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1 Introduction

Severe acute respiratory syndrome (SARS)-CoV-2 infections have
reached global pandemic proportions in early 2020, affecting over
21M people worldwide (as of this writing in August 2020; Source:
Johns Hopkins University) and showing no signs of easing, except in
a few jurisdictions where strict quarantine measures were imple-
mented early on. The resulting coronavirus disease (COVID-19) has a
relatively high (~3.4%) mortality rate (Rajgor et al., 2020)—a figure
that varies widely between jurisdictions due to factors yet to be deter-
mined. Currently, no vaccines or effective treatments are available.
Most current data analysis efforts are, understandably, focussed on
the virus itself for the purpose of vaccine development and tracking
its evolution for diagnostics and infection monitoring purposes.

Curiously, it is estimated that as high as 18-30% or more of the
population may be asymptomatic to SARS-CoV-2 infections
(Mizumoto et al., 2020; Nishiura et al., 2020), while other affected
individuals exhibit mild to severe to critical symptoms of infection.
Thus, gaining insights on host susceptibility to the coronavirus is
clearly another important aspect that needs to be worked on and
understood (Shi et al., 2020).

One would expect a link between host immunity genes and suscepti-
bility or resistance to infection. The Human Leukocyte Antigen (HLA)
gene complex includes two classes of such genes, which encode the Major
Histocompatibility Complex (MHC). Proteins of the MHC present (class
I) internally- or (class 1) externally-derived antigenic determinants (epito-
pes) to T cells, which upon recognition of the epitope-complex, will
mount an immune response to defend against viral and bacterial infec-
tions. HLA genes are, therefore, cornerstone to acquired immunity in
humans. HLA alleles have also been shown to be factors in susceptibility
or resistance to certain diseases, and their frequency and composition in
human populations vary widely (http:/allelefrequencies.net/). A previous
study found HLA class I (HLA-I) genes HLA-B*46:01 and HLA-
B*54:01 to be associated with the 2003 SARS coronavirus infections in
Taiwan (Lin et al., 2003)—a related disease to the current pandemic.

For over a decade, high-throughput transcriptome sequencing
has proven a worthy instrument for measuring changes of gene ex-
pression in human diseases and beyond (Wang ez al., 2009).
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Transcriptome analysis has the potential to reveal key genes that are
modulated in response to infections, but also has the potential to re-
veal the HLA composition of affected individuals. A few years ago,
we developed an approach for mining high-throughput next-gener-
ation shotgun sequencing data for the purpose of HLA determin-
ation (Warren et al., 2012), which has since been applied in a
broader clinical context (Brown et al., 2014).

Here, we report our initial observations based on transcriptome
sequencing (RNA-Seq) libraries prepared from the bronchoalveolar
lavage (BAL) fluid and peripheral blood mononuclear cell (PMBC)
samples of five and three COVID-19 patients at the early stage of
the pneumonia coronavirus outbreak in Wuhan, China, respectively
(Xiong et al., 2020; Zhou et al., 2020) (see Section 2). Of note, we
identified the HLA-I group A allele A*24:02 in four out of five indi-
viduals from the first cohort and class II haplotype DPA1*02:02-
DPB1*05:01 in seven out of eight individuals from both cohorts.

2 Materials and methods

We downloaded MGISEQ-2000RS paired-end (150 bp) RNA-Seq
reads from libraries prepared from the BAL fluid samples of five
patients [https://www.ebi.ac.uk/ena/browser/view/PRJNA605983
Accessions: SRX7730880-SRX7730884 denoted in the tables as
Patients 1-5, respectively (Zhou et al., 2020)] and BGISEQ-500
paired-end (100 bp) RNA-Seq reads derived from the PMBC samples
of three COVID-19 patients from a different study [Run accessions:
CRR119891-3 from BIG Data Center (https://bigd.big.ac.cn/) project
CRA002390 denoted in the tables as Patients 6-8, respectively
(Xiong et al., 2020)]. We note that these are metatranscriptomic
RNA samples prepared for the primary purpose of identifying/charac-
terizing the novel coronavirus and identifying host response genes.
On each dataset, we ran HLAminer (Warren et al., 2012) in targeted
assembly mode with default values (v1.4; contig length >200 bp, seq.
identity >99%, score >1000, e-value >25), predicting HLA-I and
class IT (HLA-II) alleles and report 4-digit (HLA allele/protein) reso-
lution when top-scoring predictions are unambiguous. Otherwise the
2-digit (allele group) resolution is reported. We also ran HLA
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Table 1. HLA-I predictions from the BAL fluid samples of five patients at the early stage of the Wuhan seafood market pneumonia corona-
virus outbreak and from the PBMC samples of three COVID-19 patients from a different cohort/study

