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Cryptococcus neoformans infection in the central nervous system is a severe infectious
disease with poor outcomes and high mortality. It has been estimated that there are
220,000 new cases each year. Over 90% of C. neoformans meningitis cases were
diagnosed in AIDS patients with CD4+ T cell count <100 cells/ml; however, the
mechanism of cryptococcal meningitis in patients with normal immune functions
remains unclear. IL-17 is a pro-inflammatory cytokine and plays an important role in
anti-fungal immunity. Here we report that significantly high levels of IL-17 were
predominantly detected in the cerebrospinal fluid of patients with either AIDS- or non-
AIDS-associated C. neoformans meningitis but not in patients with tuberculous
meningitis or non-neurosyphilis. Antifungal therapy minimized the IL-17 level in the
cerebrospinal fluid. An in vitromechanistic study showed that C. neoformans stimulation
of healthy peripheral blood mononuclear cells prompted IL-17 production, and CD4+ T
cells were the predominant IL-17-producing cells. IL-17 production by C. neoformans
stimulation was STAT3 signaling dependent. Inhibition of STAT3 phosphorylation
attenuated the C. neoformans-mediated IL-17 expression. Our data highlighted the
significance of CD4+ T cells in antifungal immunity and suggested IL-17 as a diagnostic
biomarker of C. neoformans infection and STAT3 as a checkpoint for antifungal
targeted therapies.
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INTRODUCTION

Cryptococcus neoformans (C. neoformans) meningitis (CM) is a
systemic and opportunistic fungal infectious disease with
morbidity and mortality between 10% and 25% in medically
advanced countr ies (1) and is often diagnosed in
immunocompromised patients relevant or irrelevant to HIV/
AIDS (2). It contributes about 15% of AIDS-associated
opportunistic infection (3). In recent years, more and more
cases of non-AIDS-associated C. neoformans meningitis have
been reported, and about 220,000 new cases and 181,000 deaths
have been estimated each year (3).

Previous studies of anti-fungal immunity in animal models
suggested that Th17-type response is important for survival in C.
neoformans infection (4). Pulmonary infection with C.
neoformans strain H99c increased the pulmonary IL-17
(commonly known as IL-17A) production (5), and the IL-17
level of cerebrospinal fluids (CSF) in HIV-1 infection-associated
CM is significantly higher than that in tuberculous meningitis
(TBM) (6). IL-17 is a cytokine of CD4+ T helper subset, T helper
17 (Th17) cells, and has originally received attention for its pro-
inflammatory function in autoimmunity (7–9). Previous
research in a mouse model of C. neoformans infection
suggested that a Th17-type response and IL-17 production are
important for modulating survival against cryptococcosis (4).
Besides this, the genetic defects of the IL-17 signaling pathway
contribute to severe mucocutaneous Candida, oropharyngeal
Candida, and Aspergillus infections in humans (10–12).

The differentiation of Th17 cells is regulated by a variety of
signal pathways, among which the JAK2/STAT3 signal pathway
plays a key role. The activated CD4+ T cells produce IL-6 to
stimulate the JAK2/STAT3 pathway (13), thereby inducing the
expression of the lineage-specific master regulator RORgt to
promote the differentiation of Th17 cells (14, 15). Impaired
Th17 cell differentiation is a consistent immune defect in
STAT3 hyper-IgE syndromes, which may mediate protection
against C. neoformans (16).

STAT3 is a potential transcription factor that transduces
extracellular signals such as growth factors and cytokines
through interaction with polypeptide receptors on the cell
surface (17). It is post-translationally activated mainly by
tyrosine phosphorylation to form STAT3 dimer, translocate
from the cytoplasm into the nucleus, and bind to sequence-
specific DNA elements of target genes (18). STAT3 is a
consistently expressed protein, but its production is rapidly
increased through self-regulation upon activation, as
its promoter contains a binding site for its own dimers (19,
20). However, the mechanism of IL-17 induction remains
unclear in non-HIV-associated C. neoformans meningitis.

The aim of this study was to investigate the mechanism of IL-
17 production and the clinical effect of anti-fungal therapy on it
in human C. neoformansmeningitis. We found that the CSF of C.
neoformans meningitis contains a high level of IL-17, and anti-
fungal treatment minimizes the CSF IL-17 level and improves the
clinical outcomes. A mechanistical study showed that STAT3
phosphorylation is essential for IL-17 induction. Our findings
suggest that IL-17 is an important component in anti-fungal
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immunity and a potential biomarker for the diagnosis of C.
neoformans meningitis.
MATERIALS AND METHODS

Study Design and Patients
This study was approved by the ethics committee of Shanghai
Public Health Clinical Center, and informed consent was
obtained from the participants. The patients were hospitalized
at the Department of Infectious Disease in Shanghai Public
Health Clinical Center. Healthy individuals were recruited
from employee volunteers in Scientific Research Center of
Shanghai Public Health Clinical Center. The CSF and blood
samples and the clinical data were preserved in accordance with
the Declaration of Helsinki and local legislations.

