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Abstract: Radiography is an essential basis for the diagnosis of fractures. For the pediatric elbow
joint diagnosis, the doctor needs to diagnose abnormalities based on the location and shape of each
bone, which is a great challenge for AI algorithms when interpreting radiographs. Bone instance
segmentation is an effective upstream task for automatic radiograph interpretation. Pediatric elbow
bone instance segmentation is a process by which each bone is extracted separately from radiogra-
phy. However, the arbitrary directions and the overlapping of bones pose issues for bone instance
segmentation. In this paper, we design a detection-segmentation pipeline to tackle these problems
by using rotational bounding boxes to detect bones and proposing a robust segmentation method.
The proposed pipeline mainly contains three parts: (i) We use Faster R-CNN-style architecture to
detect and locate bones. (ii) We adopt the Oriented Bounding Box (OBB) to improve the localizing
accuracy. (iii) We design the Global-Local Fusion Segmentation Network to combine the global
and local contexts of the overlapped bones. To verify the effectiveness of our proposal, we conduct
experiments on our self-constructed dataset that contains 1274 well-annotated pediatric elbow radio-
graphs. The qualitative and quantitative results indicate that the network significantly improves the
performance of bone extraction. Our methodology has good potential for applying deep learning in
the radiography’s bone instance segmentation.

Keywords: bone extraction; instance segmentation; radiography; convolutional network; pediatric
elbow

1. Introduction

Pediatric elbow joint is a complex joint composed of the humerus, ulna, radius,
and six age-changing ossification centers [1]. During growth, children have low bone
density and mineral content, and may suffer more traumatic factors. Analyzing elbow
anteroposterior and lateral radiographs is an effective and straightforward method for a
professional orthopedist to diagnose trauma. In the process of pediatric elbow diagnosis,
doctors first need to know the locations, shapes, and categories of bones to focus on
the abnormal accurately [1]. The ability to accurately distinguish bones depends on the
doctor’s professional knowledge and medical experience. However, changes in ossification
centers and unossified cartilages make pediatric elbow radiographs more complicated.
Emergency physicians who are not familiar with the pediatric elbow joint’s characteristics
often encounter pediatric elbow injuries [2]. Overlapping bones in radiographs and vague
descriptions sometimes lead to missed diagnosis and misdiagnosis [3]. Data show that
fractures of the pediatric elbow represent approximately 12% of systemic fractures [4].
Accurate diagnosis and effective treatment can reduce children’s pain, shorten the healing
time, and prevent malunion and neurovascular complications [5].

In recent years, the Deep Convolution Neural Network (DCNN) [6] has developed
rapidly and has high precision and stability in medical object location [7,8]. With the help
of DCNN, accurately detecting each bone can help doctors diagnose and even assist AI in
automatically diagnosing diseases from radiography. Currently, a few studies try to analyze
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radiographs with DCNN [9–11], but all of them treat diagnosis as a normal/abnormal
binary classification task. The rough classification task is often only competent for a specific
disease and lacks interpretability. However, some elbow injuries usually manifest as bone
dislocations such as elbow varus and valgus that need to be diagnosed by judging the
relative position between the bones. Without prior knowledge of the position and type
of bones, neither doctors nor AI can make a comprehensive diagnosis on a radiograph.
Accurate prior knowledge of bones can significantly improve the doctor’s diagnostic
accuracy and intelligent interpretation efficiency.

Instance segmentation is a DCNN-based method to generate the pixel-level segmenta-
tion mask with the specific category for each target in an image. As far as we know, we
are the first to apply instance segmentation on the challenging task of extracting elbow
bones. It is natural to take Mask R-CNN [12] as the instance segmentation algorithm.
However, Figure 1b,e shows the poor results of edge extraction, bone localization, and bone
classification, especially in the overlapping areas. There are three reasons for these results:
(i) Mask R-CNN downsamples the original image by many times, and finally outputs a
28× 28 binary image as the bone’s segmentation result. Directly upsampling the result
to the original image will inevitably lose the bone’s edge information. (ii) Mask R-CNN
uses the Horizontal Bounding Box (HBB) to provide a proposal region during pixel-level
classification. The horizontal bounding box cannot fit the bones in any direction compactly.
As shown in Figure 1b, when the angle between the bone and the horizontal direction is
45◦, the bounding box probably contains contexts of other bones. The redundant informa-
tion interferes with the bone segmentation results. (iii) Radiography causes overlapping
between bones. Mask R-CNN uses four layers of convolution and upsampling to obtain
bone segmentation results. Such a simple structure cannot cope with complex situations
such as overlapping bones due to imaging principles. Furthermore, our method solves
these problems and provides better results, as shown in Figure 1c,f.

