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Functional dyspepsia (FD) is a highly prevalent disorder of gut-brain interaction (DGBI),

previously known as a functional gastrointestinal disorder. Characterized by early satiety,

postprandial fullness, and/or epigastric pain or burning, diagnosis depends on positive

symptomatology and exclusion of obvious structural diseases. A subtle inflammatory

phenotype has been identified in FD patients, involving an increase in duodenal mucosal

eosinophils, and imbalances in the duodenal gut microbiota. A dysregulated epithelial

barrier has also been well described in FD and is thought to be a contributing factor to the

low-grade duodenal inflammation observed, however the mechanisms underpinning this

are poorly understood. One possible explanation is that alterations in the microbiota and

increased immune cells can result in the activation of cellular stress response pathways to

perpetuate epithelial barrier dysregulation. One such cellular response pathway involves

the stabilization of hypoxia-inducible factors (HIF). HIF, a transcriptional protein involved

in the cellular recognition and adaptation to hypoxia, has been identified as a critical

component of various pathologies, from cancer to inflammatory bowel disease (IBD).

While the contribution of HIF to subtle inflammation, such as that seen in FD, is unknown,

HIF has been shown to have roles in regulating the inflammatory response, particularly the

recruitment of eosinophils, as well as maintaining epithelial barrier structure and function.

As such, we aim to review our present understanding of the involvement of eosinophils,

barrier dysfunction, and the changes to the gut microbiota including the potential

pathways and mechanisms of HIF in FD. A combination of PubMed searches using

the Mesh terms functional dyspepsia, functional gastrointestinal disorders, disorders

of gut-brain interaction, duodenal eosinophilia, barrier dysfunction, gut microbiota, gut

dysbiosis, low-grade duodenal inflammation, hypoxia-inducible factors (or HIF), and/or

intestinal inflammation were undertaken in the writing of this narrative review to ensure

relevant literature was included. Given the findings from various sources of literature, we

propose a novel hypothesis involving a potential role for HIF in the pathophysiological

mechanisms underlying FD.
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INTRODUCTION

Functional dyspepsia (FD) is a chronic gastrointestinal (GI)
disorder where there exists no organic explanation for the clinical
presentation and patient symptom experience, thereby being
labeled a disorder of gut-brain interaction (DGBI) (1). While
the etiology and precise pathophysiology of FD remain poorly
characterized (2), the core symptoms for diagnosis are early
satiety (inability to finish a normal sized meal), postprandial
fullness (often referred to as bloating by the patient), and/or
epigastric pain or burning (3). These symptom profiles are
categorized into FD subtypes, epigastric pain syndrome (EPS)
and postprandial distress syndrome (PDS), with the aim of
guiding treatment approaches, however there is significant
overlap within these subtypes (4). In addition to a positive
symptom profile, an exclusion of obvious structural disease on
endoscopy and other routine investigations fulfills the Rome
IV diagnostic criteria for FD (Table 1) (3). FD is associated
with increased duodenal eosinophils in a major subgroup (5, 6),
which are not specific to either EPS or PDS subtypes (6). This
is illustrated histologically in Figure 1, which shows increased
eosinophils in the duodenal mucosa of an FD patient. Other
GI pathologies, such as coeliac disease, Crohn’s disease and
eosinophilic gastroenteritis can present with upper GI symptoms
and duodenal eosinophilia (7) but are not frequently confused
with FD.

The reported prevalence of FD varies, from 7.2% (8) to
approximately 16% (9), and the heterogeneity in prevalence data
is likely due to variation based on country and the definition used
for FD diagnosis. In addition, FD has a serious impact on patient
quality of life (1, 10). Studies have also demonstrated FD patients
quality of life impairment is similar to patients with mild heart
failure (11, 12). Studies have shown a notable increase in work
absences and annual medical costs in FD patients, creating an
estimated $8,544 USD worth of losses in productivity compared
to $3,039 USD in non-FD individuals (13, 14). Taken together,

TABLE 1 | Rome IV criteria* for the diagnosis of functional dyspepsia and subtypes of functional dyspepsia.

Functional

Dyspepsia

Must include one or more of:

• Bothersome postprandial fullness (i.e., feeling uncomfortably full after a regular sized meal)

• Bothersome early satiation (i.e., unable to finish a regular sized meal)

• Bothersome epigastric pain and/or burning

AND

• No evidence of any structural disease (including at upper endoscopy) that is likely to explain the symptoms

Postprandial

Distress

Syndrome (PDS)

Must include one or both of the following at least 3 days a week:

• Bothersome postprandial fullness that is severe enough to impact on usual activities

• Early satiety that is severe enough to prevent finishing a regular sized meal

AND

• No evidence of any organic, systemic, or metabolic disease that may explain symptoms on routine

investigations, including upper endoscopy.