BAL samples from five Wuhan COVID-19 patients

PBMC samples from three Wuhan COVID-19 patients

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8
A*01:01 A*30:01 A*24:02 A*24:02 A*29 A*02:01 A*01:01 A*02:01

A*24:02 A*02:06 A*26:01 A*02:06 A*24 A*33:03 A*02:03 A*11:01
B*35/B*57 B*51:01 B*15:01 B*40:01 B*54:01 B*56:01 B*46:77 B*56:01

B*48 B*13:02 B*51:01 B*13:01 B*07:05 B*58:01 B*56:03 B*15:438
C*08:72 C*14:02 C*15:02 C*04:03 C*15 C*03:02 C*07:02 C*15:02

C*06:02 C*06:02 C*03:03 C*03:04 — C*01:02 C*01:02 C*08:01

Note: Highest-scoring HLAminer predictions are shown for each HLA-I genes A, B and C. Missing class I genes or (—) denote the absence of a second predic-

tion. Common HLA alleles between two or more patients of a given cohort are highlighted in bold. Ambiguous predictions are shown at the group (2-digit)

resolution.

Table 2. HLA-II predictions from the BAL fluid samples of five patients at the early stage of the Wuhan seafood market pneumonia corona-
virus outbreak and from the PBMC samples of three COVID-19 patients from a different cohort/study

BAL samples from five Wuhan COVID-19 patients

PBMC samples from three Wuhan COVID-19 patients

Patient 1 Patient 2 Patient 3 Patient 4 Patient § Patient 6 Patient 7 Patient 8
DPA1%02:02 DPA1%02:01 DPA1%02:02 DPA1*02:02 DPA1%04:01 DPA1%02:02 DPA1%02:01 DPA1%02:02
— DPA1%02:02 — — — DPA1*01:03 DPA1%02:02 —
DPB1*05:01 DPB1*13:01 DPB1*05:01 DPB1*05:01 — DPB1*05:01 DPB1*05:01 DPB1*05:01
DPB1%02:02 DPB1*05:01 — — — DPB1*04:01 DPB1*17:01 —
DQA1%01:03 DQA1*01:02 DQA1%*03:01 DQA1*01:01 — DQA1%05:01 DQA1%03:01 DQA1%06:01
DQA1%0S DQA1%02:01 — DQA1%05:01 — — DQA1%01:02 DQA1%01:02
DQB1*03:01 DQB1%05:02 DQB1%04:01 DQB1*03:01 — DQB1%03:02 DQB1*02:01 DQB1%03:01
DQB1%06:01 DQB1%02:01 DQB1%03:02 — — DQB1%02:01 DQB1%03:03 DQB1%06:01

— DRB4%*01:01

DRB4*01:01 — —

DRB4*01:01 DRB4*01:01 —_

Note: Highest-scoring HLAminer predictions are shown for HLA-II genes DPA1, DPB1, DQA1, DQB1 and DRB4. Missing class II genes or (—) denote the ab-

sence of predictions. Common HLA alleles between two or more patients of a given cohort are highlighted in bold. Ambiguous predictions are shown at the group

(2-digit) resolution.

prediction software seq2HLA (Boegel et al., 2012; v2.3), OptiType
(Szolek et al., 2014; v1.3.4) and arcasHLA (Orenbuch et al., 2020;
v0.2.0 with latest code commit 301085¢e) on the RNA-Seq data
derived from the BAL samples of COVID-19 patients (Supplementary
Methods). The tool used to perform the reported analysis results in
Tables 1 and 2, HLAminer, is available from https:/github.com/
begsc/hlaminer. Predictions are available for download from https:/
www.bcgsc.ca/downloads/btl/SARS-CoV-2/BAL.

3 Results and discussion

We predicted and compiled the likely HLA-I (Table 1) and HLA-IT
(Table 2) alleles of eight patients at the early stage of the COVID-19
outbreak in Wuhan, China. In the first cohort comprised of five
patients, although the BAL fluid samples were initially utilized to
identify and characterize the novel coronavirus [Zhou et al. (2020)
with similar justification in Wu et al. (2020)], BAL metagenomics
samples are expected to contain host cells/nucleic acids (DNA/
RNA). Because HLA genes are expressed at the surface of all human
nucleated cells, RNA-Seq data can be employed to determine HLA
profiles from BAL samples.

