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INTRODUCTION

Alzheimer disease (AD) is the most prevalent type of dementia that appears late in life and has
devastating effects both in society and patients. This is a silent disorder in which neurodegeneration
occurs in the brain decades before the diagnosis of the disease (Bateman et al., 2012). This long
period of time between the appearance of the first pathophysiological changes and the presentation
of clinical symptoms suggests that there is an AD continuum in which different transition stages
can be distinguished. Thus, prior to the onset of dementia, it appears a prodromal stage called mild
cognitive impairment (MCI) which is characterized by the presence of cognitive deficits, but not
severe enough to significantly affect everyday activities (Petersen et al., 1999). In addition, earlier in
the continuum and before the appearance of MCI, a preclinical AD phase has been described. This
preclinical stage is defined by the accumulation of biomarkers in the brain as well as the appearance
of a state termed subjective cognitive decline (SCD). SCD is defined as the presence of self-reported
subtle cognitive complaints despite normal performance in standard cognitive testing (Jessen et al.,
2014). The difficulty in pharmacologically modifying the course of AD continuum has fostered
the consensus that therapeutic interventions are more likely to be effective at the earliest possible
phase. Then, early markers are urgently needed to identify how the silent neurodegeneration is
taking place before the onset of clinical signs of dementia. For this purpose many candidates have
been proposed so far. In the present manuscript we would like to highlight the role of stress, a much
less explored risk factor for AD.

DESCRIPTION OF THE STRESS RESPONSE

Stress may affect multiple neural pathways and brain systems in different ways and at different
times. Firstly, stress elicits a very rapid response on the brain. The amygdala activates the
hypothalamus and brainstem by increasing dopaminergic and noradrenergic activity and altering
PFC functioning (Arnsten, 2009). Activation of the sympathetic nervous system leads to the
release of peripheral catecholamines adrenaline and noradrenaline from the adrenal medulla
which prepare the organism for a fight-or-flight response (Korte et al., 2005). Subsequently, on a
timescale of about 10–15min, stress also activates the hypothalamic-pituitary-adrenal (HPA) axis.
The HPA is a major neuroendocrine system that controls reaction to stress through the production
of cortisol, the most important glucocorticoid in humans, which can be measured in saliva
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in just 25min (Kudielka et al., 2004); cortisol is able to cross
the blood-brain barrier to bind neural receptors located on the
hippocampus, the amygdala and the prefrontal cortex (Lupien
andMcEwen, 1997; de Kloet et al., 1999). The final body response
to the chronic stress involves the immune system through the
production of pro-inflammatory cytokines, which can directly
influence neural activity in the brain (Harrison et al., 2015).

INFLUENCE OF STRESS ON AGING AND
NEURAL SUBSTRATES

There is evidence that chronic stress can accelerate aging that
is the main risk factor for AD. The ability of aged organisms
to generate an adequate stress response decreases compared
to younger organisms (Fonken et al., 2018). During aging, the
functioning of cell glucocorticoid receptors decreases and free
(toxic) cortisol can arise, leading to damage cerebral areas. Also,
aging can promote inflammatory priming through a process
involving microglia activation and changes in circadian rhythms
via a mechanism including cortisol signaling (Fonken et al.,
2018). This signaling is disrupted in human aging resulting in
an altered circadian rhythm as indicated above and, as a snake
that bites its own tail, sleep disturbances may cause an increase
in cortisol secretion (Schouten et al., 2019). Moreover, cognitive
and affective neural networks can be altered during aging due
to the possible link between both systems and adrenal medulla,
the last component of HPA axis (Canet et al., 2019; Konishi
et al., 2019). Chronic stress via dysregulation of the HPA-axis
can be a trigger of co-morbid depression in neurodegenerative
diseases (Rapp et al., 2011; Du and Pang, 2015). Finally, chronic
stress have been reported to accelerate AD pathogenesis in
mouse models for AD, including extracellular beta-amyloid
plaque deposition and intracellular tau hyperphosphorylation
(Carroll et al., 2011; Sotiropoulos et al., 2011; Justice et al.,
2015). The exacerbation of both AD hallmarks may be due,
at least in part, to excessive secretion of corticosteroids, as it
has been reported that corticosteroids injection alone may raise
deposits of beta-amyloid plaques and fibrillary tangles (Wang
et al., 2011; Joshi et al., 2012). However, it is likely that the
excess of corticosteroids is not the only mechanism by which
stress exacerbates AD neuropathology, since manipulations of
the neuropeptide released by stress Corticotropin Releasing
Factor can also alter beta-amyloid release and tau aggregation
(Justice, 2018).

The hippocampus, a region that plays a key role in memory
encoding and retrieval, is the brain structuremost associated with
AD so that hippocampal atrophy is considered the gold standard
brain biomarker. In the hippocampus, cortisol receptors, both
glucocorticoid (GR) and mineralocorticoid (MR), are present (de
Kloet et al., 1999). High-affinity MR appear to have a protective
role and promote resilience, whereas low-affinity GR may play
a role in promoting neuronal death; the balance between both
types of receptors is advisable for a proper hippocampal function
(Rogalska, 2010; Yau et al., 2011). Stress is capable of breaking
the balance between both receptors, leading to a loss of thickness
in the hippocampus. A recent study examined the pattern