Eleven patients with non-AIDS-associated (HIV-CM) and
five patients with AIDS-associated (HIV+CM) C. neoformans
meningitis and fifteen patients with TBM (drug-resistant TB)
participated in this study. Nine patients with non-neurotic
syphilis served as the meningitis-free disease control. The
above-mentioned diseases were diagnosed based on the typical
clinical presentations of infection, together with neuroimaging
characteristics and positive laboratory findings, including
abnormal routine CSF biochemical examinations for CM and
TBM, and positive specific antibodies or pathogen tests,
according to the guidelines from the Centers for Disease
Control and Prevention (CDC) and World Health
Organization (WHO). The patients with pregnancy and
secondary or primary immunodeficiency diseases were
excluded. Only adult (>16 years) patients with confirmed
infectious diseases were recruited in this study. Although the
entire treatment will last around 1 year, in the current study, the
patients with non-AIDS CM were under treatment for
approximately 90 days. In the meantime, the patients with
TBM were under medical treatment for about 100 days. The
CSF and blood samples were collected on admission and at
about 3 months after the pathogen-specific therapies. The
laboratory findings for the participants were summarized
in Table 1.

Preparation and Stimulation of Peripheral
Blood Mononuclear Cell
Whole blood— anti-coagulated with heparin—from healthy
individuals was diluted in 1:2 with RPMI 1640 and was
centrifugated on Hypaque-Ficoll gradients (GE, density 1.077
g/ml) at 400g for 30 min. Peripheral blood mononuclear cells
(PBMCs) were then collected and washed twice with phosphate-
buffered saline (PBS). The cells were cultured in RPMI 1640
(Biological Industries) supplemented with 10% fetal bovine
serum (Biological Industries) and 1% penicillin/streptomycin
(Beyotime). PBMCs (1 × 106/ml) were stimulated for the
indicated times with or without C. neoformans (1 × 106/ml,
provided by our clinical laboratory) and bacillus Calmette–
Guérin (BCG, 1 × 105/ml, provided by Professor Feifei Wang,
Fudan University). In specific experiments, PBMCs were
pretreated for 30 min with 2.5 mM of STAT3 inhibitor Stattic
May 2022 | Volume 13 | Article 872286
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TABLE 1 | Clinical laboratory indexes in patients and their changes after therapies.

TBM (n=15) Syphilis (n=9) reference range
before/after p valuec

1380.02±657.59/592.88±423.09 0.01 271.90±143.57 150.00-450.00
115.73±6.44/122.64±5.39 0.01 124.28±2.23 120.00-132.00

2.10±1.11/2.69±1.01 0.46 3.47±0.73 2.20-4.40
170.17±136.21/21.92±17.23 <0.0001 3.00±2.82 0-8x106

119.75±264.98/294.80±908.44 0.01 6.38±21.99 0-106

175.42±92.17/154.17±54.85 0.03 166.88±42.21 100.00-180.00
neg/neg neg neg

7.43±2.17/6.47±2.54 0.39 7.44±3.20 3.50-9.50
0.95±0.71/1.41±0.69 0.80 1.33±0.25 1.10-3.20
0.31±0.16/0.47±0.22 0.24 0.37±0.23 0.10-0.60
4.12±0.86/4.07±0.77 0.48 4.21±0.52 4.30-5.80

223.42±82.89/ 221.17±91.49 0.66 200.63±76.05 125.00-350.00
0.01±0.25/0.02±0.02 0.02 0.01±0.01 0-0.06
0.03±1.85/0.07±0.12 0.0007 0.04±0.06 0.02-0.52
6.14±2.04/4.50±2.33 0.38 5.69±3.26 1.80-6.30

753.92±505.77/995.50±558.15 0.98 1032.00±532.69 690.00-2540.00
455.17±329.62/613.50±277.55 0.53 536.00±405.36 410.00-1590.00
243.00±149.03/426.30±172.31 0.02 426.83±256.05 190.00-1140.00

1108.08±704.06/1435.60±609.06 0.33 1498.83±714.25 900.00-3500.00
1.00±0.19/1.02±0.26 0.30 0.97±0.13 0.90-1.80
0.24±0.07/0.22±0.09 0.43 0.21±0.08 0.10-0.40
2.62±1.15/2.00±0.81 0.15 2.69±0.99 0.70-4.00
1.04 ±0.49/0.96±0.35 0.36 1.76±0.72 0.40-2.30
11.22±4.29/11.29±4.32 0.87 12.45±4.03 7.00-16.00
15.01±21.77/13.07±15.30 0.39 8.84±13.08 <3.00
0.07±0.05/0.13±0.22 0.002 0.10±0.09 0-0.05

neg neg

spinal fluid; WBC, white blood cells; RBC, red blood cells; CRP, C-reactive protein.
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Characteristics HIV-CM (n=11) HIV+CM (n=5)
before/after p valuea p valueb

