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Abstract

Studying collection specimens is often the only way to unravel information about recent

extinctions. These can reveal knowledge on threats and life traits related to extinction, and

contribute, by extrapolation, to the conservation of extant species. However, high-through-

put sequencing methods have rarely been applied to extinct species to reveal information

on their ecology. Insular species are especially prone to extinction. We studied the gut con-

tents of three specimens of the extinct giant skink Chioninia coctei of the Cabo Verde

Islands using microscopy and DNA-metabarcoding. The presence of Tachygonetria adult

nematodes suggests plants as important diet items. Our metabarcoding approach also iden-

tified plants and, additionally, invertebrates, supporting the hypothesis of C. coctei’s gener-

alist diet. The absence of vertebrates in the digestive contents may reflect the decline of

seabirds on the Desertas Islands that could have contributed to the debilitation of the giant

skink, already depleted by persecution and severe droughts. Even with a small sample size,

this study contributes to shedding light on the trophic roles of this enigmatic extinct species

and emphasizes the need to develop holistic conservation plans for island threatened taxa.

Additionally, it illustrates the potential of integrating up-to-date molecular methods with tradi-

tional approaches to studying collection specimens to help to solve ecological puzzles in

other ecosystems.

Introduction

Anthropogenic threats and climate change are driving more and more species to extinction

faster than the discovery rate, leading to a global concern on how to halt the current biodiver-

sity loss [1,2]. Island ecosystems present the highest rates of both unique biodiversity and
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species extinctions [3]. Even though the number of species is typically low compared to the

mainland, the number of endemics is usually high [3]. Low gene flow among islands, together

with lower predation pressures and more limited food resources, promote the occurrence of

unusual biological characteristics, such as diet specialization [4–6], and gigantism [7–10].

However, these traits have been shown to make species more vulnerable to extinction [11–13].

Looking into the past and learning more about extinct species can unravel important infor-

mation about the threats and traits related to their extinction and help to develop adequate

conservation actions for closely related extant species [14–17]. One of the approaches to

achieve this consists of taking advantage of the recent development in molecular biology in

order to shed new light on ecology by studying historical collection specimens [18–20]. Several

studies have used DNA from historic museum specimens to obtain important temporal evolu-

tionary perspectives [21,22]. However, few have focused on extinct island species of reptiles

[23]. Most recently extinct lizard species were island endemics, and frequently larger than

extant ones [7,24]. Extinction processes have been associated with anthropogenic pressure,

affecting even more habitat specialists inhabiting reduced areas [25]. Insular reptiles often

exhibit peculiar feeding habits [4,26,27] such as herbivory [8,27,28], omnivory or cannibalism,

thus, playing valuable roles in the ecosystem as seed dispersers, pollinators and even top preda-

tors in some cases [29]. Therefore, studying their diet, ecology, and behaviour can help to raise

awareness of humans about the importance of reptiles to enhance the survival of other island

threatened species.

The Cabo Verde Archipelago is nearly 500 km off the Atlantic African coast and comprises

ten main islands and several islets (Fig 1). This biodiversity hotspot has a remarkable reptile

diversity and all native taxa are endemics [30,31]. The Chioninia genus holds all the endemic

skinks found in Cabo Verde, namely six extant species and the extinct Cabo Verde giant skink,

also known as Cocteau’s skink, Chioninia coctei (Duméril & Bibron, 1839) [32], which present

remarkable adaptive characteristics [33]. This emblematic species, which became extinct more

than one century ago, was one of the largest skinks in the world. Its large dimensions (snout-

vent length reaching up to 380 mm [34]), along with the five-cuspid teeth, unique dorsal and

cephalic scales [32], and the diversified colouration pattern [35], made this species not only

remarkably divergent from the six other species of Chioninia (Fig 1) but also from the ca. 1700

known species of Scincidae [32,34–37].

