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CRISPR/Cas9 is a preferred genome editing tool and has been widely adapted to ranges of disciplines,
from molecular biology to gene therapy. A key prerequisite for the success of CRISPR/Cas9 is its capacity
to distinguish between single guide RNAs (sgRNAs) on target and homologous off-target sites. Thus, opti-
mized design of sgRNAs by maximizing their on-target activity and minimizing their potential off-target
mutations are crucial concerns for this system. Several deep learning models have been developed for
comprehensive understanding of sgRNA cleavage efficacy and specificity. Although the proposed meth-
ods yield the performance results by automatically learning a suitable representation from the input data,
there is still room for the improvement of accuracy and interpretability. Here, we propose novel inter-
pretable attention-based convolutional neural networks, namely CRISPR-ONT and CRISPR-OFFT, for the
prediction of CRISPR/Cas9 sgRNA on- and off-target activities, respectively. Experimental tests on public
datasets demonstrate that our models significantly yield satisfactory results in terms of accuracy and
interpretability. Our findings contribute to the understanding of how RNA-guide Cas9 nucleases scan
the mammalian genome. Data and source codes are available at https://github.com/Peppags/
CRISPRont-CRISPRofft.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

CRISPR/Cas9 is a remarkable genome engineering technology
and has a promising potential for genetic manipulation applica-
tions. In this system, a Cas9 endonuclease protein forms a complex
with a single guide RNA (sgRNA) molecule and localizes to a target
DNA sequence by sgRNA: genome DNA base-pairing rules [1,2].
The target DNA sequence must be both complementary to the
sgRNA and also contain a protospacer adjacent motif (PAM), which
is required for compatibility with the Cas9 protein being used [3].
Using CRISPR/Cas9 system, DNA sequences with the endogenous
genome and their functional outputs can be easily edited or mod-
ulated in almost any organism of choice [1]. However, variable
activity across different sgRNA remains a significant limitation,
which contributes to inconsistent sgRNA on-target activity [4].
The targeting specificity of Cas9 is regulated by the 20-nt guiding
sequence of the sgRNA and the PAM adjacent to the target
sequence in the genome [5]. Previous work has found that Cas9
off-target activity depends on both sgRNA sequence and experi-
mental conditions [6–11]. Albeit CRISPR/Cas9 has great potential
for basic and clinical research, the determinants of on-target activ-
ity and the extent of off-target effects remain insufficiently under-
stood. Therefore, it is crucial to develop computational algorithms
for on- and off-target activity prediction, which can increase our
knowledge of the mechanisms of this system and help maximize
the safety of CRISPR-based approaches.

Presently, several deep learning-based methods have been
explored for CRISPR sgRNA on-target prediction. Convolutional
neural networks (CNNs) are attractive solutions for genomic
sequence due to their capability of performing automatic and par-
allel feature extraction. For instance, DeepCRISPR [12], DeepCas9
[13], CNN_5layers [14] and DeepSpCas9 [15] are trained by CNN
to predict sgRNA efficiency by automatically recognize sequence
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features. Zhang et al. developed a hybrid CNN-SVR (CNN with sup-
port vector regression) for sgRNA cleavage efficacy prediction,
which uses a merged CNN as the front-end for extracting sequence
features and an SVR as the back-end for regression [16]. Recurrent
neural networks (RNNs) [17], particularly based on long short-
term memory network (LSTM) [18] and gated recurrent unit
(GRU) [19], are good at capturing interactions between distant ele-
ments along the sequence, thus widely used in natural language
processing (NLP) and genomics field [20]. For example, DeepHF
applied RNN to extract the dependence information of sgRNA
and its biological features, thus achieving a satisfactory perfor-
mance for on-target activity prediction [21]. To obtain a compre-
hensive sequence representation, CNN and RNN are cooperated
for evaluating sgRNA on-target activity. For instance, C-
RNNCrispr uses CNN for feature extraction and applies bi-
directional GRU (BGRU) for modeling sequential dependencies of
sgRNA sequences in both forward and backward directions [22].
AttnToCrispr_CNN uses CNN with an attention-based transformer
module [23] to extract cell-specific gene property derived from
biological network and gene expression profile for sgRNA effi-
ciency prediction [24]. To the best of our knowledge, this is the first
application of attention mechanism for the purpose of predicting
sgRNA activity. On the other hand, deep learning has also been
gradually applied for CRISPR sgRNA off-target prediction. For
example, DeepCRISPR [12] and CNN_std [25] use CNNs to predict
sgRNA specificity. AttnToMismatch_CNN applies CNN with a trans-
former to capture features from sgRNA-DNA sequence pair and the
cell-line specific gene expression information for sgRNA off-targets
prediction [24]. In CnnCrispr, bidirectional LSTM (BLSTM) [26] is
also followed by CNN to predict off-target activity. CRISPR-Net uti-
lizes RNN to quantify off-target activities with insertions or dele-
tions between sgRNA and target DNA sequence pair [27]. Despite
the progress made so far, there is still need for developing more
accurate and interpretable methods for sgRNA on- and off-target
activities prediction.