Epigastric Pain

Syndrome (EPS)

Must include one or both of the following at least 1 day a week:

• Epigastric pain and/or burning that is severe enough to impact on usual activities

AND

• No evidence of any organic, systemic, or metabolic disease that may explain symptoms on routine

investigations, including upper endoscopy.

*All criteria listed in the Rome IV classification must be fulfilled for the last 3 months with symptom onset at least 6 months prior to diagnosis being made.

it is clear that FD is a prevalent condition that poses significant
costs to not only a patient’s quality of life, but healthcare and
economic systems as well.

The underlying pathophysiology of FD is not
comprehensively understood, largely owing to heterogeneity in
symptom profiles (9). With over 34% of FD patients suffering
from a psychiatric condition (15), the involvement of a complex,
bidirectional relationship between the gastroduodenal region and
the brain (the gut-brain axis) in driving patient symptomatology
and psycho-social pathology is becoming widely accepted (16).
As such, recent nomenclature has shifted toward referring to FD
as a disorder of gut-brain interaction (DGBI) to better reflect the
biopsychosocial nature of the condition and the current scientific
understanding (1). Of the various DGBIs, FD is thought to be
one of the most common (17).

FIGURE 1 | Increased duodenal eosinophils in a duodenal biopsy section of a

patient with functional dyspepsia. (H&E, x40) The histological section shows

the presence of duodenal eosinophils in an FD patient, noted by the bi-lobed

nucleus and distinct hold of the pink, eosin stain. A group of eosinophils have

been shown in the region enclosed within the red circle.
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Evidence has emerged of a subtle inflammatory phenotype
in FD patients (18), characterized by increased peripheral
gut-homing T cells, duodenal eosinophils and increased
barrier permeability, separating this type of condition from
organic pathologies which tend to present with more obvious
biochemical and structural signs. The precise involvement of
the gut-brain axis in potentiating this phenotype is not clear,
with 50% of functional gastrointestinal disease (FGID) cases
commencing with psychological distress prior to GI symptoms,
whilst the remaining 50% of cases present with gut dysfunction
first prior to developing psychosocial pathology (1). While
specific mechanisms are yet to be identified, a range of
physiological abnormalities have been implicated as contributors
to symptom generation and the inflammatory phenotype
including visceral hypersensitivity (19, 20), disturbances in
gastric motility (19, 20), post-infectious gastroenteritis (21),
changes in bile acid composition (22), increased intestinal
permeability (23, 24), immune dysfunction (9, 18), and
alterations to the gut microbiota (25). The clinical subtypes
of FD are not established to have different pathophysiological
mechanisms (26).

Immune Activation, the Gut Microbiota,
and Duodenal Barrier Dysfunction
Given that a loss in mucosal integrity is a central feature
in the low-grade duodenal inflammation associated with FD
(27), dysfunction of the intestinal immune system and the
gut microbiota may have a role in potentiating cellular stress
and maladaptive changes to the duodenal barrier (9). Whilst
the precise role of eosinophils in FD pathology is yet to be
comprehensively understood (28), eosinophils are both effector
cells of the Th-2 pathway (29) and regulatory cells of the Th-17
response (30). Taken together with evidence of an increased
presence of gut-homing lymphocytes (31) and mucosal Th-17
cells (32) suggesting an adaptive immune response in FD,
there exists a possible pathway through which eosinophils may
participate in the FD inflammatory phenotype. In fact, this is
reinforced by a review which posited an interplay between Th2
and Th17 as a central feature of the inflammatory profile in FD
(33). Interestingly, a greater level of eosinophil, macrophage, and
intraepithelial lymphocyte infiltration has been observed within
the duodenal mucosa of patients with FD following infectious
gastroenteritis (34). In fact, an earlier retrospective study by Tack
et al. showed a greater symptom prevalence in patients with
a history of suggestive post-infectious dyspepsia as opposed to
FD patients with an unspecified onset, suggesting that infection
serves as an important trigger for the onset and prevalence of
dyspeptic symptoms and inappropriate immune activation in FD
(35). Further, SARSCoV2 has been associated with an increased
risk of postinfectious functional GI disorders including FD (36).