The Cabo Verde giant skink is classified as Extinct since the second half of the 20th century

by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species

[38] and in the First Red List of Cabo Verde Reptiles [39]. It was last seen in its natural habitat

in 1912 [40], despite repeated subsequent searches [31], plus a last unsuccessful mission per-

formed by the authors on Branco in 2017. During the 19th century, its presence was unambig-

uously demonstrated on the two islets of Branco and Raso [30,34], and subfossil reports and

museum specimens confirm the original distribution range of C. coctei on the islands of Santa

Luzia and São Vicente [41,42]. Even though in 2005 a mandible of a juvenile was recovered in

cat scats on Santa Luzia [43], a 2006 extensive survey on the island failed to find indications of

the living presence of this species [31,32]. It might have also been present in the island of São

Nicolau as stated by local fishermen, though so far, no solid evidence was found [40,44]. The

probable causes of Cocteau’s skink extinction seem to rely on a combination of human and

natural causes. The introduction of mammals in the archipelago may have had a significant

impact on the number of specimens, as well as repeated long drought periods [45]. Due to its

uncommonly large size, this species was actively hunted by fishermen and prisoners deported

in 1833 to the uninhabited Branco Islet, either as a food source [40], for their supposed medical

properties, or to use their skins [34,46]. Furthermore, this ‘giant’ skink attracted the attention

of natural history dealers, which led to the collection of at least 86 specimens (but very likely
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more) for museums and private collections (see S1 Table and S1 Fig) [41,45]. Based on the lit-

erature and museum data at least 63 specimens were catalogued during 1880–1930 (S1 Table

and S1 Fig).

The knowledge on the ecology of C. coctei is scarce and mainly relies on empirical and scat-

tered historical observations. Most authors, based on direct observations and interviews of

Fig 1. Extant and extinct (†) Chioninia species of Cabo Verde Islands. Distribution map of the seven different endemic Chioninia
species, with illustrations showing their remarkable size variation.

https://doi.org/10.1371/journal.pone.0270032.g001
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locals, referred to its commensalism with seabirds, such as the Cabo Verde shearwater Calo-
nectris edwardsii (Oustalet, 1883), where lizards occupied rocky burrows of nesting sites and

consumed the leftovers of regurgitations that adult birds spill over while feeding their chicks

[40,47,48]. Also, Alexander [47] reported that skinks had been pulled out from the holes of

white-faced storm petrels Pelagodroma marina (Latham, 1790). Nocturnal or crepuscular

according to Vaillant [49], this species would prey on seabirds’ eggs and insects. Its particular

teeth morphology has been regarded by several authors as evidence of an adaptive shift toward

a herbivorous or omnivorous diet [50,51]. It was also reported that animals kept in captivity

survived feeding exclusively on plants [50,52]. Despite these invaluable past reports represent-

ing the few direct testimonies about the species, they are contradictory, and more data would

be necessary to unravel the diet and other ecological features of this species.

Even though no more living individuals can be found, this charismatic species can still be

studied through natural history collection vouchers. Their digestive tract contents represent

the only remaining source of evidence to determine the species diet. DNA based technologies

such as next-generation sequencing (NGS) metabarcoding have demonstrated their potential

to recover valuable information from degraded collection specimens [53–55]. In this study, we

take advantage of those technologies to shed light on the enigmatic ecology of this extinct spe-

cies and to explore possible reasons that may have contributed to its extinction. Particularly,

we aimed to learn more about the health status and diet of the last three known specimens of

giant skink collected in 1901 on Branco Islet by the Princess Alice II expedition and which,

according to our knowledge, have never been examined by scientists so far.

Methods

Type locality

Branco Islet, located between Santa Luzia Island and Raso Islet, is part of the Desertas Islands

in the Cabo Verde Archipelago. This central island group is characterized by a dry tropical

Sahelian climate, with very arid plane lowlands and medium elevation areas [56]. Branco,

which emerged around 6 million years ago, is only 3 km2 [57], and it is dominated by moun-

tainous and medium-elevation arid areas, reaching its highest point in Tope Berta (353 m)

[58]. This islet is of difficult access due to the roughness of the sea, lack of safe natural ports,

steepness (there is just a small flat area of about 400 × 200 m), and high exposure to the trade

winds in most of the north coast. The Desertas Islands present an annual rainfall ranging

between 122–186 mm (mean = 148.5 ± 15.9 mm) [58].