More recent works apply the attention mechanism in NLP [28]
to produce interpretable results for deep learning models. Atten-
tion mechanism assigns different weights to individual positions
of the input, so the model can focus on the most crucial features
to achieve superior predictive power. In sequence analysis, atten-
tion values for individual site derived by embedding attention
mechanism allow model to focus on the important locus that sig-
nificantly contribute to the final predictions [29]. Previous studies
showed that positions immediately upstream the PAM (PAM-
proximal) are more important than the PAM-distal region for
sgRNA activity prediction [30]. As mentioned, position of mis-
matches between sgRNA and target DNA depend on off-target
mutations. Perfect base-pairing with 10 ~ 12 bp PAM-proximal
determines Cas9 specificity, while multiple PAM-distal mis-
matches can be tolerated [30]. These motivate us to selectively dis-
cover relevant features from numerous features generated in the
convolutional layers for sgRNA on- and off-target activity predic-
tion. Hence, attention mechanism is a suitable strategy to facilitate
the interpretation of Cas9 binding and cleavage patterns.

In this study, we introduce two attention-based deep learning
frameworks, CRISPR-ONT and CRISPR-OFFT, to predict CRISPR/
Cas9 sgRNA efficiency and specificity, respectively. CRISPR-ONT
combines a deep CNN with an attention mechanism to build an
accurate and interpretable model, which can effectively capture
the intrinsic characteristics of Cas9-sgRNA binding and cleavage.
The attention mechanism allows CRISPR-ONT to learn to pay atten-
tion to PAM-proximal regions of the sequence that conveymore rel-
evant information about cleavage efficacy. The permutation
nucleotide importance analysis clearly indicates the relative impor-
tance of each position in the input sgRNA sequence, which helps to
expand our understanding of the mechanism of CRISPR/Cas9. In
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addition, we visualize our CRISPR-ONT by converting the convolu-
tional filters into sequence logos and reveal some important pat-
terns for sgRNA efficiency. Similarly, CRISPR-OFFT combines CNN
with an attention module to predict sgRNA off-target activity, in
which features of different levels are extracted from sgRNA-DNA
sequence pair. We applied the bootstrapping sampling to balance
the samples in each batch since the labels of off-target datasets
were highly imbalanced. Moreover, transfer learning was per-
formed for small-size cell-line sgRNA specificity prediction. Exper-
iments on public datasets demonstrate that both CRISPR-ONT and
CRISPR-OFFT can perform competitively against other predictors.
2. Methods