In a more recent cross-sectional study involving a subset
of ethnically diverse adults, Järbrink-Sehgal et al. reported
an increased degranulation of duodenal eosinophils in
FD (37). Activated eosinophils may potentiate epithelial
barrier dysfunction in FD through stimulating the release
of proinflammatory mediators, of which tumor necrosis

factor (TNF), and interleukin-1β (IL-1β) have been shown
to be significantly raised in FD patients (31, 38). Whilst not
extensively studied in FD, age-related intestinal dysbiosis,
amongst other factors such as physical inactivity and diet, has
been demonstrated as an important trigger for dysregulation
of innate immunity, represented by consistently elevated
levels of pro-inflammatory mediators, such as TNF and IL-1β
(39). However, the exact impact of age in FD is uncertain.
Proinflammatory cytokines can initiate and contribute to cellular
stress pathways and epithelial tissue damage, thereby also
potentially compromising the integrity of the duodenal barrier
(40). In fact, Komori et al. recently reported an association
between IL-1β levels and barrier permeability in FD patients,
highlighting the effects that pro-inflammatory cytokines in
FD may have in potentiating cellular stress and low-grade
duodenal inflammation (24). Additionally, intestinal epithelial
cell lines exposed to Major Basic Protein (MBP), an eosinophil
degranulation protein, exhibited a loss of barrier function, thence
further linking eosinophils as contributors to epithelial stress
and dysfunction (41).

Alongside duodenal eosinophilia, alterations to the small
intestinal gut microbiota serve as a potential contributing factor
to the low-grade duodenal inflammation (9). As diet is intricately
linked with the microbiota it is likely to be an important
contributor to immune and microbial interactions in FD and has
been reviewed previously (42). In fact, FD has been shown to
be more prevalent in populations with increased body fat and
obesity (43–45). Physiologically, the duodenal microbiota plays
a crucial role in supporting host digestive function within the
small intestine through the fermentation of foods and release
of digestive enzymes (42), such as bile salt hydrolase (46, 47).
However, in environments where the gut microbiota is altered,
such as FD, a state of microbial “dysbiosis” can be a driving
force in GI symptom generation and the pathology itself (25,
42). Alterations in the microbiota, and thus their functional
repertoire, can induce changes in both the short-chain fatty
acid (SCFA) profile, primary metabolites of fermentation, as
well as the bile acid pool (48, 49). Changes in the bile acid
composition can consequently perpetuate further changes in
gut microbial diversity (47) and can drive epithelial stress and
damage downstream (22). A hypothesis that may explain this
occurrence is that reduction in bile acid concentrations may lead
to an overgrowth of pro-inflammatory bacteria, culminating in
further cellular stress responses, epithelial barrier dysfunction
and low-grade inflammation (48, 50, 51).

The exact pathological interactions between the gut
microbiota, duodenal eosinophilia, and barrier dysfunction in
FD remains enigmatic. The activation of cellular stress response
pathways due to microbial alterations and inflammatory
immune responses may trigger imbalances in gut homeostasis
and facilitate the loss of mucosal integrity, ultimately driving
eosinophil recruitment in response (52), thus further propagating
the immune response and symptom generation in FD (9).
Hypoxia-Inducible Factors (HIF) are part of a cellular pathway
that is associated with the above features of disease and, therefore,
may have a potential role within FD pathophysiology. As such,
this paper seeks to propose a potential role for HIF in the
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FIGURE 2 | HIF Signaling Pathways in Normoxic and Hypoxic States. Normoxia: In the presence of oxygen, PHD enzymes are able to hydroxylate proline residues on

the HIF-α subunit’s oxygen dependent domain allowing for recognition and binding with a VHL containing protein complex (pVHL). Forming the SRU, the pVHL

alongside other enzymes ubiquitinates the HIF-α subunit, marking it for proteasomal degradation and thence destabilizing it. Hypoxia: In the absence of oxygen, PHD

enzymes are unable to successfully hydroxylate the oxygen dependent domain of HIF-α. This results in stabilization and a consequent accumulation of HIF-α subunits

in the cytoplasm. After which, HIF-α translocates to the nucleus, heterodimerises with nuclear HIF-β, binds to the promotor region and commences the transcriptional

regulation of downstream HIF target genes. O2, Oxygen; OH, hydroxyl group; PHD, prolyl hydroxylase domain; HIF, hypoxia-inducible factor; VHL, von-Hippel-Lindau;

SRU, substrate recognition unit; Ub, ubiquitin.

pathophysiology of FD, utilizing evidence from previous studies
in organic pathologies, such as eosinophilic oesophagitis (EoE).

The Hypoxia-Inducible Factors
HIFs are heterogenous dimers consisting of an oxygen dependent
α subunit and a constitutively expressed β subunit (53). Three
subsets of α units have been identified in humans: HIF-1α,
HIF-2α, and HIF-3α. However, given the paucity in literature
regarding the role of HIF-3α in the intestine, HIF-1α and HIF-2α
will form the focus of this review (54). HIF-α proteins contain
proline residues which combine to form the oxygen dependent
domain (ODD), a portion of the α subunit that is hydroxylated
by prolyl hydroxylase domain (PHD) enzymes, in the presence
of oxygen (55) (Figure 2). In HIF-1α these pertain to proline
residues 402 and 562, whilst in HIF-2α it consists of residues
405 and 531, respectively (56). Hydroxylation of the proline
residues enables the HIF-α subunit to be recognized by a protein
complex which also includes the von-Hippel-Lindau protein
(pVHL), thereby forming the substrate recognition unit (SRU)
(53) (Figure 2). Combined with other enzymes, the SRU then