Examination of specimens

In 2017, during a visit to the ‘Musée océanographique de Monaco’ (MOM), at the ‘Institut

Océanographique’, Fondation Albert Ier, Prince de Monaco, five vouchers of Chioninia coctei
(VS0000067_A–E), never referred to in the scientific literature before were discovered and

studied. The specimens were collected on July 22nd and 23rd of 1901 by Prince Albert I on

Branco Islet during the Expeditions of Princess Alice II [59]. The five specimens were photo-

graphed dorsally and ventrally, measured from the tip of the snout to the posterior edge of the

cloaca (SVL), and sexed by examining the presence/ absence of hemipenes and in the case of

dissected individuals, their internal reproductive structures. The photos of the specimens were

deposited in Morphobank (Table 1). We were allowed to dissect three of them. The digestive

tracts of these specimens (hereafter individuals A, B and C) were opened with a scalpel and

examined. A considerable number of parasites were observed while collecting the tracts. The

digestive contents were collected and preserved in 70% pure ethanol and stored at -20ºC for

further analyses. At the end of this study, voucher A (UCV2017/0001) was donated by MOM
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to the collections of the Technical University of the Atlantic, São Vicente, the future Natural

History Museum of Cabo Verde.

Parasite analysis

Adult helminths were removed from the digestive contents and morphologically examined

with a binocular magnifying glass. The helminths were photographed, counted, and taxonomi-

cally identified based on the following variables: oesophagus length, the structure of the apical

end, the structure of the caudal end of the males—including length and shape of the spicule,

existence and shape of the gubernaculum, and arrangement of the caudal papillae [60–62].

Then, helminths were preserved in 70% ethanol.

In addition, the DNA of the helminths was extracted using QIAamp DNA Micro Kit (Qia-

gen, Crawley, UK), following the manufacturer’s instructions. The DNA amplification was

carried out for the nuclear 28S rDNA, including the D2 region, using the primers 28SF0001

and 28SR0990 (~850 bps) [63]. The PCR was performed in a total of 10 μL reaction volumes

containing: 2 μL of QIAGEN Multiplex PCR Master Mix (Qiagen, Crawley, UK), 0.5 μL of

each 10 μM primer, 3 μL of ultra-pure water, and 4 μL of DNA extract. Cycling conditions

used an initial denaturing at 95ºC for 12 min, followed by 35 cycles of denaturing at 95ºC for

15s, annealing at 50ºC for 1 min and extension at 72ºC for 1 min, with a final extension at

72ºC for 7 min. Post-PCR steps (PCR clean-up, cycle sequencing, cycle sequencing clean-up)

followed standard procedures for degraded DNA [64]. PCR products were in a first attempt

Sanger sequenced and in a second attempt sequenced on Illumina’s MiSeq platform [64].

Metabarcoding diet analysis

The stomach contents were air-dried completely to reduce the volume and concentrate the

DNA. DNA extraction was performed using the whole homogenised stomach contents, in sev-

eral total volumes of 50 μL, using the Stool DNA Isolation Kit (Norgen Biotek Corp.Canada)

and following the manufacturer’s instructions.

Three different DNA markers were selected to identify the diet items present in the diges-

tive contents. For plants, the g/h primers that target the short P6-loop of chloroplast trnL

(UAA) intron (~10–143 bps) were used [65]. The primers IN16STK-1F/ IN16STK-1R, target-

ing the mitochondrial 16S rRNA gene (~110 bps) [66] and 12sv5F/ 12Ssv5R targeting the

V5-loop fragment of the mitochondrial 12S gene (~73–110 bps) [67] were used to amplify

invertebrates and vertebrates [67], respectively. All primers were modified to contain Illumina

adaptors and individual barcodes to allow individual identification for the three genetic loci.

The regions were amplified by PCR cycles in a total volume of 25 μL, following specific

Table 1. Study specimens.

Code SVL (mm) Sex Diet Nr of helminths Morphobank code

VS0000067_A� 240 F Yes 236 M687941; M687942

VS0000067_B 267 M Yes 12500 aprox. M687944; M687945

VS0000067_C 228 M Yes 0 M687946; M687947

VS0000067_D 237 ? No - M687948; M687949

VS0000067_E 188 M No - M687950; M687951

Details of the Chioninia coctei vouchers rediscovered in ‘Institut Océanographique’ Fondation Albert Ier, Prince de Monaco. All specimens were collected on Branco

Islet in 1901.

