing the risk association between SNPs and breast cancer
across categories of the epidemiological variables, are pre-
sented in Supporting Information Table S4. We identified
four SNP-risk factor pairs with at least one interaction p < 7
3 1024 in relation to overall, ER1 or ER– breast cancer risk,
as presented in Table 2. All of these interactions were classi-
fied as noteworthy (BFDP< 0.8) assuming a prior probability
of true interaction of 0.01 but no result remained noteworthy
at the 0.001 level (Table 3).

First evidence of an interaction in relation to overall dis-
ease risk was noted between the variant CFLAR-rs7558475
and current smoking (ORint 5 0.77, 95% CI: 0.67–0.88,
pint 5 1.8 3 1024). This result was considered noteworthy
(BFDP5 0.40) assuming a prior probability of true interac-
tion of 0.01 and the approximated Bayes factor
(ABF)5 0.007 indicated that the data were almost 140 times
more likely given the alternative hypothesis than given the
null. Breast cancer risk was reduced for current smokers car-
rying the minor allele (G) (ORper-allele 5 0.76, 95% CI: 0.66–
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0.88, p5 2.2 3 1024) compared to that of non-smoker car-
riers (ORper-allele 5 0.99, 95% CI: 0.91–1.08, p5 0.9) where
no risk association was observed. When comparing ER– cases
to ER1 cases, the results did not indicate any effect heteroge-
neity (phet 5 0.48). There was no strong evidence of interac-
tion, neither with respect to ER1 risk (pint 5 0.0014) nor
with respect to ER– risk (pint 5 0.75).

The most promising result of the gene–environment inter-
action analyses in terms of noteworthiness was considered
noteworthy at the 0.01 probability level and was noted
between the variant 5q14-rs7707921 located in an intron of
the autophagy related 10 (ATG10) gene, and alcohol con-
sumption (ORint5 1.36, 95% CI: 1.16–1.59, pint5 1.9 3

1025) in relation to ER– breast cancer. This result had the
lowest BFDP5 0.33, and conditioning on the alternative, the
data were about 200 times more likely as compared to condi-
tioning on the null (ABF5 0.005). Carriers of the minor
allele (T) of rs7707921 had an increased risk of ER–
breast cancer if they consumed >20 g of alcohol per day
(ORper-allele 5 2.56, 95% CI: 1.45–4.62, p5 0.001), but not if

they consumed <20 g of alcohol per day (ORper-allele 5 1.07,
95% CI: 0.92–1.24, p5 0.36). A strong effect heterogeneity
was detected when comparing ER– cases to ER1 cases
(phet 5 6.7 3 1026). Together with the absence of interaction
in relation to ER1 disease (pint5 0.79) and overall breast
cancer risk (pint 5 0.70), this indicated that the interaction
might be specific to ER– disease.

In addition, indications of two further interactions were
noted in relation to ER– disease risk. One of these was
between 3p21-rs6796502 and age at menarche (ORint5 1.26,
95% CI: 1.12–1.43, pint 51.8 3 1024) which had
BFDP5 0.49, and of which the ABF (ABF5 0.010) implied
that the data were 100 times more likely under the alternative
hypothesis than under the null. Carriers of the minor allele
(A) of 3p21-rs6796502 who experienced their menarche no
later than the age of 11 years had a reduced risk of ER–
breast cancer (ORper-allele 5 0.70, 95% CI: 0.54–0.90,
p5 0.006), whereas there was no association with disease risk
of the genetic variant for women who had their menarche
between the age of 12 and 13 years (ORper-allele 5 0.88,

Table 1. Participating studies

Study Full study name Study design Country

Cases

ControlsAll ER– ER1

ABCFS Australian Breast Cancer Family Study Population-based Australia 790 261 456 551

ABCS Amsterdam Breast Cancer Study Mixed Netherlands 1,245 292 800 1,177

BBCC Bavarian Breast Cancer Cases and Controls Mixed Germany 553 86 456 457

BREOGAN Breast Oncology Galicia Network Mixed Spain 1,561 329 1,251 1,423

CECILE CECILE Breast cancer Study Population-based France 900 128 751 999

CGPS Copenhagen General Population Study Mixed Denmark 2,209 269 1,592 4,506

CPSII Cancer Prevention Study II Population-based USA 1,655 35 1,205 1,940

ESTHER ESTHER Breast Cancer Study Population-based Germany 471 98 302 502

GENICA Gene-Environment Interaction and
Breast Cancer in Germany

Population-based Germany 456 114 333 427

KBCP Kuopio Breast Cancer Project Population-based Finland 411 93 303 251

LMBC Leuven Multidisciplinary Breast Centre Mixed Belgium 2,424 378 2,069 1,045

MARIE Mammary Carcinoma Risk
Factor Investigation

Population-based Germany 1,656 371 1,278 1,778

MCBCS Mayo Clinic Breast Cancer Study Mixed USA 1,554 254 1,295 1,893

MCCS Melbourne Collaborative Cohort Study Population-based Australia 478 117 343 490