ubiquitinates HIF-α proteins for proteasomal degradation (53)
(Figure 2). However, in states of hypoxia, oxygen deprivation
inhibits PHD enzymes from hydroxylation of the ODD
(57) (Figure 2). This consequently leads to the cytoplasmic
accumulation of HIF-α subunits, termed HIF-α stabilization,
after which nuclear translocation and heterodimerisation of the
α subunit takes place facilitating binding to HIF-β subunits
(Figure 2). The nuclear HIF-α/HIF-β complex binds to the
promoter regions of target genes, enabling active transcription
and expression of HIF downstream targets (Figure 2), such as
Vascular Endothelial Growth Factor (VEGF) and erythropoietin
(53). Potent eosinophil recruiting chemokines, such as eotaxins,
as well as tight junction proteins have been shown to also be
downstream targets of HIF, thereby illustrating a role for HIF
in tissue eosinophilia (58) and the maintenance of the epithelial
barrier structure and function (54).

Whilst hypoxia dependent mechanisms of HIF regulation
have been the most studied, a growing body of evidence
highlights a range of non-hypoxic pathways that have shown
capacity toward activation and stabilization of HIFs (59).
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Normoxic stabilization of HIF has been shown to play an
important role in the host immune selection and adaptation
in cancer, thereby contributing to the progression of disease
(60). Under normoxic conditions, Frede et al. reported a
functional relationship between bacterial lipopolysaccharide
(LPS) and the induction of HIF-1αmRNA expression and protein
accumulation in human monocytic cell lines (61). Additionally,
Peyssonnaux et al. also demonstrated that the non-hypoxic
related stimulation of mice that had undergone conditional gene
targeting of HIF-1α by an LPS challenge in the context of sepsis,
significantly promoted HIF-1α mediated production of a host
of inflammatory cytokines, including TNF (62). Interestingly,
inflammatory cytokines have also been shown to play a part in
the normoxic transcriptional regulation of HIF. For example,
alongside LPS, TNF, and IL-1β were also shown to contribute
to increases in HIF-1α mRNA in fibroblast cultures under
normoxic conditions (63). Other work has also shown similar
associations between TNF and increased HIF-1α mRNA and
protein expression in human embryonic kidney cell cultures
that had been treated with TNF for several hours (64). The
expression of HIF-1α in these cell cultures also correlated with
increased expression of HIF downstream targets, suggesting a
transcriptionally active HIF response following inflammatory
cytokine stimulation (64). Whilst not only evidencing an
important role for HIF in the production and induction of
inflammation in disease, such findings also establish capacity
for microbial factors and inflammatory cytokines, such as TNF
and IL-1β alike, in the oxygen-independent and normoxic
stabilization of HIF transcriptional pathways.

Generally, HIF-1α and HIF-2α have been understood as two
sides of a coin in terms of their transcriptional effects in intestinal
inflammation (65). Whilst HIF-1α is thought to induce a barrier-
protective role through the up-regulation of tight-junctional
proteins and anti-microbial properties, HIF-2α stabilization
increases the expression of pro-inflammatory cytokines and
chemokines (65). In pathological states, a dysregulation of both
HIF-1α and HIF-2α has been associated with pro-inflammatory
states and/or maladaptive changes, such as transcriptional
changes in tight junction expression and compromises in barrier
integrity (66, 67). Although not investigated in DGBIs, given the
associations between HIF and eosinophil recruitment in other
studies (58, 68), there may exist a role for HIF in mediating
duodenal eosinophilia and barrier dysfunction in FD which
warrants further investigation.

Eosinophilia, FD, and HIFs
In addition to increases in duodenal eosinophil numbers
(6, 69), increased degranulation of these cells has also been
demonstrated, suggesting the eosinophils are active in FD (5).
Further, an association between duodenal eosinophilia in FD and
symptoms of early satiety, postprandial fullness, and abdominal
pain has also been reported (70), linking the immune cells
directly to symptom burden. A potential explanation for this is
that FD patients demonstrate a greater number of eosinophils in
close proximity to submucosal plexus neurons which correlated
with impaired neuronal function (71). Given that the submucosal
plexus is involved in the mediation of local gut contraction and

reflex responses (72, 73), it suggests that abnormal stimulation
of submucosal plexus neurons by eosinophil inflammatory
mediators may be a contributor to the manifestations of FD,
such as disturbances in gastric motility. Similar findings have
been made in irritable bowel syndrome (IBS), where mast cells
in close proximity to intestinal nerves correlated with both the
severity and frequency of abdominal pain and discomfort in
IBS patients (74). Further, recent findings by Wauters et al.
suggested that the effectiveness of proton pump inhibitors (PPIs)
in symptom management may be attributable to suppression
of eosinophils (75). As such, there exists evidence that posits a
role for eosinophils in perpetuating low-grade inflammation and
gut-brain dysfunction, as well as symptom generation in FD.