� This voucher was recently donated to the Natural History Museum of Cabo Verde (UCV2017/0001).

https://doi.org/10.1371/journal.pone.0270032.t001
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conditions according to the taxonomic group (following [68]). Library preparation was carried

out following Illumina MiSeq protocol 16S Metagenomic Sequencing Library Preparation

[69]. The final library was run on a MiSeq sequencer (Illumina, San Diego, CA, USA) using a

2 × 150 bp MiSeq Reagent Kit (Illumina, San Diego, CA, USA) for a projected average of

12,000 paired-end reads per sample.

The software package OBITools (http://metabarcoding.org/obitools) was used for sequence

processing. After filtering, the final haplotypes were blasted against known reference sequences

in the GenBank database (https://www.ncbi.nlm.nih.gov/genbank/) and our Molecular Opera-

tional Taxonomic Units (MOTU) reference database [68]. Sequences with less than 90% of

similarity were classified only to the class level, whereas the ones with values between 90% to

95% were classified to the family level. In addition, sequences with similarity values beyond

95% were classified to the genus or species level. If a haplotype was similar to more than one

species or genus, only species or genera recognized to occur on Branco Islet, or the surround-

ing islands of the archipelago were considered [70]. Haplotypes identified as contaminations

(e.g., human DNA) were removed.

Results

Examination of specimens

Vouchers had an average SVL of 232 mm (n = 5, Table 1). Voucher A was identified as a

female; voucher D was not possible to sex, and the remaining specimens were identified as

males (Table 1). Individuals A, B and E appeared to be unusually skinny and/or dehydrated

(see photos on Morphobank).

Parasite analysis

The analysis of the intestine contents revealed the presence of nematode parasites in two of the

three specimens analysed, all of them belonging to the family Pharyngodonidae (Table 1). All

sampled nematodes were identified morphologically to species-level based on the above-men-

tioned morphological variables (Fig 2A–2D). Five different taxa were identified, all belonging

to the same genus Tachygonetria Wedl, 1862: T. longicollis longicollis (Schneider, 1866), T.

longicollis setosa (Petter, 1966), T. macrolaimus (Linstow, 1899), T. numidica Seurat, 1918, and

T. conica (Drasche, 1884). In specimen A, we isolated a total of 236 nematodes, all females of

the first three taxa. In voucher B, it was possible to observe a compact mass of plant matter to

which a large number of nematodes were attached. In this voucher, thousands of nematodes

were found, both males and females, with an estimated amount of approximately 12.500 indi-

viduals belonging to the five species mentioned above (Table 1). On the intestinal contents of

voucher C, no nematodes were observed. Despite several attempts, sequencing failed for the

DNA samples of the nematodes, probably due to the highly degraded state of the samples.

Metabarcoding diet analysis

The overall diet composition of the three studied specimens, obtained with metabarcoding, is

depicted in Fig 3. After bioinformatic filtering, the average coverage obtained was about 11200

sequence reads per sample (see S2 Table). We identified a total of 29 diet items, 12 correspond-

ing to plants—comprising six orders and seven families—and 17 to arthropods—comprising

nine orders and 12 families. The haplotype sequences of the 29 MOTUs are available in the S2

Table. The analysis identified plant items in two of the three samples and invertebrates in all

three samples. Sample A presented four MOTUs of plants and 13 of invertebrates, sample B 10

MOTUs of invertebrates, and sample C 10 of plants and 16 of invertebrates. No vertebrate
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DNA sequences were detected. Plumbaginaceae (e.g.: Limonium) and Amaranthaceae (e.g.:

Patellifolia) plant families had the highest frequency of occurrence for plants. Five arthropod

families were present in all samples (Salticidae, Cicadellidae, Apidae, Formicidae, Gryllidae),

having the highest overall frequency of occurrence, along with non-identified Diptera and

Decapoda (Fig 3).