MTLGEBCS Montreal Gene-Environment Breast
Cancer Study

Population-based Canada 489 64 421 436

PBCS NCI Polish Breast Cancer Study Population-based Poland 519 519 424

pKARMA Karolinska Mammography Project for Risk
Prediction of Breast Cancer-prevalent cases

Mixed Sweden 2,822 410 2,328 5,469

SASBAC Singapore and Sweden Breast Cancer Study Population-based Sweden 1,163 144 663 1,378

SBCS Sheffield Breast Cancer Study Mixed UK 751 107 367 848

SEARCH Study of Epidemiology and Risk
Factors in Cancer Heredity

Mixed UK 7,478 1,119 5,371 8,050

UKBGS UK Breakthrough Generations Study Population-based UK 415 47 231 457

Total 30,000 4,716 22,334 34,501
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95% CI: 0.76–1.02, p5 0.08), or after the age of 14 years
(ORper-allele 5 1.16, 95% CI: 0.99–1.34, p5 0.06). While the
observed interaction was in relation to ER– disease risk, no
effect heterogeneity was detected when comparing ER– and
ER1 cases (phet5 0.53) nor was there any indication of
any interaction in relation to overall breast cancer risk
(pint 5 0.94). Hence, it is not possible to conclude that the
observed interaction is specific for ER– disease.

Finally, an indication of a gene–environment interaction
was found between 8q23-rs13267382 and age at first FTP
(ORint 5 0.89, 95% CI: 0.83–0.95, pint 5 5.2 3 1024) in rela-
tion to ER– disease risk. This interaction had BFDP5 0.61
assuming a true, prior interaction probability of 0.01, and
ABF5 0.016, indicating that the data are about 60 times
more likely conditioning on the alternative than on the null.
There was no interaction observed in relation to disease risk,
when considering ER1 breast cancer (pint5 0.98), or overall
breast disease risk (pint 5 0.47), and no effect heterogeneity
was found when comparing the risk of ER– and ER1 breast
cancer (phet 5 0.99). Our findings indicated a modest reduc-
tion in ER– breast cancer risk for minor allele (A) carriers
who were aged 30 or above at their first FTP
(ORper-allele 5 0.79, 95% CI: 0.68–0.91, p5 0.001), whereas for
women who had their first child at younger ages the allele
had no effect on risk.

Discussion
From the analyses presented in this work, four SNP-risk fac-
tor pairs were identified, for which pint< 7 3 1024, and all
of the interactions were considered noteworthy (BFDP< 0.8)
assuming a true prior interaction probability of 0.01. One of
the results was detected in relation to overall breast cancer
risk, while the three remaining results appeared to be specific
for ER– disease.

The strongest gene–environment interaction in relation to
overall breast cancer risk was noted between rs7558475
located in the CASP8 and FADD like apoptosis regulator
(CFLAR) gene and current smoking (pint5 1.8 3 1024). The
protein product of CFLAR regulates apoptosis, thus it is pos-
sible that CFLAR genetic variants affect response to DNA
damage caused by tobacco associated carcinogens and there-
fore modify breast cancer risk conferred by smoking. How-
ever, although rs7558475 is located in a CFLAR enhancer
region, reports from recent functional studies and expression
quantitative trait locus (eQTL) analyses did not provide any
convincing evidence regarding functionality.6,31 Hence, fur-
ther work is required to understand possible biological mech-
anism related to the observed interaction.