Activation of HIF stabilization pathways have demonstrated
capacity to regulate the recruitment of eosinophils. For example,
studies investigating cobalt-induced airway inflammation report
pronounced eosinophilic infiltration in HIF-1α deficient mice
(76), and deletion of HIF-2α results in prolonged eosinophilic
infiltration in animal models (77), suggesting HIF may act as
a regulatory checkpoint for eosinophilic inflammation. TNF
and IL-1β are both pro-inflammatory cytokines that have been
identified as being significantly raised in FD patients (31, 38).
Studies investigating airway inflammation have shown that
both TNF and IL-1β also serve as contributors to eosinophil
recruitment (78, 79). Relevant to the GI tract, the role of TNF in
mediating eosinophil recruitment is also specifically highlighted
in a study that reported a significant inhibition in eosinophil
chemotactic ability in ulcerative colitis patients whose perfusion
fluids had been treated with anti-TNF (80). Therefore, it may
also be possible for TNF and IL-1β signaling to also contribute
to eosinophil recruitment in FD. HIF-1α has generated intense
interest as a therapeutic target for inflammatory bowel disease,
stemming from the initial observations that HIF-1α knockout
animals were protected against chemically-induced colitis,
while VHL knockout animals (that exhibit constitutive HIF-
1α stabilization) were protected against colitis (81). This has
led to the approach of pharmacologically stabilizing intestinal
HIF-1α to protect against colitis (82–84) and this has progressed
to clinical trials (85). Mechanistic studies suggest that the
epithelium is the key component of this therapeutic efficacy
(86, 87) although HIF-1α also controls dendritic cell activation of
protective regulatory T cells suggesting that HIF-1α is important
for regulation of underlying lamina propria mononuclear cells
(88). Conversely, overexpression of HIF-2α in intestinal epithelial
cells lead to spontaneous DSS colitis in mice coinciding with
an increased expression of TNF, IL-1β and IL-6, whilst deletion
of HIF-2α in mice with DSS-induced colitis has a protective
effect (89). Whilst highlighting the contrasting roles of HIF-1α
and HIF-2α, these findings also indicate the importance in
maintaining balance between HIF-1α and HIF-2α in regards
to shaping the response that occurs to an inflammatory or
pathological stressor, alongside reinforcing how a dysregulation
in this balance may trigger maladaptive changes (65, 90). The
existing evidence suggests a role for HIF-1/HIF-2 balance in
the downstream regulation of TNF and IL-1β, pro-inflammatory
cytokines involved with the mobilization and recruitment of
eosinophils. Although mouse models of colitis are not directly
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FIGURE 3 | Barrier dysfunction in FD compared to normal, baseline conditions. Under physiological conditions, the duodenal barrier consists of a mucous layer,

epithelium and underlying lamina propria. The integrity of the epithelial barrier is maintained via a network of junctional complexes, made up of tight junction proteins,

such as zonula occludens-1, occludin and claudin-1. Due to the being under constant physiological stress the intestinal epithelium, the lamina propria typically

contains immune cells to maintain and protect the barrier. In FD, a dysfunction of the barrier has been described specifically in relation to a loss in mucosal integrity

and increased permeability. The expression of adhesion proteins is altered which lends to the severity of the low-grade duodenal inflammation observed in FD.

Furthermore, the recruitment and activation of eosinophils in FD also takes place, which may perpetuate tissue damage and barrier dysfunction thereby also adding to

the low-grade FD barrier inflammation. The exact reason for the barrier dysfunction, and also whether the changes in barrier are causative, or rather a consequence of

FD pathology is still poorly understood. FD, Functional Dyspepsia.

comparable to human presentations of functional disease,
given the TNF and IL-1β inflammatory profile in a subset of
FD patients, a dysregulation in HIF transcriptional pathways,
specifically in the form of a downregulation in HIF-1α, may
provide a possible explanation for eosinophil recruitment and
barrier dysfunction in FD pathophysiology.