This paper proposes a detection-segmentation network to generate more accurate
bone segmentation results in edge and overlapping areas. The previous methods [12–14]
usually complete object detection and segmentation at the same time. Such methods cannot
obtain high-precision bone edges because of direct upsampling. Different from them,
we separate object detection and instance segmentation into two steps. We use Faster
R-CNN-style architecture to get the approximate position and category of the bones. Then,
we use a special segmentation network to classify the bone area at the pixel level; it avoids
the loss of information caused by directly upsampling. In the detection stage, inspired
by the work in [15] in remote sensing images, we use the Oriented Bounding Box (OBB)
instead of the Horizontal Bounding Box (HBB) to wrap the target bone more compactly.
The more appropriate bounding box contains less background and redundant information
of the adjacent bones, which leads to poor detection and segmentation performance.
Different from the remote sensing image, the target in the elbow radiography is more
slender. Therefore, we design the special anchor ratio based on the original method
to better detect bones. In the segmentation stage, we design the Global-Local Fusion
Segmentation Network base on Deeplabv3+ [16] to deal with overlapping areas. Different
from Deeplabv3+, our segmentation network adopts a bilateral input method to integrate
global information and local information. More rich information reduces the misjudgment
of overlapping regions and improves the accuracy of bone edges. The contributions are
summarized as follows:

• We design a detection-segmentation architecture to extract each bone from the pedi-
atric elbow radiography.

• We adopt the OBB to clearly describe the bone’s direction and position for enlarging
the feature differences between bones.

• We propose the Global-Local Segmentation Fusion Network to fuse the global and local
contents of the bone for enhancing segmentation of bone edges and overlapping areas.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Visualization of (a,d) original images, (b,e) outputs of Mask R-CNN [12], and (c,f) outputs of our proposed
method. The green, red, blue, and orange represent the humerus, ulna, radius, and medial epicondyle, respectively. The
overlapping regions are denoted by the addition of overlapping bones’ colors. Compared to Mask R-CNN, our results have
better performance in bone edges and overlapping areas.

2. Related Work

Current DCNN-based object detection, semantic segmentation, and instance segmen-
tation are popular interpretation methods for medical images. Figure 2 shows the three
methods’ visualization results, respectively. We will introduce similarities and differences
between them as follows.

2.1. Object Detection

Object detection is the extension of classification using a rectangular frame to surround
the detected target and distinguish its category. Detectors in object detection can be divided
into one-stage detectors [17–19] and multi-stage detectors [20,21]. One-stage detectors have
good running speed but lower accuracy. High-speed detectors are widely used in face
detection [22], object tracking [23], etc. [24]. The multi-stage detectors run slower but have
higher accuracy. High-precision detectors are often used to detect bones’ approximate
location or fractures in radiographs [25]. Guan et al. [26] adjust the structure of Faster
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R-CNN to detect arm fractures in elbow radiographs. The improved network aims to
detect tiny fractures in elbow radiographs. Object detection is also successfully applied on
the diagnosis of fractures in wrist radiographs [27], detecting intervertebral discs in lateral
lumbar radiographs [28], localizing ossification areas of hand bones [29], and detecting
distal radius fractures in anteroposterior arm radiographs [30]. However, object detection
can only obtain a rough location of a bone or fracture, which is not enough for further
diagnosis. Figure 2a indicates that the rough location is the rectangle’s corners.

2.2. Semantic Segmentation

Semantic segmentation can collect more accurate location information from images.
This method can classify each pixel in the image as foreground and background to seg-
ment the expected object. Common semantic segmentation networks in medicine are
Deeplab [16,31,32], U-Net [33], and Unet++ [34]. Badhe et al. [35] implement automated
vertebrae segmentation in lateral chest radiographs by U-Net. Zhiqiang Tan [36] design an
automatic system to diagnose Adolescent idiopathic scoliosis (AIS) based on the automated
spine segmentation. Xie et al. [37] adopt U-Net and Faster R-CNN to detect multiple
categories of tuberculosis lesions. First, they use U-Net to segment the lung from chest ra-
diographs. Second, Faster R-CNN is designed to detect multicategory tuberculosis lesions
from the segmented lung. The former one aims at reducing unnecessary information and
making detect networks focus on the specific tuberculosis area. The latter one classifies
multicategory tuberculosis lesions. Using such a cumbersome process to complete the
task is done because semantic segmentation cannot identify the same pixel into multiple
categories alone. Figure 2b bluntly shows that the semantic segmentation cannot handle
multi-classification tasks in overlapping regions.