We observe the HLA-A*24:02 allele in four out of five (80%)
patients of the first cohort, but this allele was not predicted in the se-
cond cohort whose SARS-CoV-2 positive patients were also admit-
ted in a Wuhan hospital (Table 1) (Xiong et al., 2020). In the
absence of an equivalent BAL metatranscriptomic dataset with

known HLA genotypes, we opted to run the established prediction
software seq2HLA (Boegel et al., 2012) and OptiType (Szolek et al.,
2014) and the recently published utility arcasHLA (Orenbuch et al.,
2020), in an effort to help validate the predictions we obtained from
HLAminer on the BAL cohort RNA-Seq (Supplementary Table S1).
We observe good concordance among the tools, with the highest
concordance observed between HLAminer and seq2HLA when pre-
dicting HLA-I gene A (100% concordance) and between HLAminer
and OptiType when predicting HLA-I B and C genes (100% and
88.9%, respectively; Supplementary Table S1). We note that
arcasHLA failed to output predictions altogether on these metatran-
scriptomic data, likely due to low HLA signal. Of interest, the HLA-
I allele A*24:02 prediction that we report in Table 1 was recapitu-
lated with seq2HLA. HLA-A*24 is a common group of alleles in
South-Eastern Asian populations, and the frequency of the HLA-
A*24:02 allele can be high, especially in indigenous Taiwanese pop-
ulations, reaching as high as 86.3% (http://allelefrequencies.net/). It
has been reported that the five patients from the first cohort were
sellers and delivery workers at the Wuhan seafood market, but since
no information on patient ethnicity/ancestry is available (Zhou
et al., 2020), no inferences can be made with respect to population
frequency, especially given the small sample size. Also, of note, we
observe the HLA-II DPA1%02:02 and DPB1*05:01 haplotype pre-
dicted in seven out of the eight (87.5%) patients (Table 2).

We point out that HLA-A*24 has not been previously reported
as a risk factor for SARS infection (Sun and Xi, 2014). There are
reports of other disease association with HLA-A*24:02, notably
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with diabetes (Adamashvili ef al., 1997; Kronenberg et al., 2012;
Nakanishi and Inoko 2006; Noble et al., 2002), which is a recorded
potential risk factor in COVID-19 patients (Guan et al., 2020). Both
DPA1%02:02 and DPB1*05:01 occur at relative high frequency
(44.8% and 31.3%, n=1490) in Han Chinese (Chu et al., 2018),
and associations of those particular type II alleles with narcolepsy
(Ollila et al., 2015) and Graves’ disease (Chu et al., 2018), both
autoimmune disorders, have been reported in that population.
Further, a genome-wide association study found a link between
HLA-DPB1%05:01 and chronic hepatitis B in Asians, and it has been
suggested that this risk allele may impact one’s ability to clear viral
infections (Kamatani et al., 2009; Ollila et al., 2015). HLA also
informs vaccine development. This knowledge would help prioritize
SARS-CoV-2 derived epitopes predicted to be stable HLA binders
(Kiyotani et al., 2020; Nguyen et al., 2020; Prachar et al., 2020;
Yarmarkovich ez al., 2020). HLA-I A*24:02 was reported to be
among just a few allotypes that showed stable binding with more
than 10 epitopes derived from the SARS-CoV-2 proteome (Kiyotani
et al., 2020; Prachar et al., 2020). In contrast, previously reported
SARS risk allele HLA-B*46:01 (Lin et al., 2003) had amongst the
fewest number of predicted binding SARS-CoV-2 peptides (Nguyen
et al., 2020).

Further research into host susceptibility and resistance to SARS-
CoV-2 infections on larger population cohorts and from different
jurisdictions is sorely needed as it may help us better manage and
mitigate risks of infections. We stress that our observations were
derived from small sample sets, and caution that host susceptibility
gene inferences require larger cohorts and properly designed data
collection experiments with controls, to help quantify the false posi-
tive rate and confidence in predictions. Our letter highlights the
technical feasibility and challenges associated with deriving HLA
types directly from metatranscriptomic RNA-Seq libraries prepared
from COVID-19 patient samples and not collected specifically for
that purpose. We chose to communicate our early findings in this
domain to facilitate rapid development of response strategies.
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