Barrier Dysfunction, FD, and HIFs
The intestinal barrier serves as an important semipermeable
interface between the external environment and internal body
systems, specifically allowing the uptake of essential nutrients and
immune surveillance whilst also simultaneously restricting the
passage of pathogenic microorganisms and molecules (91). Part
of the many systems at play ensuring the integrity of the epithelial
barrier is maintained are a network of protein structures that
form the cell junction which links cells within the epithelium
(91, 92) (Figure 3). These junctional complexes are comprised
of a combination of three different components: tight junctions,
adherens junctions, and desmosomes (92). Tight junctions play a
crucial role in regulating paracellular transport between cells via
two distinct pathways; the pore and leak pathway (93). Where
the pore pathway facilitates passage of small ions and uncharged
molecules, the leak pathway allows for the passage of larger ions
and macromolecules irrespective of charge (93). A dysregulation
of tight junctions has been recognized as a potentiating factor
to changes in intestinal permeability, intestinal barrier loss and
disease (93). Dysfunction of the duodenal epithelial barrier
has been described in FD as losses in mucosal integrity and
increases in barrier permeability (19, 23) (Figure 3). Komori
et al. observed decreases in expression of zonula occludens-
1 (ZO-1), a tight junction protein found within the intestinal
barrier, in FD patients relative to a symptomatic control group
with abdominal pain (24). This finding is also supported by
Vanheel et al. who also demonstrated a significant association
between impaired mucosal integrity and the abnormal gene
expression of proteins associated with junctional complexes,
namely occludin, β-catenin, and desmosomal proteins (23). The

increase in epithelial permeability was reported to be significantly
associated with the severity of low-grade duodenal inflammation
and protein expression of occludin was correlated with duodenal
eosinophil counts (23), highlighting the importance of the
duodenal barrier in potentiating the FD inflammatory phenotype
as well as the role eosinophils may play in contributing to the
dysfunction of the duodenal barrier. Amore recent study has also
revealed a significantly reduced duodenal expression of claudin-
1, a tight junction protein, in FD patients against healthy controls,
which remained statistically significant after adjustment for
potential confounding factors, including age and sex (94). Whilst
these findings, overall, fail to clarify whether the loss in barrier
integrity is causative, or rather, a consequent manifestation of
the FD pathological process (95), it does position the duodenal
barrier as an important factor in FD pathophysiology. Given
that the findings show alteration in expression of proteins that
make up the cell junction, the nature of barrier dysfunction in
FD likely involves the paracellular pathway. In fact, an increased
paracellular permeability has already been reported in organic
intestinal pathologies such as Crohn’s disease (96). While a
number of studies highlight altered permeability as a feature of
FD, the identification of precise cellular pathways is a limitation
of the literature given that most of the applied methodologies
only assess singular aspects of cellular permeability (97). As
such, further investigation of the precise cellular pathways that
underpin barrier dysfunction may have the potential to better the
current understanding of the FD pathological process.

Emerging research has shown a strong relationship between
HIF pathways and the downstream expression of tight junction
proteins. In a 2015 study involving a HIF-1α chromatin
immunoprecipitation analysis in intestinal epithelial cell cultures,
Saeedi et al. identified claudin-1 as a prominent HIF downstream
transcriptional target (98). Interestingly, significant repression
of both HIF-1α and claudin-1 has been reported in active EoE
(66). When translated to a transgenic mouse model of EoE
which overexpressed HIF-1α, the group noted an attenuation of
inflammation which correlated with the restoration of esophageal
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claudin-1 expression (66). These findings evidence the necessity
of HIF-1α signaling in barrier maintenance and the niche role
of claudin-1 in the barrier. Another rat model study observed
that chronic increases in HIF-2α lead to a higher turnover in
the expression of the tight junction proteins ZO-1 and occludin
(99), both of which have also been reported as being decreased
in FD at both the protein and gene expression level (23, 24).
Therefore, there may be a transcriptional influence, such as HIF
pathways, underpinning the decreased expression of epithelial
barrier proteins in FD.

The associations between HIF and the transcriptional
regulation of cell junctional complexes presents a possible
rationale for dysregulated HIF cellular responses as an
underpinning factor influencing the duodenal barrier
dysfunction in FD. It is however acknowledged that EoE
represents a subset of organic pathologies that present with
pronounced barrier dysfunction and inflammation (66), and
may not be directly comparable to the subtle inflammation
characteristic of FD (18). Therefore, it is likely that if a
dysregulation of the HIF pathway is present in FD, the nature of
the dysregulation may be unique to functional conditions and
more nuanced in comparison to pathologies such as EoE.

The Gut Microbiota, FD, and HIFs
The gut microbiota plays a significant role in the homeostatic
maintenance of the intestinal barrier (100, 101), the digestion,
metabolism and absorption of vital nutrients (102), and the
intestinal immune response (25). As such, alterations in the
microbiota of the duodenum have been suggested to play a role
in the pathophysiology of DGBIs, including FD (42, 49). Studies
have reported both taxonomic and microbial load differences
in the duodenum of FD patients. In a 2016 prospective cohort
study assessing the microbiota profiles of gastric fluid from 44
FD patients against 44 healthy controls reported a higher relative
abundance of Prevotella (Bacteroidetes) in FD (103). While
microbiota studies can be conflicting, largely due to differences
in sequencing targets and analysis, there appears to be a growing
consensus that report increases in the relative abundance of
Streptococcus species in FD (104, 105). Furthermore, Fukui et al.
also reported a positive correlation between Streptococcus relative
abundance and FD symptoms (105).