Discussion

Even though our results only represent a very small part of the last extant population of the

Cabo Verde giant skink and a snapshot of its diet, as we studied only the last meal ingested by

three specimens, we provide valuable data regarding the conditions and dietary habits of this

emblematic extinct species. Considering this is an extinct and rare species, with roughly 80

specimens in worldwide museums, of which only about 30 specimens are putatively available,

getting information from three vouchers, corresponding to 10% of all vouchers (see S1 Table

Fig 2. Ventral views of Tachigonetria nematodes identified from Chioninia coctei’s digestive contents (photos by V. Roca). A) T. longicollis, male

caudal end (only T. l. longicollis is represented as differences between subspecies are difficult to depict); B) T. numidica, female; C) T. macrolaimus, male

caudal end; D) T. conica, female.

https://doi.org/10.1371/journal.pone.0270032.g002
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and S1 Fig), represents the first opportunity to describe the diet of this species and provide

unique clues on the ecology of this enigmatic species.

Parasites and herbivory hypothesis

The report from the Princess Alice II expeditions described the captured individuals as ‘miser-

able’ looking [52]. This gives us clues on the health status of the last C. coctei individuals of a

population on the brink of extinction. This observation may be related to the extremely high

parasitic load of one of the vouchers that we found. Naturally, a sense of balance between para-

sites and reptile hosts prevents the progress of diseases, however, if exposed to environmental

stressors this equilibrium can be broken [71,72]. In this latter case, the health of the host can

be directly or indirectly affected by helminths [73]. Host social behaviour can be modified by

parasites promoting aggressive actions, reducing mobility which can reduce the possibility of

finding a partner or food, reducing reproduction investment by females [74] and ultimately

survival rates [75,76]. However, the other two vouchers presented parasite loads similar to the

ones observed in other large insular lizards in the nearby Canary Islands [77,78], positing to

the existence of other main drivers affecting the health of the individuals.

Several studies showed an association between the nematode fauna and the type of diet of

the reptile hosts [77,79,80]. The helminths from the Pharyngodonidae family have two evolu-

tionary lineages, comprising different genera, commonly associated with different diets, car-

nivorous saurians or herbivorous iguanids/ tortoises [81]. The genus Tachygonetria identified

in our samples corresponds to the lineage that usually infects herbivorous reptiles. Their

higher incidences are typically found in tortoises and lizards with omnivorous or herbivorous

diets [82–84]. The finding of Tachygonetria in our study suggests an, at least partial,

Fig 3. Diet items detected in the stomach contents of the Chioninia coctei vouchers (photo by M. Dagnino). Items are represented until the

higher taxonomic identification possible to obtain. Plant and invertebrate MOTUs are represented in green and yellow, respectively. NI describes

non-identified families.

https://doi.org/10.1371/journal.pone.0270032.g003
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herbivorous diet of C. coctei. This lineage could have infected this Cabo Verde reptile through

the endemic and extinct Cabo Verdean tortoise Geochelone atlantica López-Jurado et al. 1998,

as they could easily disperse between islands carrying nematodes with them, or by host switch-

ing with another infected sympatric herbivorous host [85], such as Chioninia stangeri (Gray,

1845) lizards. Unfortunately, our unsuccessful attempts to sequence these nematodes pre-

vented us from disentangling the evolutionary history of the host-parasite interactions and the

origin of these nematodes. Since Pharyngodonidae has a typical monoxenous life cycle, i.e.,

infecting a single host, it has been proposed [80] that the infection of herbivorous reptiles is

favoured as they may have greater chances of inadvertently ingesting eggs dropped in plants

through faecal pellets of infected hosts [80]. Besides, an intensification of plant matter con-

sumption offers an ideal environment for the development of more rich and diverse helminth

communities [80,81,83].

Insular reptile populations can reach higher densities as terrestrial predators are generally

scarce [86]. In the drier periods, where food resources are scarcer, plant items may play an

important role in their diets to balance the lower availability of arthropod prey [87], exactly

when our vouchers were collected. At the same time, very small distribution ranges favour the

transmission of nematodes among individuals [88,89]. Large body and gut sizes favour the

recruitment of nematodes and are usually associated with higher consumption of plant matter

[90]. Both characteristics were recorded in the studied C. coctei specimens. However, the low

caloric intake provided by plants and the need for longer digestions makes the individuals

more susceptible to introduced predators and humans. Indeed, several old records describe

how easily these animals were caught by hand [34,40,52,91].