of atrophy in rats’ hippocampal subfields under physical and
psychological stressors (Li et al., 2019). Under both conditions
atrophy was first identified in CA1 mainly associated with
physical stress, while CA3 and dentate gyrus were affected
later. Interestingly, when physical stress disappeared, the brain
effects could progressively revert to normal, but atrophy of the
dentate gyrus did continue to shrink even though psychological
stress had ceased (Bai et al., 2012; Li et al., 2019). Other
animal studies have provided direct evidencet of the deleterous
effects of glucocorticoids on hippocampal morphology. Thus,
sustained exposure to elevated corticosteroid levels has been
found to alter dendritic morphology and reduce hippocampal
volume in different hippocampal subfields (Woolley et al.,
1990; Sousa et al., 1998, 2000). More recently, it has been
observed that old rats submitted to long-term social isolation, a
strong psychological stress situation, leads to increased plasmatic
corticosterone levels and to a specific reduction in the volume
of the stratum oriens and spine density in CA1 that occurred
concomitantly with impairment in spatial memory (Pereda-Pérez
et al., 2019). In humans, although the evidence in older adults
is somehow inconclusive (Cox et al., 2017), a similar pattern
of hippocampal atrophy largely consistent with animal models
has been described. Thus, older adults with persistently high
cortisol levels over a 5-year period, or even with higher levels
of perceived chronic stress, show a preferential volume loss in
CA4/dentate gyrus and CA2/CA3 subfields (Lupien et al., 1998,
2007; Zimmerman et al., 2016). It is precisely the atrophy in the
dentate gyrus associated with stress in animals and humans that
may be the key; this region plays a critical role in the sustained
neurogenesis throughout adult life (Epp et al., 2013). Adult
neurogenesis has been observed in most mammals, including
humans (Schoenfeld and Gould, 2012), and currently it is well-
known that neurogenesis is related to cognitive impairment and
dementia (Moreno-Jiménez et al., 2019).

High levels of cortisol may also be present in Cushing’s
syndrome. Patients with this condition show an increase of
cortisol levels in blood, being the body exposed to high
levels of that hormone during a long time. Cortisol affects
primarily to peripheral tissues, but it can also affect brain
structures secondarily leading to a cognitive impairment
(Forget et al., 2000; Frimodt-Møller et al., 2019). However,
despite Cushing’s syndrome could add some evidence on
the relationship between cortisol and cognitive impairment,
this model does not seem to be totally comparable with
neurodegenerative disorders since patients with Cushing tend
to show a more premature mortality than sporadic AD patients
(Dekkers et al., 2007; Clayton et al., 2016).

Chronic stress in midlife could cause a dysregulation in that
balance leading to a malfunctioning of the hippocampus in
the long-term. Therefore, people more prone to psychological
distress face a higher risk for MCI (Wilson et al., 2007).
As previously indicated, this objective cognitive decline could
appear after the SCD stage (Ávila-Villanueva et al., 2016, 2018;
Ávila-Villanueva and Fernández-Blázquez, 2017). Analyzing
people with SCD, it was found that such individuals contained
higher levels of salivary cortisol, the surrogate of stress (Fiocco
et al., 2006; Peavy et al., 2013).
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FIGURE 1 | Theoretical dynamic of AD continuum. The AD pathological cascade model embodied the following assumptions in the temporal dynamic of the disease:
(1) biomarkers become abnormal in a temporally ordered manner as the disease progresses; (2) Aβ identified by CSF Aβ42 or PET amyloid imaging occurs early in the
disease, long time before the appearance of clinical symptoms; (3) tau-mediated neuronal injury identified by CSF appears later in the disease spectrum; (4) brain
changes captured by structural MRI are the last biomarker to become abnormal; however, those brain changes would retain a closer relationship with cognitive
performance than other biomarkers; and (5) cognitive and functional deterioration are the last symptoms that appear in this model. We hypothesize that there would
be a third curve namely SCD-Plus that would occur after tau deposition, but just before brain structure starts changing, in the preclinical AD stage. Chronic stress
defined with elevated and sustained cortisol levels over time could precede and act as a trigger of the AD pathological cascade. Aβ, β-amyloid; AD, Alzheimer’s
Disease; MCI, Mild Cognitive Impairment; SCD, Subjective Cognitive Decline.

DISCUSSION

Looking for possible connections between stress and the AD
continuum, salivary cortisol levels-that reflects the levels of
biologically active, free cortisol in serum-seem to be a particularly
promising marker for cognitive decline. It is well-documented
that stress may affect the memory systems and the ability to
remember past events (Schwabe et al., 2012). While acute stress
is somewhat adaptive and may have beneficial effects on memory
functioning in specific situations (Yuen et al., 2009; Shields et al.,
2017), chronic stress is associated with a variety of alterations
through the production of glucocorticoids, specifically cortisol,
that could play a role in decreasing memory encoding and
consolidation (Csernansky et al., 2006; Peavy et al., 2007). Thus,
based on available evidence, it can be suspected a link between
cortisol levels and the progression of dementia. An increase
in the levels of cortisol in MCI subjects has been previously
found (Venero et al., 2013) and recently confirmed in an article
published in Frontiers in Aging Neuroscience (Ho et al., 2020).
Additionally, it has been suggested that individuals with SCD
have increased levels of salivary cortisol (Fiocco et al., 2006; Peavy
et al., 2013). The analysis of salivary cortisol could, therefore,
become a suitable marker for the diagnosis of MCI or AD. Thus,
looking for earlier markers to know which feature could be
recognize first during the silent development of AD, we would
like to suggest the chronic stress suffered especially in midlife and
measured by the level of salivary cortisol, may precede and act as
a trigger of SCD that could appear before MCI, which can take
place before the early clinical symptoms of AD (Figure 1). To

confirm that hypothesis, we postulate that longitudinal studies
to analyze the transition from a non-demented stage to SCD
and MCI stages should include along with molecular biomarkers
(i.e., beta-amyloid and tau) the measurement of salivary cortisol,
as proposed by Ho et al. (2020) to confirm, or not, that the
order of events prior to development of AD is that indicated
in Figure 1.
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