CSF test
Protein (mg/L) 1336.35±1370.66/625.94±619.79 0.02 932.08±612.06 0.63
Chloride (mmol/L) 121.96±6.78/124.44±3.65 0.06 121.80±2.68 0.99
Glucose (mmol/L) 2.56±1.59/3.92±1.25 0.41 2.46±0.60 0.84
WBC (106/L) 105.00±94.19/8.2±8.39 0.01 8.06±9.23 0.05
RBC (106/L) 18.10±30.93/47.20±121.28 0.01 3.00±4.24 0.30
CSF pressure (mmH2O) 210.80±112.39/204.80±103.16 0.75 216.00±108.59 0.83
Cryptococcal Antigen Test 1:2560/neg pos(1:2560)
Blood Test
WBC (×109/L) 10.53±7.14/7.71±2.99 0.02 2.50±0.76 0.02
Lymphocytes (×109/L) 0.81±0.52/1.11±0.63 0.52 0.66±0.31 0.50
Monocytes (×109/L) 0.52±0.31/0.50±0.24 0.47 0.28±0.04 0.14
RBC (×1012/L) 3.80±0.65/3.73±0.74 0.67 3.77±1.04 0.90
Platelet (×109/L) 173.70±91.21/166.20±74.98 0.57 171.00±74.17 0.95
Basophils (×109/L) 0.03±0.03/0.03±0.01 0.34 0.02±0.02 0.31
Eosinophils (×109/L) 0.03±0.04/0.04±0.03 0.50 0.08±0.13 0.18
Neutrophils (×109/L) 9.26±7.13/6.35±3.75 0.05 1.62±0.62 0.03
CD3+ cell (cell/ml) 519.90±291.49/848.00±480.64 0.15 411.80±298.26 0.53
CD4+cell (cell/ml) 250.80±168.57/374.14±250.38 0.24 23.00±22.85 0.01
CD8+cell (cell/ml) 240.80±165.09/434.71±238.14 0.28 355.40±251.74 0.30
CD45+cell (cell/ml) 758.90±412.98/1117.00±610.24 0.25 598.00±380.38 0.46
C3 (g/L) 0.88±0.29/0.91±0.29 0.64 0.89±0.14 0.84
C4 (g/L) 0.23±0.07/0.20±0.07 0.83 0.21±0.09 0.63
IgA (g/L) 2.25±1.24/1.30±0.64 0.19 6.76±5.50 0.02
IgM (g/L) 1.79±2.48/0.44±0.29 0.01 2.08±2.24 0.79
IgG (g/L) 10.10±5.84/6.84±2.52 0.09 18.85±8.04 0.04
CRP (mg/L) 8.01±4.65/3.99±1.18 0.03 3.52±1.03 0.12
Procalcitonin (ng/ml) 0.08±0.25/0.3±2.22 <0.0001 0.06±0.05 0.26

HIV antigens/antibodies neg pos

Data are shown as mean ± SD.
CM, Cryptococcus neoformans meningitis; TBM, tuberculous meningitis; before, before therapy; after, after therapy; CSF, cerebro
aP-value indicates HIV-CM before compared with HIV-CM after.
bP-value indicates HIV-CM before compared with HIV+CM.
cP-value indicates TBM before compared with TBM after.
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(Abcam) before stimulation for phospho-STAT3 analysis by
flow cytometry.

Assessment of Th1, Th2, and
Th17 Cytokines Using the
Cytometric Bead Array
The quantitative evaluation of intracellular cytokines was
performed using the Human Cytometric Bead Array (CBA)
Th1/Th2/Th17 Cytokine Kit (BD Biosciences), according to
the manufacturer’s protocol. Equal volumes of assay beads,
detection reagent, and the studied sample or standard were
added consecutively to each tube and incubated in the dark for
3 h at room temperature. The samples were then washed with
1 ml of wash buffer and centrifuged at 500g for 5 min. After
discarding the supernatant, the pellet was resuspended in 300 µl
of buffer and analyzed on the same day by flow cytometry. FCAP
Array Software, version 3.0, from BD Biosciences was employed
to translate the images into data.

Flow Cytometry Analysis of Cell
Surface Markers
PBMCs were incubated in FACS buffer (PBS supplemented with
0.5% bovine serum albumin) for 20 min at 4°C with the following
antibodies: anti-CD4 (L200, BD Biosciences), anti-CD8 (RPA-
T8, BD Biosciences), anti-CD3 (OKT3, Invitrogen), anti-gdTCR
(B1.1, Invitrogen), and anti-CD19 (HIB19, eBioscience). The
cells were subsequently washed twice and were resuspended with
FACS buffer. The flow cytometry data was acquired on BD LSR
Fortessa and analyzed by FlowJo V10. Dead cells were excluded
by using Fixable Viability Dye (Invitrogen).