Omnivory hypothesis

Our molecular results also support the adaptation towards the consumption of plant matter by

C. coctei. Plant consumption was identified in two out of three analysed samples, and even

though we could not amplify plants in sample B, it was possible to observe traces of plants

(e.g., green, and fibrous mass) when we examined the digestive content under the binocular

magnifying glass. So, all studied individuals consumed plants. The morphology of the conic

teeth with five cuspids [34,50], typical of herbivores [44], and empirical studies describing that

some captured specimens survived several years feeding only on plants, gave origin to the

assumption that the species was exclusively herbivorous [51]. However, the diet of C. coctei
was mostly referred to in the literature as a generalist [44,48,49]. Our results support this

hypothesis since we did find arthropods in all the three digestive contents analysed. And, in

fact, some invertebrates were present in all samples (e.g., Decapoda) and had a higher diversity

of MOTUs than plants. Skinks could be directly feeding on Decapoda, as observed in other

island reptile species, such as Cryptoblepharus cognatus (Boettger, 1881) in Madagascar [92].

Alternatively, the secondary consumption of marine organisms is expected considering the

commensal link of the giant skink with seabirds [93]. In fact, several reptiles adapted to oceanic

islands feed on seabird eggs or their regurgitations [44,68,94,95].

No traces of vertebrates were detected in the gut content of the three sampled specimens,

precluding to confirm several historical reports mentioning predation of this skink on seabirds

(e.g. [48]). These reports mentioned a commensal and predatory link with endemic seabirds

such as the Cabo Verde shearwater Calonectris edwardsii [40,47,48], especially after bird nest-

ing season [44]. The lack of bird sequences in digestive contents could have been explained if

the samples were collected outside the birds breeding season, but this was not the case.

Although the breeding season of Boyd’s shearwaters Puffinus boydi Mathews, 1912, white-

faced storm petrels Pelagodroma marina and Cabo Verde storm petrels Oceanodroma jabejabe
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(Bocage, 1875) extend only until June, the more abundant Cabo Verde shearwaters usually

breed from June to November [96]. The latter one, in particular, was severely persecuted for

food by fishermen for centuries [97]. Besides, in 1833 prisoners were deported to the deserted

Branco Islet [40], and without any available resources, along with the skinks themselves, the

chicks and adult seabirds could have been a valuable food source. That led to a severe decline

of the seabird populations on Branco, and their almost disappearance from Santa Luzia, where

the skink first disappeared [96]. Even though the islet populations were safe from introduced

mammals, the seabirds decline through persecution may have reduced the access by skinks to

this highly energetic food resource, while contributing to their fitness debilitation, especially in

drought periods [87]. Our study specimens were collected after several decades of overexploi-

tation of these resources, which could explain our results. An alternative explanation for the

absence of vertebrates could be due to the small sample size and technical limitations, such as

the lack of power of the 12S primers to amplify the highly degraded DNA of our samples.

However, these markers have been effectively used to amplify museum samples [98] and were

used in a variety of dietary studies with successful results [68,99]. Moreover, the other markers

worked very well on these samples despite being more than 100 years old and possibly poorly

preserved for DNA amplification.

To disentangle the several hypotheses related to the lack of seabird sequences we could try

to get permission to check the digestive contents of more specimens of the beginning and

mid-19th century, even though the chances of getting quality DNA are very low [53]. Several

specimens of C. coctei were recently rediscovered in other institutions, such as the ones in the

Natural History Museum of the University of Porto and Passos Manuel Lyceum in Lisbon

[100], and are waiting to be studied using other techniques (e.g. osteology, isotopic analysis)

that could shed some light on this [45]. We could also check the diet of the co-occurring reptile

species and indeed the geckos feed on seabirds and their regurgitations [68], which suggests

that herbivory is a common strategy to survive in such harsh and limited resourced islet [44].