The strongest statistical evidence of interaction was found
in relation to ER– breast cancer risk and was noted between
an intron variant 5q14-rs7707921 in the autophagy related 10
(ATG10) gene, and alcohol consumption (pint 51.9 3 1025).
Autophagy, which is considered a survival mechanism of the
cell, may act as a tumor suppressor but also influence cell
survival by promoting tumor growth, and has been suggested

as a target in cancer therapy.32 It has been reported that
autophagy could have a protective effect on esophageal epi-
thelial cells responding to ethanol-induced oxidative stress.33

Also, while ethanol promotes oxidative stress in cancer asso-
ciated fibroblasts, it has been reported to induce autophagy
resistance in epithelial cells.34 Given the above information, it
is conceivable that alcohol consumption could influence the
effect on breast cancer risk of an autophagy-related polymor-
phism. However the biological mechanism needs to be fur-
ther investigated. The position of the variant ATG10-
rs7707921 does not coincide with any strong regulatory ele-
ments. The eQTL analyses carried out within the framework
of BCAC showed a strong association between the T allele of
rs7707921 and expression of the ribosomal protein S23 gene
(RPS23) in breast tissue as well as a moderate association
between the allele and expression of the ATPase, H1 trans-
porting, lysosomal accessory protein 1-like (ATP6AP1L)
gene.5 The RPS23 gene encodes a ribosomal protein and the
ATP6AP1L is also protein coding but the genes have not yet
been implicated in ER– breast cancer risk and their expres-
sion levels have not been assessed in relation to alcohol con-
sumption or oxidative stress. Further work is thus needed to
understand how the protein products of these genes could
interact with alcohol consumption to modify the risk associa-
tion of rs7707921 with ER– breast cancer.

Furthermore, we found an indication of a possible interac-
tion between 3p21-rs6796502 and age at menarche (pint 5 1.8
3 1024) in relation to ER– breast cancer. Our results suggest
that the reduced risk of ER– breast tumors for carriers of the
A-allele are modified for women with late age at
menarche� 14 years. However, according to a recent func-
tional study, the SNP is not located in the vicinity of any
genes or enhancer regions in mammary cell lines, nor are
there any significant results available from eQTL analyses.5

In addition, no significant effect heterogeneity was found
when comparing the interaction between ER– and ER1 cases
to support that the result could to be specific to ER– disease.
It is thus necessary to first confirm this interaction with fur-
ther data before attempting any biological explanation.

The interaction observed between the intron variant 8q23-
rs13267382 of the long intergenic non protein coding RNA
536 gene (LINC00536) and age at first FTP (pint 52.6 3

1024) suggests that the variant is associated with a reduced
risk of ER– breast cancer with older age at first FTP, whereby
the association was statistically significant for women who
were at least 30 years of age at their first FTP. Overall, this
variant was not reported to be associated with ER– disease
risk,5 which is confirmed in the current report. Neither this
SNP nor any variants in high linkage disequilibrium with it
are positioned in the vicinity of any regulatory genomic fea-
ture. As for the interaction with 3p21-rs6796502, there was
not clear evidence for this interaction to be specific to ER–
disease. Therefore, further data are required to confirm this
interaction.
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This work is subject to a number of limitations. First,
despite central harmonization of the data, substantial hetero-
geneity was observed in the risk estimates of the epidemio-
logical risk factors across studies, which brought about the
inclusion of a product term of study design and epidemiolog-
ical variable in the interaction models, and the quantification
of epidemiological main effects based on the population
based studies. Second, the study population consisted pre-
dominantly of case-control studies (only three cohort stud-
ies), which are known to be prone to selection bias and recall
bias, as well as associated misclassification of risk factors.
However, gene–environment interaction estimates were simi-
lar in the overall study population compared to the subset of
population based studies (data not shown). Misclassification
of epidemiological risk factors is known to reduce the power
to detect interactions, rather than increasing the probability
of false-positive findings.35 Hence, this study is more likely to
be subject to limited power than to spurious gene–environ-
ment interactions. Also, our findings are based on study par-
ticipants of Caucasian origin so that they may not be
generalizable to other populations. For the ER specific risk
analyses, in particular in the subgroup of ER– cases
(N5 4,662), the power was diminished due to the reduced
sample size.

However, this study also has several strengths. To begin
with, the interaction analyses are based on the largest dataset
presently available. The four indicated interactions were
based on 11,337 subjects (5,385 cases and 5,952 controls) in
analyses with respect to alcohol consumption, and 19,427
subjects (9,073 cases and 10,354 controls) for current smok-
ing, as well as 43,513 subjects (20,147 cases and 23,366 con-
trols) in the analyses of age at menarche and 37,819 subjects
(17,382 cases and 20,508 controls) in the analyses of age at
first FTP.

Taken together, the results presented in this report are
not in line with the existence of strong modification of the
allelic effects on breast cancer risk by the epidemiological risk
factors investigated. However, the results presented in this
report contribute to the global body of knowledge on gene–
environment interactions by generating hypotheses, thereby
providing guidance for future functional studies and large
scale replication studies.
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