(a) (b) (c)

Figure 2. (a–c) Visualization of object detection, semantic segmentation, and instance segmentation, respectively.

2.3. Instance Segmentation

Combing semantic segmentation and object detection, instance segmentation can
detect and segment multiple categories of targets in radiography. The current instance
segmentation network mainly adds a Mask branch to the object detection network, such as
Mask R-CNN [12], Blend Mask [13], and Hybrid Task Cascade [14]. Instance segmentation
is applied to segment lung fields, heart, clavicles, and ribs in chest radiographs [38,39];
pelvis [40]; delineate spinal midline [41]; and to identify unknown bodies by tooth [42].

There are some papers comparing the performance of semantic segmentation and
instance segmentation. The work in [41] finds that Mask R-CNN has higher accuracy in
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pelvis segmentation than U-Net. The work in [43] illustrates that instance segmentation
methods are superior to semantic segmentation in tooth segmentation tasks. A verte-
brae segmentation comparison experiment shows that instance segmentation performs
better than semantic segmentation in vertebrae overlap [44]. Those experiments prove
that instance segmentation is more capable of interpreting radiography than semantic
segmentation.

Unlike these papers that directly apply the instance segmentation network to complete
their tasks, we rebuild the network structure for extracting bones. Our proposal is a
more suitable method for bone extraction in elbow radiographs from the perspective of
optimizing Mask R-CNN.

3. Methodology

Figure 3 shows our proposal structure. To obtain accurate results, we design a
detection-segmentation pipeline, which separates instance segmentation into detection
and segmentation. The detection network adopts a two-stage detector, which consists of
the Backbone network, Region Proposal Network (RPN) [20], RoI Transformer [15], and
Head. The Backbone network and RPN are used to extract the bones’ multi-scale features
and propose some Regions of Interest (RoIs) where bones may exist in the image. The RoI
Transformer aims to predict the bone’s rotation and generate Rotated Regions of Interest
(RRoIs). The Head completes two tasks of classification and location. On the other hand,
we design the Global-Local Fusion Network for bone segmentation. The segmentation
network takes detection results and the original image as input to fuse global and local
information for pixel-level classification. The network’s details will be shown as follows.

Figure 3. The structure of our proposed bone instance segmentation network. The detection network takes ResNet
with FPN as the backbone to generate multi-scales feature maps. The RPN and RoI transformers utilize feature maps to
provide rotated regions to predict OBB and classification. Then, each bone in the same image is extracted separately. The
segmentation network extracts low-level features and high-level features from the bone and its corresponding original
image to generate masks.

3.1. Detection Network
3.1.1. Backbone

Pediatric elbow radiographs contain both larger bones such as humerus and smaller
ossification centers. The bone instance segmentation task requires both the shallow infor-
mation for the position and the deep information for classification. Therefore, we adopt a
combination of a residual network (ResNet) [45] and a feature pyramid network (FPN) [46]
as the backbone. The ResNet ensures that the backbone can extract the deeper bone informa-
tion without causing network degradation. The FPN fuses shallow and deep information
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and condenses those into several scales of feature maps. It improves classification and
location accuracy and is beneficial to multi-scale bone detection.

The feature pyramid takes the multi-scale outputs {M2, M3, M4, M5} generated by
four stages {C2, C3, C4, C5} of ResNet. With a top-down structure, the features in different
levels are fused as {P2, P3, P4, P5, P6}, where P6 is the feature 2× downsampled from P5
in order to fit a larger scope of the bone. {P2, P3, P4, P5, P6} correspond to {4, 8, 16, 32, 64}
times downsampling size of the original image, which has larger reception fields that are
conducive to feature representation.