Increased microbial load has also been reported in FD
duodenal samples. Shah et al. compared the loads of DGBI
patients (FD and irritable bowel syndrome), IBD patients, and
asymptomatic controls found that FD patients demonstrated
an increased duodenal microbial load relative to asymptomatic
controls (106). Further to this, Zhong et al. reported a
positive correlation between microbial load and the intensity
of meal-related FD symptoms, whilst also finding a negative
correlation between microbial load and patient quality of life
(107). Interestingly, high-glucose and high- fructose diets in
experimental mice have been associated with dysbiosis as well
as impairments of the intestinal barrier; mice fed such diets
exhibited a decreased expression of tight junctions ZO-1 and
occludin, as well as an increase in levels of TNF and IL-1β; all
of which have also been reported to be altered in FD (108).
Despite paucity and heterogeneity existing within the literature,

it is evident that gut microbiota imbalances likely have a role to
play in driving FD.

The therapeutic potential of probiotic supplementation in
restoring microbial niches and reducing GI symptoms in FD
has shown recent promise. In a 2017 study, Igarashi et al. not
only reported alterations in the taxonomic profiles of FD patient
gastric fluid, but also noted a “positive” shift in the gastric
fluid microbial composition after probiotic treatment to that
which was observed in healthy control volunteers (109). This
study used a probiotic product containing Lactobacillus spp., a
common probiotic genus. Lactobacilli are commonly referred to
as lactic acid bacteria, capable of producing SCFAs lactate, acetate
and butyrate (110). The viability of probiotic administration
for FD has also been reported by Drago et al. here authors
observed a significant reduction in symptom prevalence amongst
PDS patients treated with probiotics alone (111). Furthermore,
a recent placebo-controlled pilot trial also showed evidence
of potentially beneficial immune and microbial changes in
FD patients administered probiotic treatment against those on
placebo (112). Whilst further research is still required, evidence
does suggest that probiotics or their metabolic by-products
may serve as a viable therapeutic option in FD treatment and
symptom management.

A part of the many functions of the gut microbiota involves
the fermentation of indigestible polysaccharides, such as dietary
fiber, producing SCFAs such as butyrate, an “anti-inflammatory”
metabolite (113). SCFAs play an important role in regulating
intestinal structure and inflammation, therefore, alterations in
microbial niches responsible for the production andmaintenance
of “healthy” levels of SCFAs may lead to gut-barrier dysfunction
and low-grade inflammation (114). Although the SCFA profile of
the FD duodenum still remains to be characterized, changes have
been observed in irritable bowel syndrome, an DGBI that shares
overlap with FD (115). A meta-analysis found that butyrate
levels were decreased in constipation dominated IBS whilst
being raised in diarrhea predominant IBS (116). Animal work
examining the effects of SCFAs in GI motility concluded that
increased transit rate in the mouse IBS model group is associated
with a chronically elevated SCFA profile (117). Further evidence
also demonstrates reduced contractile responses with increasing
concentrations of butyrate (118). Not only do these findings
allude to an altered SCFA profile in DGBI, but also support a
possible role for SCFAs in driving gut motility disturbances in
FD (119).

The metabolization of SCFAs through β-oxidation within
intestinal epithelial cells is an oxygen-intensive process, which
under physiological conditions has been shown to influence the
stabilization of HIF (51, 120). Kelly et al. reported a significant
correlation between bacteria-derived butyrate and increased
stabilization of HIF in mice, and additionally reported that
antibiotic mediated depletion of microbiota resulted in reduced
butyrate and HIF expression, which was later corrected by
butyrate supplementation (121). Given the evidence to suggest
that probiotics are able to shift the microbial composition and
in turn restore production of SCFAs in the intestine (122), there
is the possibility that the therapeutic effectiveness of probiotic
supplementation in FD is due to a probiotic mediated resolution
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of the gut microbiota, SCFAs, and in turn a dysregulated HIF
stabilization pathway.

DISCUSSION: HYPOTHETICAL ROLE OF
HIFS IN THE PATHOPHYSIOLOGY OF FD

Despite being a highly prevalent DGBI, the etiology and
pathophysiology of FD is not comprehensively understood.
Hallmarked by experiences of early satiety, postprandial fullness,
and/or epigastric pain or burning, FD has been shown to have a
significant impact on patient quality of life (123). A subtle, low-
grade inflammatory phenotype involving an increase in tissue
eosinophils, dysfunction of the duodenal barrier, and alterations
in the gut microbiota has been identified in patients and are
thought to be contributing factors to the pathophysiology (18,
124). Duodenal eosinophilia and gut dysbiosis are associated with

tissue damage and have a role in potentiating the loss in barrier
integrity, and in turn low-grade mucosal inflammation (1, 9).