Flow Cytometry Analysis of
IL-17-Producing Cells
PBMCs (1 × 106/well) were incubated in 24-well plates for 30
min or 3 days with different stimuli. Protein transport inhibitor
cocktail (eBioscience) was added for 5 h before the end of the cell
culture. After surface staining, the cells were fixed and
permeabi l i zed us ing an intrace l lu lar fixat ion and
permeabilization buffer set (eBioscience). Intracellular IL-17
were s ta ined wi th ant i - IL-17 (IL-17A) ant ibodies
(eBio64DEC17, eBioscience) according to the manufacturers’
protocols and analyzed by flow cytometry.

Flow Cytometry Analysis of Intracellular
Phospho-STAT3 and Phospho-STAT1
PBMCs were stimulated for 30 min with different stimuli. After
surface marker staining, the cells were fixed with 4%
paraformaldehyde (Biosharp) for 15 min at room temperature
and permeabilized for a minimum of 10 min on ice by slowly
adding ice-cold methanol (Sangon Biotech) to a final
concentration of 90%. The cells were then stained with rabbit
anti-human phospho-STAT3-Tyr705 monoclonal antibody
(D3A7, Cell Signaling Technology) or human phospho-
STAT1 (Tyr701) Rabbit mAb (58D6, Cell Signaling
Technology) for 1 h and were followed by incubation with
Alexa Fluor 488-goat anti-rabbit IgG (H+L) (Invitrogen) for
Frontiers in Immunology | www.frontiersin.org 4
30 min at room temperature. The cells were then washed in PBS
twice and were resuspended in 300 ml PBS supplemented with
0.5% bovine serum albumin for the flow cytometry analysis.

Enzyme-Linked Immunosorbent Assay
The levels of IL-6, IL-10, IL-17, and IFN-g in the CSF and serum
of patients with meningitis, syphilis, and healthy controls, and
the levels of IL-17 and IFN-g in the cell culture supernatants were
measured by enzyme-linked immunosorbent assay (ELISA)
using ELISA kits of human IL-6 (Absin), human IL-10
(Absin), human IL-17 (Abcam), and human IFN-g (Abcam),
respectively. The OD values at 450 nm were read in duplicates
using an automatic microplate reader (BioTek, Synergy2). Serial
dilutions of recombinant cytokines were used to generate a
standard curve.

Western Blot
PBMCs were lysed on ice for 30 min using RIPA lysis buffer
(Beyotime) with protease inhibitors (Beyotime) and phosphatase
inhibitors cocktail (Beyotime), and the protein concentration was
determined by a bicinchoninic acid assay kit (Biosharp). The
proteins (50 µg per lane) were mixed with one-fifth volume of
5× loading buffer, separated by 10% SDS-PAGE, and were then
transferred onto polyvinylidene difluoride membranes
(Millipore). The membranes were blocked for 1 h with 5%
nonfat milk at room temperature and were incubated overnight
at 4°C with primary antibodies against STAT3 rabbit mAb (79D7,
Cell Signaling Technology), phospho-STAT3-Tyr705 rabbit mAb
(D3A7, Cell Signaling Technology), NF-kB p65 rabbit mAb
(D14E12, Cell Signaling Technology), anti-NF-kB p65-
phospho-S536 antibody (EP2294Y, Abcam), and b-actin rabbit
monoclonal antibody (Beyotime). After 3 washes with Tris-
buffered saline with 0.1% Tween® 20 detergent, the membranes
were incubated for 1 h at room temperature with anti-rabbit
horseradish peroxidase-conjugated secondary antibody (GE) and
were detected with enhanced chemiluminescence (Beyotime).
The results were analyzed using Image Studio software.

Statistical Analyses
The statistical differences between the two groups were analyzed
by Student’s t-test using GraphPad Prism Software 8.0
(GraphPad Software, Inc), and the statistical differences among
multiple groups were analyzed by Tukey’s post-hoc test. P-value
<0.05 was considered a statistically significant difference. Data
were presented as mean ± standard deviation or standard error.
RESULTS

Pathogen-Specific Therapies Restore
Clinical Laboratory Abnormalities
The confirmed meningitis patients including 11 CM (7 male and
4 female patients) and 15 TBM (9 male and 6 female patients)
had been treated according to the Infectious Diseases Society of
America guidelines. The CM patients received a combined anti-
fungal therapy of fluconazole, flucytosine, and amphotericin B
May 2022 | Volume 13 | Article 872286
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(21), and the TBM patients were treated with first-line anti-
tuberculous drugs of rifampin, isoniazid, ethambutol, and
pyrazinamide. The first-line drug-resistant patients were
subsequently treated with the second-line drugs moxifloxacin
and cycloserine (22). Besides this, all meningitis patients were
given a corticosteroid therapy including prednisolone and
dexamethasone in the early stage of the disease to relieve acute
inflammatory responses and brain edema. The CSF and blood
samples were examined before and after therapies. The clinical
laboratory characteristics were compared in Table 1. Anti-fungal
therapy cleared the CSF pathogen and significantly decreased the
levels of protein, white blood cell (WBC), and red blood cell
(RBC) counts in the CSF, WBC and neutrophil counts, and IgM,
CRP, and procalcitonin in peripheral blood. Similarly, the anti-
tuberculous therapy significantly decreased the levels of protein,
chloride, WBC, and RBC counts in the CSF and the cell counts of
basophils, eosinophils, and CD8+ T cells and procalcitonin in
peripheral blood. All laboratory results of meningitis-free
syphilis cases were in the normal range and were not re-
checked after the anti-syphilis therapy.