3.1.2. Region Proposal Network (RPN)

RPN distinguishes positive and negative regions on the feature map and takes a prelim-
inary bounding box regression to generate RoIs. Similar to the original RPN structure [20]
based on FPN, we choose anchors with a step size of {4, 8, 16, 32, 64} on {P2, P3, P4, P5, P6},
respectively. Considering that the variability of bone size in pediatric elbow radiographs,
we set each anchor with five ratios of {1:4, 1:2, 1:1, 2:1, 4:1}.

3.1.3. RoI Transformer

The OBB commonly develops object detection in remote sensing images [47–49]. Com-
pared with the HBB, the OBB can more compactly encapsulate the rotational object, reduce
background noise, and obtain extra direction features for object detection. Unlike targets
with gravity constraints in nature images, bones in radiographs are arbitrary directionality.
On the other hand, an unsuitable bounding box contains too much information about other
bones, resulting in the poor performance of pixel-level classification.

For obtaining OBBs, we subjoin RoI Transformer behind the RPN. The RoI Transformer
takes Horizontal Regions of Interest (HRoIs) from RPN’s outputs as input and generates
RRoIs [15]. As shown in Figure 4, the RoI Transformer consists of RRoI Learner and RRoI
Warping. To eliminate possible ambiguity, we cite the definition of RRoI [50]. Figure 5
explains the format of the HRoI and the RRoI.

Figure 4. The architecture of RoI Transformer. Each HRoI passes to the RRoI Learner for predicting the target bone’s center
points, width, height, and rotation angle. Then RRoI Warping takes RRoI Learner’s output to crop the rotated region from
the corresponding feature map. The feature map with RRoI is used for classification and oriented bounding box regression.
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Figure 5. The green and blue bounding boxes are HRoI and RRoI, respectively. The format of the
HRoI is (xc, yc, wh, hh), where (xc, yc) denotes the center of the HRoI and (wh, hh) denotes the width
and height of the HRoI. The format of the RRoI is (xc, yc, wr, hr, θ), where (xc, yc) denotes the center
of the RRoI, wr denotes the side of the RRoI parallel to the horizontal axis of the image coordinate
system, hr denotes the side of the RRoI parallel to the longitudinal axis of the image coordinate
system, and θ denotes the angle between hr and the horizontal axis of the image coordinate system
in the range of [−90◦, 90◦].

RRoI Learner: The goal of the RRoI Learner is to predict the bone’s angle and scale
from HRoIs. After RoI Align, a Fully Connected (FC) layer with the dimension of 5 infers
the offsets of Rotated Ground Truths (RGTs) relative to HRoIs. The following equations
can calculate the regression targets of offsets relative to RRoIs:

t∗x = 1
wr
((x∗ − xr) cos θr + (y∗ − yr) sin θr),

t∗y = 1
hr
((y∗ − yr) cos θr − (x∗ − xr) sin θr),

t∗w = log w∗
wr

, t∗h = log h∗
hr

,

t∗θ = 1
2π ((θ

∗ − θr)%2π).

(1)

Here, (xr, yr, wr, hr, θr) denotes the center point’s abscissa and ordinate, width, height,
and orientation, respectively. (x∗, y∗, w∗, h∗, θ∗) is the ground truth of a rotated detection.
To avoid confusion, the angle offset target is adjusted in [0, 2π] by the mod. The box
decoder combines the HRoI and its offset to output the decoded RRoIs.

RRoI Warping: RRoI Warping extracts oriented proposal regions with bilinear inter-
polation from the corresponding feature map and then straightens the extracted regions by
Equaiotn (2). (

x′

y′

)
=

(
sin θ cos θ
− cos θ sin θ

)(
x− xr
y− yr

)
+

( wr
2

hr
2

)
. (2)

Here, (x′, y′) represents the transformed pixel coordinates, (xr, yr) represents the
center point coordinates of RRoI in the original image, and (wr, hr) represents the width
and height of the RRoI.
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3.1.4. Head

After RRoI Warping, all RRoIs are resized to 7× 7. Then, a 2048-dimensional FC
layer followed by two sibling FCs flatten the features for the classification branch and the
oriented bounding box regression branch. The classification branch is used to distinguish
the bone’s category. The oriented bounding box regression branch aims at predicting the
bone’s center, width, height, and rotational angle.