The HIF transcriptional pathway is an example of a cellular
pathway that is associated with the above features of disease.
Most notably, the existing literature points toward a role for
HIF in regulating the proinflammatory response, including the
recruitment of eosinophils, as well as in the maintenance of
the epithelial barrier (58, 65). There are also findings that
establish a functional link between the gut microbiota and HIF,
specifically the microbiota mediated stabilization of HIF via
SCFA metabolism (121).

In culmination, it is possible that an imbalanced gut
microbiota may lead to alterations in the SCFA profile (125)
and bile acid pool (48), and thereby dysregulating cellular stress
response pathways in FD, such as HIF. Immune dysfunction
may also potentiate cellular stress through pro-inflammatory
cytokine production and consequent epithelial tissue damage

FIGURE 4 | Hypothetical involvement of HIF in the pathophysiology of functional dyspepsia. A dysbiotic gut microbiota may lead to alterations in the SCFA profile and

bile acid pool and therefore the inappropriate activation of cellular stress response pathways, such as HIF. Immune dysfunction may serve as another contributing

factor to cellular stress response pathways via pro-inflammatory cytokine production and consequent epithelial tissue damage. A dysregulated HIF transcriptional

pathway may have downstream effects on the expression of HIF transcriptional targets that mediate eosinophil recruitment and barrier structure in FD. For example,

HIF mediated upregulation of TNF and IL-1β, which have been shown to be raised in FD inflammation, may contribute to FD duodenal eosinophilia. Similarly,

decreases in the expression of ZO-1, occludin, and claudin-1 have been described in FD. Given the role of HIF in maintaining the integrity of the epithelial barrier,

HIF dysregulation presents a possible pathway through which the differences in expression of these cell adhesion proteins and in turn barrier dysfunction in FD may be

explained. Both, duodenal eosinophilia and losses in mucosal integrity serve as key contributing factors to the low-grade duodenal inflammation seen in FD. In this

way, HIF dysregulation may have a hypothetical role to play in driving the pathophysiology of FD. SCFAs, Short-chain fatty acids; HIF, Hypoxia-inducible factor;

TNF, Tumor Necrosis Factor; IL-1β, Interleukin-1β; ZO-1, Zonula occludens-1.
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(9). These pathological alterations in HIF levels may have
effects in terms of the transcription and expression of HIF
downstream targets. TNF and IL-1β are examples of HIF
responsive pro-inflammatory cytokines that are involved with
eosinophil recruitment, which have also been found to be
significantly raised in FD (31, 38, 78, 79, 89, 126). Additionally,
a dysregulated HIF stabilization pathway may also manifest
in the altered expression of junctional complexes, therefore
compromising barrier integrity (66). This has been reported in
studies of EoE, where a dysregulation in HIF lead to a consequent
reduction in claudin-1 levels therefore perpetuating the barrier
dysfunction (66). Specifically, to FD, ZO-1, occludin, and
claudin-1 are examples of tight junction proteins that have been
shown to have a decreased expression that are also downstream
targets of HIF (23, 24, 94, 99). In this way, dysregulated
HIF pathways may also underpin the expression of junctional
complexes and therefore barrier dysfunction in FD. The resulting
loss in duodenal integrity may allow for secondary luminal
antigens and recruitment of duodenal eosinophils, therefore
further propagating immune dysfunction, gut dysbiosis, and the
low-grade inflammatory phenotype in FD (9). This hypothesized
pathological pathway is summarized in Figure 4.

Experimental therapeutics in animal models have
demonstrated a barrier protective role for HIF stabilizing
drugs (82–84, 86, 87, 127, 128). Contingent upon further
research confirming a role for HIF in FD pathology, there exists
the therapeutic potential for HIF stabilizing drugs to augment
the current therapeutic options available in the FD treatment
and symptom management, and these should be considered in
future investigations.

The pathophysiology of FD remains enigmatic and poorly
understood. Whilst multiple contributors to the disease process
have been identified, the precise mechanism of disease and the
complex interactions that take place during this process remain
the subject of further research. In this paper, we have proposed
the HIF transcriptional pathway as another possible contributor
to the FD disease process, in the hope that this may prompt

new avenues in FD research. It is, however, acknowledged that
findings from organic pathologies cannot be directly translated
to a functional disease, which is only further complicated by the
paucity in investigations of HIF pathways in disorders of gut-
brain interactions. Given the existing evidence, we believe that
there may exist the potential for HIF involvement in driving
the pathophysiology of FD by establishing links between FD
eosinophilia, barrier dysfunction, and gut dysbiosis. Further
experimental research is required to validate our novel hypothesis
and conclusively characterize if there is a role for HIF in
FD pathophysiology.
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