C. neoformans Meningitis Selectively
Increases CSF IL-17
To determine the cytokine expression of meningitis, we compared
the CSF levels of proinflammatory cytokines IL-6, IL-17, and IFN-g
and anti-inflammatory cytokine IL-10 in patients with non-HIV
and HIV-positive CM, TBM, and patients with meningitis-free
Frontiers in Immunology | www.frontiersin.org 5
syphilis. In comparison with the trace CSF levels of all 4 cytokines
in non-neurotic syphilis, both non-HIV and HIV-positive CM and
TBM significantly increased the CSF IL-6 and IL-10 levels, and
TBM considerably increased the CSF IFN-g and slightly increased
the IL-17 levels. In contrast, non-HIV and HIV-positive CM
selectively increased the CSF IL-17 level with a minimal
induction of IFN-g (Figures 1A, B). Similar to the findings in
the CSF, both non-HIV and HIV-positive CM and TBM
significantly induced serum IL-6, IL-10, and IFN-g. In contrast,
non-HIV CM, but not TBM, significantly induced serum IL-17 in
comparison with the healthy controls (Figures 1C, D).

We next followed the changes of CSF cytokine levels in
response to pathogen-specific therapies. Consistent with the
clinical improvement, the anti-fungal therapy minimized the
CSF IL-17 level of non-HIV CM compared to that in meningitis-
free syphilis (Figure 1E). The anti-fungal therapy also
diminished CSF IL-6, IL-10, and IFN-g (Supplementary
Figure S1A). The anti-tuberculous therapy restored the CSF
IFN-g, IL-6, and IL-10 to basal levels but did not change the CSF
IL-17 level (Supplementary Figure S1B).

Cytokine Profiles of PBMCs in Response
to C. neoformans
To model an in vivo infection, we next stimulated healthy PBMCs
for 3, 7, or 14 days with C. neoformans or BCG, which, as an
efficient vaccine, is well known to best mimic in vivo conditional
pathogenic infections and stimulate effective anti-tuberculosis
A B

D

E

C

FIGURE 1 | Cytokine levels of cerebrospinal fluid (CSF) and serum in patients with C. neoformans and tuberculosis meningitis. CSF was collected before and at about 3
months after the pathogen-specific therapies, while serum samples were collected on admission. The cytokine levels were measured by ELISA. (A) CSF levels of IL-17 in
non-HIV CM (n = 11), HIV-positive CM (n = 5), TBM (n = 15), and syphilis (n = 9) on admission. (B) CSF levels of IFN-g, IL-10, and IL-6 in non-HIV CM (n = 11), HIV-positive
CM (n = 5), TBM (n = 15), and syphilis (n = 9) on admission. Serum levels of IL-17 (C) and IFN-g, IL-10, and IL-6 (D) in healthy controls (n = 3), non-HIV CM (n = 4), HIV-
positive CM (n = 5), and TBM (n = 4) at admission. (E) Changes of CSF levels of IL-17 in non-HIV CM (n = 11) and TBM (n = 15) before and after pathogen-specific therapies.
Statistical significance was indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data are shown as mean ± SE of the samples. CM, C. neoformans meningitis;
TBM, tuberculous meningitis.
May 2022 | Volume 13 | Article 872286
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immunity. Here BCG served as a stimulus to induce an anti-
bacterial response in vitro. The levels of Th1 (IFN-g and TNF-a)
(Figures 2B, C), Th2 (IL-4, IL-10, and IL-6) (Figures 2D–F), and
Th17 (IL-17) (Figure 2A) cytokines were followed by flow
cytometric bead array. C. neoformans stimulation significantly
induced IL-17 at day 3, which peaked at day 7 and was maintained
at a high level at day 14, but it did not significantly change the
levels of other cytokines, except IL-6 that was significantly
increased at day 14. In contrast, BCG stimulation significantly
induced IFN-g, TNF-a, and IL-6 and IL-10 at day 3 and gradually
decreased their levels thereafter; however, BCG did not
significantly induce IL-17 production. Thus, in contrast to the
fast Th1/Th2 response by BCG stimulation, C. neoformans
stimulation induces a postponed Th17 response.