Unlike Mask R-CNN [12], we do not add a mask branch to the head for the 28× 28
mask. Figure 6 shows failure cases from Mask R-CNN. In bounding box representation, we
notice that the sizes of ulna, radius, and humerus generally exceed 100× 100. However, the
sizes of pixel-wise segmentation maps generated by the mask head are 28× 28, requiring a
4× upsampling operation to match the original instances. As shown in Figure 6a,b, the
contradiction leads to a poor precision in bone boundary extraction, which is critical in
radiography interpretation. On the other hand, the mask branch is too simple to handle
overlapping bones and bounding boxes. Figure 6c,d shows the segmentation failures that
the network cannot distinguish the pixels in overlapping areas.

(a) (b) (c) (d)

Figure 6. Visualization of failure cases. Panels (a,b) are caused by too small mask predictions. Panels (c,d) are due to the
unsuitable bounding boxes and weak classification ability of the mask branch.

3.2. Global-Local Context Fusion Segmentation

Figure 6 shows some failure cases of the overlapping areas. The mask branch in
Mask R-CNN can only distinguish whether the pixel is a bone and cannot determine its
type. As shown in Figure 7, to enhance the network’s pixel-level resolution, we design
the Global-Local Fusion Segmentation Network to generate each bone mask in a semantic
segmentation manner. Based on DeepLabv3+ [16], the network adopts an encoder–decoder
structure to combine high-level and low-level features to optimize the overlapping areas’
detection results.

Encoder: The encoder is designed to extract abundant high-level features. Considering
the difficulty of classification in the overlapping areas, we use a bilateral network to
combine global and local image information for the segmentation. In detail, two branch
networks share weights, and both use Atrous Spatial Pyramid Pooling (ASPP) to generate
feature maps XG and XL. The ASPP can better capture multi-scale spatial information
to adapt to various bones in pediatric elbow joints of different sizes. The benefits of
sharing weights are reducing parameters, simplifying the network, and increasing the
calculation speed.
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Figure 7. The structure of the segmentation network. The global image is the source image. The local image has the same
size as the original image and retains the original image information in the OBB.

The squeeze-and-excitation (SE) block [51] is used to learn an extract weight for each
channel of XG in the global branch. The weight of the channel can enhance important
features in objective areas and suppress redundant features. As shown in Figure 8, the
block XG with the size of W × H × C is squeezed into the feature map ZG with the size of
1× 1×C by a Global Average Pooling (GAP). The ZG is calculated by

ZG = FSq(XG) =
1

W × H

H

∑
i=1

W

∑
j=1

α(i, j), (3)

where FSq represents the function of GAP and α(i, j) denotes any pixel in XG. Two FC
layers are used to capture the correlation between feature channels, and then we normalize
it by a sigmoid activation:

SG = Fex(ZG) = sigmoid(δ(ZG)), (4)

where sigmoid represents the sigmoid activation, SG represents the obtained weights with
the size of 1× 1×C, and δ represents the two FC layers.

Then, the weights are merged into the original feature map XG:

X̃G = FScale(SG, XG) = SG · XG. (5)

The SE block stimulates compelling features extracted in the global branch, allowing
it to better integrate useful global information to refine features. Finally, we perform
element-wise addition on the global and local branches to get a fused feature map XF. XF
is flattened to the high-level feature by a 1× 1 convolution layer.

Decoder: The decoder takes both high-level and low-level features as inputs. Thus, it
receives much more spatial semantic information. We apply 1× 1 convolution on low-level
features to reduce the number of channels and bilinearly upsample high-level features
by 4× to align the feature shape to perform feature fusion. Then, two features with
different semantic information are fused by channel concatenation. Two 3× 3 convolutions
followed by another 4× bilinear upsampling are used to refine the features and generate a
bone mask.



Sensors 2021, 21, 7966 10 of 19

Ul Ra Hu Ca Rh Mp Ol Lp Tr
Bone Category

0

200

400

600

800

1000

1200

Qu
an

tit
y

Histogram of Bone Category

(a)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Age

0

20

40

60

80

100

120

Qu
an

tit
y

Histogram of Age

(b)

Figure 8. Statistics of (a) Bone category distribution. (b) Age distribution. Ul: Ulna; Ra: Radius; Hu:
Humerus; Ca: Capitellum; Rh: Radial Head; Mp: Medial Epicondyle; Ol: Olecranon; Lp: Lateral
Epicondyle; Tr: Trochlea.