Unfortunately, no diet studies were conducted for the extant smaller Chioninia species, even

though anecdotal observations reported they prey on insects and plants confirming an omniv-

orous diet [30].

Alternative hypotheses for extinction drivers

In addition to the severe decline of seabirds, other potential factors may have contributed to C.

coctei extinction. Droughts are a centuries-old problem in the archipelago and the 18th and

19th centuries were noticeable by long-term droughts that lead to severe famines and epidem-

ics across the islands [101]. These also represented serious threats to biodiversity on islands,

for instance, populations of Alauda razae (Alexander, 1898) fell to extremely low levels during

these periods [102]. Consequently, long periods of droughts might have reduced drastically

vegetation and arthropod availability on the islands. This skink presumably had a very low

fecundity rate [45]. It is hypothesized that the average age at which sexual maturity was

reached was five years for males and six years for females [45]. And, as an oviparous species

[35,103], females normally laid two eggs per clutch [45]. All these factors that lead to the inten-

sification of hunting of the skinks and seabirds [45], namely the introduction of mammal

predators, such as cats and rodents, and the over-exploitation by natural history dealers, may

have led to the extinction of the Cabo Verde giant skink [41,45]. All these extinction drivers

were especially severe at the end of the 19th century, to the point that researchers feared its

extinction at that time [87]. The example of this remarkable extinct species proves that species

are vastly interdependent, especially on islands, as they co-evolved in disharmonic and isolated

systems. Since the number of insular species is reduced, the trophic links among species are
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fewer and stronger, leading to a more fragile balance [104]. This is especially evident in the

smaller, most isolated, low-elevation islands [104,105] like the Desertas. Consequently, the

local disappearance or reduction of even one element of that network, such as shearwater,

might have led to the collapse of this delicate equilibrium, especially at the top of the ecological

chain [106], such was probably the case of C. coctei. For this reason, it is crucial to design con-

servation plans that focus on protecting the ecological processes and not individual species

[107]. In this way, it will be possible to ensure that processes such as pollination, seed dispersal

and predation continue their viability in island ecosystems that are more vulnerable to disrup-

tions [29]. However, the development of holistic conservation plans relies on studies of the

diet and trophic roles of endemic species that are generally lacking [94]. This is striking for

reptiles and with our work, we hope to contribute to efficiently diminishing this shortfall by

integrating classical morphological with cutting-edge genetic technologies (e.g. [99]). This

study can foster conservation measures for the six extant Chioninia species, two of which are

classified as Endangered in the IUCN Red List of Threatened Species [31].

Genetics leveraging museum collections

Previous studies using DNA sequencing of ancient coprolites, rumen and gut microbiomes

already provided valuable information on the diet of New Zealand’s Upland Moa Megalapteryx
didinus (Owen, 1883), Yakutian bison Bison priscus (Bojanus 1827), woolly mammoth Mam-
muthus primigenius (Blumenbach 1799) and woolly rhinoceros Coelodonta antiquitatis (Blu-

menbach, 1799), highlighting the informativeness of molecular approaches to unravel species

extinction causes [108,109]. Likewise, molecular studies of sub-fossil remains and collection

vouchers have been important to reconstruct the phylogeography and demographic history of

the Tasmanian tiger Thylacinus cynocephalus (Harris, 1808) presently extinct [110]. However,

genetic methods of high-throughput sequencing, such as metabarcoding, have rarely been

applied to extinct species to reveal information on habitat preferences, behaviour, and ecology

[19,109].

Our study illustrates once more the potential of new molecular tools, even when applied to

old and degraded digestive contents. It also emphasizes the value of collection specimens to

obtain reliable data on the ecology of extinct species and to provide some clues about their

extinction drivers. Disclosing the existence of these overlooked vouchers will allow further

studies to be performed and to solve other pieces of the ecological puzzle of Cabo Verde and

other understudied ecosystems.
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for all the logistical support.

Author Contributions
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42. Mateo JA, Garcı́a-Márquez M, López-Jurado L, Pether J. Nuevas observaciones herpetológicas en

las islas Desertas (Archipiélago de Cabo Verde). Bol Asoc Herpetol Esp. 1997; 8: 8–11.
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