C. neoformans Stimulates IL-17
Production by CD4+ T Cells
To determine cytokine-producing cells, we next stimulated
healthy PBMCs for 3 days with C. neoformans or BCG and
analyzed IL-17-producing cells in abT (CD4+ or CD8+ T cells)
and gdT (CD3+gdTCR+) subpopulations by flow cytometry
assay. C. neoformans stimulation significantly increased the
IL-17-producing cells in the CD4+ T subset but not in the
CD8+ or gdTCR+ subpopulations. In contrast, BCG marginally
induced IL-17 positive cells (Figures 3A, B). To confirm the flow
Frontiers in Immunology | www.frontiersin.org 6
cytometry data, the supernatant IL-17 level in C. neoformans or
BCG-stimulated cultures were compared by ELISA. As shown in
Figure 3C, the IL-17 level was significantly induced by C.
neoformans in contrast to the slight increase by BCG
stimulation. Consistent with the CSF data, IFN-g was
considerably induced by BCG but minimally induced by C.
neoformans stimulation (Supplementary Figure S2).

C. neoformans Triggers STAT3
Phosphorylation
To investigate the mechanism of IL-17 production by
C. neoformans stimulation, we stimulated healthy PBMCs for
30 min with C. neoformans or BCG and analyzed the changes
of the phosphorylation status of STAT3 and its downstream p65
by western blot analysis. Lipopolysaccharide (LPS, 100 ng/ml)
stimulation was set as the positive control. As shown in
Figure 4A, both LPS and C. neoformans significantly
stimulated the phosphorylation of STAT3, in contrast to the
negligible phospho-STAT3 by BCG; however, both C.
neoformans and BCG were equally effective in stimulating p65
phosphorylation, suggesting that they activate the p65-
dependent pathway via different signaling (Figure 4A). To
determine if C. neoformans-mediated STAT3 phosphorylation
occurs in IL-17-producing cells, we analyzed the phospho-
STAT3+ T cell subpopulations by flow cytometry analysis. We
FIGURE 2 | Dynamics of cytokine production by peripheral blood mononuclear cells (PBMCs) in response to C. neoformans or bacillus Calmette–Guérin (BCG)
stimulation. Healthy PBMCs were stimulated with C. neoformans or BCG for different times (day 3/7/14). The supernatant cytokine levels were measured by ELISA.
The dynamics of IL-17 (A), IFN-g (B), TNF-a (C), IL-4. (D), IL-6 (E), and IL-10 (F) are shown as mean ± SE of three individual experiments. *0.01<p<0.05,
**0.001<p<0.01, ***<0.0001<p<0.001, ****p<0.0001
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found that, among T cells, about 30% of CD4+ T subpopulation,
but only about 3% of CD8+ T subpopulation, was phospho-
STAT3-positive in LPS or C. neoformans-stimulated cultures,
whereas BCG stimulated STAT3 phosphorylation only in about
4% of CD4+ T cells and 0.7% of CD8+ T cells (Figures 4B, C).
The densitometry analysis showed that C. neoformans stimulated
a significantly higher fluorescence intensity of phospho-STAT3
than BCG did in CD4+ T cells (Figure 4D). To further confirm
whether the phosphorylation of STAT3 was specific for C.
neoformans stimulation, we analyzed the phospho-STAT1+ T
cell by flow cytometry (Supplementary Figure S3). The results
showed that about 0.7% of CD4+ T cells were phospho-STAT1-
positive in response to C. neoformans stimulation and in contrast
to the nearly 3.2% of phospho-STAT1+CD4+ T cells under BCG
stimulation (Supplementary Figures S3A, B), which was
consistent with the results of the mean fluorescence intensity
analysis (Supplementary Figure S3C). Moreover, to verify the
relationship of STAT3 phosphorylation and IL-17 production at
an early stage, we detected intracellular IL-17 expression in T
cells. We found that, similar to STAT3 phosphorylation, IL-17
was produced especially by CD4+ T cells, but not by other cells,
in response to C. neoformans (Supplementary Figure S4). Taken
together, our data indicate that CD4+IL-17+ cells participate in
cryptococcal immune response via STAT3 phosphorylation.
Frontiers in Immunology | www.frontiersin.org 7
Inhibition of STAT3 Phosphorylation
Diminishes C. neoformans-Mediated
IL-17+ CD4+ T Cells
To determine if the STAT3-dependent pathway is exclusively
important for IL-17 production during C. neoformans
stimulation, we used a small molecule inhibitor stattic (2.5
mM) to specifically inhibit STAT3 phosphorylation and
followed the changes of IL-17+ CD4+ T cells during C.
neoformans stimulation of healthy PBMCs. As shown in
Figure 5A, C. neoformans stimulation induced p-STAT3 in
30.4% of total T (CD3+) cells, 32.2% of CD4+ T cells, and 2.9%
of CD8+ T cells; pretreatment of PBMCs for 30 mins with stattic,
p-STAT3+CD3+, p-STAT3+CD4+, and p-STAT3+CD8+ cells
resulted in dropping to 1.2, 0.3, and 0.2%, respectively. In
accordance with the changes of STAT3 phosphorylation, C.
neoformans stimulation yielded 1.2% IL-17+ CD3+ cells in live
lymphocytes and 1.6% IL-17+ CD4+T in abT cells, which were
respectively reduced to 0.6 and 0.8% by stattic pretreatment
(Figures 5B, C). To confirm the flow cytometry data,
C. neoformans stimulation for 3 days produced over 400 pg/ml
of supernatant IL-17 that was diminished by stattic pretreatment
(Figure 5D). These observations collectively suggested that C.
neoformans stimulates IL-17 production by CD4+ T cells via the
STAT3-dependent signaling pathway.
A B