3.3. Multi-Task Loss Function

The object detection network is trained by a joint loss function

LD = LRPN + α1Lcls(ct, ĉt) + α2Lreg(rt, r̂t), (6)

where LRPN represents RPN loss [20], Lcls denotes object classification cross entropy (CE)
loss, and Lreg is oriented bounding box regression [15]. We take α1 = 1, α2 = 1 to configure
the head.

The loss function of segmentation network is

LS = α1LDecode + α2LHead, (7)

where LDecode represents the decoder loss, LHead denotes the FC layers loss [16]. We set
α1 = 1, α2 = 0.4 for segmentation loss weight.

4. Experimental Results
4.1. Dataset

The dataset contains 1274 pediatric elbow radiographs with scales from 1140× 1432
to 1780× 1600. Radiographs are screened between January 2003 and October 2010. Among
them, 692 radiographs are anterior and 582 are lateral. The whole dataset is separated
into training, validation, and test with a ratio of {3:1:1}. As shown in Figure 8a, there are
nine bone categories: humerus, radius, ulna, capitellum, radial head, olecranon, trochlea,
medial epicondyle, and lateral epicondyle. Figure 8b shows the age distribution. Each bone
in this dataset is annotated with an OBB and a mask. Three senior orthopedic specialists
cooperate in labeling ground truths with the annotation tool. The tool allows the specialist
to wrap any bones with a set of dots in each radiography. The radiographs have been
approved by the local ethics committee for this study and we hid the patient’s information
before providing it to the investigators.

4.2. Implementation Details

Our experiments are implemented with 4 NVIDIA Titan Xp GPUs and Pytorch. The
batchsize is set to 16, and the input resolution is 1024 × 1024. In the object detection
network, we use SGD with a weight decay of 0.0001 and momentum of 0.9. The model is
trained by 48 epochs with an initial learning rate of 0.02 and it decreases by 10× at epoch
18 and 36. We set the batch size of HRoI, RRoI, and OBB to {256, 512, 512} per image with
ratios {1:1, 1:3, 1:3} of positive to negatives. In the segmentation network, we use SGD with
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a weight decay of 0.0005 and momentum of 0.9. The model is trained by 8000 iterations
with an initial learning rate of 0.01, a minimum learning rate threshold of 0.0001, and
it declines by the polynomial decay with a power of 0.9 every epoch. Both the baseline
Mask R-CNN and our proposed networks use the same weights for initialization which is
pretrained on the ImageNet.

For robustness and the balance of sample orientation characteristics, we resize the
original images into the scales of {0.5, 1, 1.5}. Besides, each training image is randomly
rotated within a range of [−90◦, 90◦] or flipped with a probability of 0.5.

4.3. Comparison with Mask R-CNN

To compare the performance of our network and Mask R-CNN, we both use ResNet-
50 [45] with FPN as the backbone in Mask R-CNN and our detection network. We use
instance-level evaluation, which consists of AP0.50 and AP0.85, to assess network instance
segmentation ability. Note that AP0.85, a stricter evaluation standard, is used to evaluate
the segmentation effect of medical image instances. As shown in Table 1, for AP0.50, our
network is up to 4.7% higher. For AP0.85, it can upgrade the AP from 29% to 45.1%, which
shows that our network has a higher segmentation accuracy for bones in radiographs.

Table 1. Quantitative analysis of our proposed method and Mask R-CNN in the test set of our
proposed dataset. The best result is highlighted in bold.

Bone Category
Mask R-CNN Our Network

mAP AP0.50 AP0.85 mAP AP0.50 AP0.85

All 0.537 0.799 0.290 0.607 0.846 0.451
Humerus 0.879 0.988 0.956 0.950 0.985 0.985

Radius 0.754 0.970 0.725 0.890 0.980 0.945
Ulna 0.741 0.967 0.688 0.871 0.980 0.939

Capitellum 0.654 0.955 0.288 0.653 0.925 0.404
Radial Head 0.324 0.765 0.002 0.433 0.846 0.106
Olecaranon 0.513 0.875 0.050 0.610 0.842 0.263

Trochlea 0.366 0.467 0.067 0.165 0.568 0.000
Medial Epicondyle 0.428 0.641 0.001 0.508 0.823 0.248
Lateral Epicondyle 0.169 0.663 0.000 0.382 0.663 0.168

To reveal the reasons for false positives, we conduct experiments to observe their
distribution and trends in the test set. As shown in Figure 9, we calculate the precision and
recall, and then generate the PR curve. We adopt the public object detection evaluation
standards from in [52]. The items are as follows.

C85: PR curve at IoU = 0.85 corresponds to the area under curve of APIoU=0.85 metric.
C50: PR curve at IoU = 0.50 corresponds to the area under curve of APIoU=0.50 metric.
Loc: PR curve at IoU = 0.1. The localization errors are ignored. The mask overlaps

(IoU ∈ [0.1, 0.5]) with any ground-truth is defined as the localization error.
Oth: PR curve after all class confusion is removed. All others objects are assumed to

the same class in the question.
BG: PR curve after all background (and class confusion) FPs are removed.
FN: PR curve after all remaining errors are removed.
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(a) (b)
Figure 9. Analysis results on Mask R-CNN and our network in the test set. (a,b) The evolving proportion of False Positive
(FP) types. Loc: deviated position. Oth: classification errors. BG: confusion in background.

According to Figure 9, our network is 16.1% higher than Mask R-CNN on C85, which
indicates that our network can obtain more high-quality instance segmentation results.
Our network has an increase of 3.3% and 4.6% on Loc and BG, respectively, which shows
more robust target recognition and localization capabilities. The blue area represents the
proportion of low-precision segmentation results in the network results. Compared with
Mask R-CNN, our network has a lower localization error rate. The red area from our
network is more extensive than from Mask R-CNN as we obtain the wrong objects, but
Mask R-CNN failed to detect them. The purple area is the probability that the network
mistakes the background for bones, and the orange area represents the network’s missed
detection rate. Purple and orange show that our network has no background classification
errors and a lower missed detection rate.

For the large bones of humerus, radius, and ulna, AP50 does not increase significantly,
while AP0.85 has a considerable improvement (especially in radius and ulna). Usually,
the radius is next to the ulna. Using HBB to warp them in Mask R-CNN will contain too
much other bone and ground noise. Redundant noise and the weak ability of pixel-level
classification lead to the low precision in AP0.85. Capitellum is a small bone and often
overlaps with the humerus, radius, and ulna. Our network gets 11.6% promotion in AP0.85,
which explains the fact that the Global-Local Fusion Network has a robust pixel-level
classification ability in overlapping areas.

Figure 10 shows the other five types of bone analysis results. Mask R-CNN’s results in
the radial head and medial epicondyle having almost no high-quality segmentation results
(AP0.85), and most of the errors come from positioning offset and category confusion. In
contrast, our network eliminates most of the mistakes from location and classification,
and obtains some high-quality segmentation results. Figure 10c,d indicates that lateral
epicondyle and olecranon errors are category confusion, but our network obtains more
accurate results. Trochlea does not get a satisfactory improvement on AP0.85. However, we
notice that Mask R-CNN do not detect all trochlea, but our network detect them and classify
them in the wrong category. The trochlea, lateral epicondyle, and medial epicondyle are
age-restricted and can only be discovered in anteroposterior radiographs. Too few training
samples lead to poor performance.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Detailed analysis of Mask R-CNN and our network on five categories in the test set. The first line is the result of
Mask R-CNN and the second line is ours. Panels (a,f): Radial head. Panels (b,g): Medical epicondyle. Panels (c,h): Lateral
epicondyle. Panels (d,i): Olecranon. Panels (e,j): Trochlea.

4.4. Ablation Experiments

We conduct a group of ablation experiments to verify the effectiveness of our combined
method. The Mask Head RoI Transformer aims to add a mask head based on the work
in [15]. GLFS-Net is the improved network based on Deeplabv3+.

As shown in Table 2, the last four methods perform better than the first two, which
explains why our first part is effective. In the last four methods, we evaluate the effective-
ness of RoI Transformer and GLFS-Net, respectively. Compared with Faster R-CNN and
Deeplabv3+, the RoI Transformer and GLFS-Net have a better performance. Finally, we
integrate three parts (RoI Transformer and GLFS-Net) and achieve the best performance
among all methods.

Table 2. Ablation experiment.