C

FIGURE 3 | C. neoformans stimulates IL-17 production by CD4+ T cells in vitro. Peripheral blood mononuclear cells were stimulated with C. neoformans or bacillus
Calmette–Guérin for 3 days with protein transport inhibitor cocktail for 5 h before the cells were collected. The IL-17-producing cells were analyzed by flow
cytometry: representative data of IL-17+ T cells in abTCR+ T cells (CD3+gdTCR- cells) and gdTCR+ T cells (A) and percentages of IL-17+ CD3+ cells in
live lymphocytes and percentages of IL-17+ CD4+ cells in live CD3+ cells (B). The corresponding IL-17 level in the supernatant (C) is shown as mean ± SE of three
individual experiments. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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DISCUSSION

The pathogenesis of fungal infections and anti-fungal immunity
have recently attracted more and more attentions and effective
anti-fungal therapies have become an urgent clinical need. There
are more than 300 human pathogenic fungi , and
immunodeficiency patients are more susceptible to fungal
infections. With the increasing prevalence of HIV infection
worldwide, opportunistic fungal infection has been the main
driver of HIV mortality. In Africa, C. neoformans meningitis
accounts for about 70% (23) of the global deaths of AIDS-
associated fungal infections, including candidiasis, Penicillium
marneffei infection, pulmonary aspergillus, and so on (24). In
recent years, more and more non-HIV-infected sufferers have
been reported with CM (25, 26).

IL-17 production has been proposed as an important
mechanism of anti-fungal immunity. This inflammatory
cytokine IL-17 could be secreted by CD4+, CD8+, gd T, and
NK cells (27, 28). In a mice model of C. neoformans infection,
CD4+ T cells were a crucial component of cell-mediated fungal
clearance (29–31). In humans, majority of C. neoformans
infections were related with CD4+ T cell deficiency due to
HIV co-infection, while IL-17-producing CD4+ T (Th17) cells
were needed for vaccine-mediated protection against C.
neoformans (32–34). Consistent with previous findings, our
research suggested that IL-17 was secreted especially by CD4+

T cells, but not by other cells, in response to the stimulation of
C. neoformans. Although the CD4+ cell counts in HIV-negative
CM patients were lower than the normal reference range but
much higher than those of HIV-positive CM patients, all non-
Frontiers in Immunology | www.frontiersin.org 8
AIDS-associated CM patients in the current study had no
evidence of immunodeficiency. In addition, previous studies
had found that in vitro Th1-type cytokine IFN-g also plays a
significant role to enhance the phagocytic activity of
macrophages against C. neoformans (35–37). A mouse model
of C. neoformans H99 gamma strain infection produced IFN-g
that protected the invasion of C. neoformans pulmonale
(5, 38).

Predominantly increased CSF IL-17 has been reported in
patients with HIV+ C. neoformans meningitis (6, 39). Consistent
with those observations, our data showed that the CSF IL-17 level
was selectively increased in CM patients with or without HIV,
but not in TBM patients whose CSF contained a high level of
IFN-g. Interestingly, the CSF IL-17 in non-HIV CM patients was
significantly elevated compared with that of HIV-positive CM,
which indicated preferential Th17 responses to C. neoformans in
immunocompetent individuals and led to speculations of other
sources of IL-17-producing cells in case of CD4+ T cell
deficiency. We have also found a slightly higher-than-normal
serum IL-17 level in non-HIV CM patients, but not in HIV-
positive CM. The increased CSF IL-17 or IFN-g in C. neoformans
or tuberculous meningitis was minimized by anti-fungal or anti-
tuberculous therapies, respectively. However, the mechanism of
IL-17 in the pathogenesis of C. neoformans meningitis in non-
AIDS patients is not clear.