Method mAP AP0.50 AP0.85

Mask R-CNN [12] 0.537 0.799 0.290
Mask Head RoI Transformer 0.517 0.812 0.311

Faster R-CNN [20] & Deeplabv3+ [16] 0.556 0.822 0.354
Faster R-CNN & GLFS-Net 0.585 0.832 0.401

RoI Transformer & Deeplabv3+ 0.567 0.836 0.389
RoI Transformer & GLFS-Net (ours) 0.607 0.846 0.451

4.5. Fusion of Traditional Methods and DCNN

Traditional algorithms such as the watershed algorithm [53], superpixel segmenta-
tion [54,55], and edge operators can also complete the task of bone segmentation. However,
traditional algorithms cannot obtain classification results from the extracted edge infor-
mation, handling the stacking area, and complete tasks fully automatically. Therefore,
we try to combine traditional methods with DCNN to urge the network to pay more
attention to the bones’ edges. Therefore, we preprocess the input image to enhance the
edge information and observe the network performance. We extract the original image’s
boundary with Sobel and cover a channel in the original image. Finally, we used Mask
R-CNN to train the preprocessed images and tested the model.
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According to Table 3, we find that emphasizing the bone edge cannot significantly
improve the network results. Replacing the green or blue channel even impedes the net-
work’s upgrade. We infer that there are two reasons for the degeneration. One explanation
is that the edge extraction with Sobel may generate noise among the arms, obstructing
the network’s attention to other features of bones. Another reason is replacing the in-
formation of a specific channel may destroy the original image balance and continuous
information, resulting in the loss of the data. Sometimes artificially inserting some new
information into the image and forcing the network to record with prior knowledge may
be counterproductive.

Table 3. Quantitative analysis of Mask R-CNN in the test set of three preprocessing methods.

Preprocess Method mAP AP0.50 AP0.85

Original images 0.537 0.799 0.290
Replace the red channel 0.472 0.758 0.299

Replace the green channel 0.444 0.718 0.277
Replace the blue channel 0.330 0.609 0.120

4.6. Visualization Analysis

To compare the effect of network improvement, we take the original image, Mask
R-CNN, Ground Truth, and our network together in Figures 11 and 12. According to
Figure 11, the third column (Mask R-CNN’s results) shows that horizontal bounding boxes
of the ulna and radius are often highly coincident, which leads to poor performance
in segmentation. However, the fourth column (our network’s results) obtains a higher
precision in bone boundary and correct segmentation results because of the more suitable
bounding box and the better segmentation methodology. In addition, the third sample
illustrates that the large target bone and the small target bone are often close to each
other. The superficial mask branch tends to mistake the tiny target bone for the large and
overwhelm the tiny target. The Global-Local Fusion Network can correctly distinguish the
pixel classification in the overlapping area of bounding boxes based on the target bone’s
information and position information relative to other bones. On the other hand, the
radial head is repeatedly detected. With the directional characteristics, the OBBs increase
the robustness of multi-scale detection and reduce the possibility of retaining multiple
bounding boxes of the same classification.

As shown in Figure 12, the tiny target often hides behind the big target in the antero-
posterior pediatric elbow radiographs. The trochlea and ulna often overlap entirely. After
adding directional features to each bone, our network can easily detect and segment small
targets hidden behind large targets. Moreover, facing the various kinds and serious overlap
radiography like in the third sample, Mask R-CNN cannot give a satisfactory answer. With
the more suitable bounding boxes and more robust segmentation method, our network
reaches the level close to the ground truth.
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Figure 11. Visualization of the original image, ground truth, Mask R-CNN’s results, and our network’s results from left to
right. Each color corresponds to a bone. The overlapping areas are represented as the addition of overlapping bones’ colors.
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Figure 12. Another visualization of the original image, ground truth, Mask R-CNN’s result, and our network’s result from
left to right.

5. Conclusions

This article proposes a detection-segmentation network to extract bones from pediatric
elbow radiographs. Aiming at the problems of the low edge accuracy and confusion in
identifying overlapping regions, we first use the OBB to replace the HBB for describing
bones precisely. The OBB can pack the target bones more compactly with the directional
feature and find small targets hidden behind large targets. Based on Faster R-CNN, we add
an RoI Transformer behind RPN to predict the target’s location, size, and direction. Then,
we design a segmentation network called Global-Local Fusion Segmentation Network to
solve the overlapping area identification problem. The segmentation network takes the
whole image and the local image as a more prosperous basis to distinguish the overlapping
bone’s edge and category. The experimental results indicate that our proposal improves
the edge accuracy and segmentation ability of overlapping areas.

Although our network aims at pediatric elbow radiographs, each part of our method
can be extended to other radiographs (such as knee radiographs) with similar characteris-
tics, which will be further explored in our future work.
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