It is well known that the pro-inflammatory cytokine
production by infections involves cell interactions between
immune cells (40–42). To study the immune function of
human fungal infection, we used fungus-stimulated healthy
PBMC to mimic the in vivo situation and investigated the
A B

D

C

FIGURE 4 | C. neoformans stimulates the phosphorylation of STAT3 in CD4+ T cells. Peripheral blood mononuclear cells were stimulated for 30 min with
lipopolysaccharide (100 ng/ml), C. neoformans, or BCG. The phosphorylation status of STAT3 and its downstream P65 at the protein level were analyzed by western
blot (A). Phosphorylation of STAT3 in T cell subsets (B, C), and its fluorescence intensity was analyzed by flow cytometry (D). Representative data of three individual
experiments are shown. *0.01<p<0.05, **0.001<p<0.01, ***<0.0001<p<0.001.
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dynamics of IL-17 production and its signaling pathway. We
found that C. neoformans stimulation induced high levels of IL-
17 both in the cell and the supernatant, and T cells, especially
CD4+ T cells, were the only IL-17 producer; no IL-17+CD8+ T
cells or IL-17+gd T cells were detected.

Protein phosphorylation is one of the post-translational
modifications that are particularly important for the regulation
of cellular activities (43). NF-kB P65 is a well-known gene
transactivator in the innate immune signaling pathway against
infection (44). We found that it participates in anti-fungal
immunity by showing its phosphorylation activation by
cryptococcal stimulation. An earlier study had linked the
STAT3 signaling pathway with differentiation of naive CD4+ T
cells to Th17 phenotype and IL-17 production (45–47). We
demonstrated here that STAT3 signaling plays an important
role in the development of IL-17-secreting cells in response to
fungal stimulation. In contrast to trace phospho-STAT3 in CD4+

T cells by BCG stimulation, C. neoformans stimulation selectively
induced the phosphorylation of STAT3 mainly in CD4+ T cells.
No phospho-STAT3-positive cells were detected in CD8+ or gd T
cell subsets. Previous studies suggested that STAT1 is mainly
involved in IFN-g induction. This is aligned with our findings
that phospho-STAT1 in T cells is not associated with C.
neoformans stimulation (48, 49). However, BCG is a live
attenuated tuberculosis vaccine. Although it can produce
effective anti-tuberculosis immunity and has well reproduced
the immune response of TBM in the current in vitro PBMC
stimulation, it has a defect in stimulating T cell immunity due to
Frontiers in Immunology | www.frontiersin.org 9
the deletion of germline DNA fragments called region of
difference (RD)-1, -2, -3, and -4, which encode virulent genes
in the wild-type tuberculosis strain Mtb H37Rv (50, 51). In
particular, RD-1 encodes two secretory proteins, CFP-10 and
ESAT-6 (52–54), both of which have T-cell activation and
macrophage deactivation functions (55). Thus, the difference of
full immune response by infections of BCG and Mtb H37Rv
strains should be carefully evaluated in the future.

The STAT3-dependent IL-17 production was further
confirmed by the pretreatment of cells with a small molecule
compound stattic, a selective STAT3 inhibitor that inhibits the
activation, dimerization, and nuclear translocation of STAT3 by
interacting with its SH2 domain (56, 57) and represses STAT3
phosphorylation (58). In the current study, the pretreatment of
PBMCs significantly repressed STAT3 phosphorylation at
Tyr705 by cryptococcal stimulation in CD4+ T cells and
further diminished the IL-17-producing CD4+ T cells and
secretory IL-17 in the cell culture supernatant. In addition, C.
neoformans st imulat ion select ive ly tr iggers STAT3
phosphorylation rather than STAT1 phosphorylation, which
further confirmed the STAT3-dependent IL-17 production.

Signal transduction to gene transcription to protein
translation is a complex regulatory process. It is common in all
signaling pathways that the phosphorylation of upstream signal
molecules occurs almost immediately after the activation of the
signaling pathway. Thus, as the very upstream of IL-17-
producing s igna l ing pathway , STAT3 was rapidly
phosphorylated in response to C. neoformans stimulation,
A B

D

C

FIGURE 5 | Inhibition of STAT3 phosphorylation diminishes IL-17 production in response to C. neoformans. Peripheral blood mononuclear cells were pretreated for
30 min with STAT3 phosphorylation inhibitor stattic (2.5mM) and were subjected to stimulation for 3 days with C. neoformans. Changes of the phosphorylated STAT3
(A) and IL-17-producing cells (B, C) were analyzed by flow cytometry assay, and the supernatant IL-17 level (mean ± SE) was evaluated by ELISA (D). Representative
data of three individual experiments are shown. ***0.0001<p<0.01, ****p < 0.0001; ns, no significance.
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whereas IL-17 protein expression was significantly postponed
probably due to the down-stream multiple regulatory processes,
such as the transcription of target gene and/or daughter genes to
finally induce IL-17 gene transcription and translation (59).

In conclusion, our study demonstrated that C. neoformans
infection stimulates the development of Th17 cells to produce IL-
17 by activating the STAT3-dependent signal pathway, and IL-17
could be a potential biomarker of and STAT3 a checkpoint of
targeted therapies for fungal infection.
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