2.1. Dataset

On-target dataset. In this work, we used six public datasets for
model training, parameter tuning and comparison of our CRISPR-
ONT with existing methods. Wang et al. performed a genome-
scale screen to measure sgRNA activity for two highly specific
SpCas9 variants (eSpCas9 and SpCas9-HF1) and wild-type SpCas9
(WT-SpCas9) in human cells [21]. The indel frequency of a sgRNA
was calculated by:

Indel frequency ¼ Number of edited reads per sgRNA
Number of total reads per sgRNA

ð1Þ

After removing the non-edited sequences, the authors obtained
indel rates of 58,616, 56,887 and 55,603 sgRNAs for these three
nucleases, which we refer to as datasets SP, HF and WT, respec-
tively. The corresponding log2 fold change of sgRNA counts
between before and several days after treatment with CRISPR/
Cas9 was calculated and normalized. Datasets Sniper-Cas9 [31],
SpCas9-NG [32] and xCas9 [33] were curated from [34]. These
SpCas9 variants have been shown both enhanced fidelity and
altered or broadened PAM compatibilities [34]. Target sequences
associated with low indel frequency (lower than 20%) were
excluded from this study. After removing the redundancy, the
number of datasets Sniper-Cas9, SpCas9-NG and xCas9 was
37,794, 30,585 and 37,738, respectively. Each entry in the datasets
contains a 23-nt sgRNA and its normalized indel frequency. Data-
set WT was used as a benchmark dataset during model selection
phase. Other five datasets were utilized to evaluate the perfor-
mance of our and the compared models. We randomly partitioned
the sequences into training set and independent test set with 85%
and 15% classes for each dataset. Experiments were performed
under 10-fold cross-validation in the training phase. More details
can be found in Supplementary Table S1.

Off-target dataset. The off-target data detected by GUIDE-seq,
Digenome-seq, BLESS, etc were gathered from published studies
[7,9,35–38]. These datasets contain two human cell types, namely
HEK 293 cell line and its derivatives, as well as K562t. Datasets
HEK293T and K562 contain 18 and 12 sgRNAs, respectively. There
are 656 positive data have been identified as off-targets among all
30 sgRNAs. Chuai et al. [12] obtained 152,577 possible sites across
the whole genome using bowtie2 [39], with a maximum of 6
nucleotide mismatches. A previous study suggested that sgRNA
off-target prediction using classification obtains superior perfor-
mance than regression [12]. Therefore, we focus on sgRNA off-
target prediction using binary classification. The labels of off-
targets were represented with label 1, while the others of all
non-off-targets were labeled by 0. We note that the whole dataset
was highly unbalanced. The number of positive sample and nega-
tive sample of dataset HEK293T is 536 and 132378, respectively.
For dataset K562, there are 20,199 negative samples while the
number of positive samples is only 120. The ratio of positive and
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negative samples of these two datasets is nearly 1:233. Such a class
label imbalance problem brings challenges in predictive model
building. We applied bootstrapping sampling [40] to overcome this
problem.

2.2. CRISPR-ONT for on-target efficiency prediction

Fig. 1 illustrates the overall architecture of CRISPR-ONT. The
input sequence is numerically encoded by using Tokenizer before
being fed into our model. It first passes the encoded sgRNA
sequence through an embedding layer. The encoded sequence is
fed into a convolutional layer for feature extraction. Then, the fea-
ture maps are sent into the attention module. Afterwards, the out-
puts of the two modules are flatten and concatenated,
subsequently being passed through three fully connected layers
to make a final prediction. The detail regarding how CRISPR-ONT
works step by step will be described in the following subsections.

2.2.1. Embedding
The k-mer embedding has shown superior performance on

sequential analysis [41]. We adopted k-mer embedding to repre-
sent the label encoded sequence. The 23-nt sgRNA was changed
into a numerical sequence by using Tokenizer module in Keras
(https://keras.io) before being fed into CRISPR-ONT. Each nucleo-
tide in sgRNA sequence was denoted as an integer. We added a
front padding of size 1 to the numerical sequence. Afterwards,
we performed an embedding weight matrix of dimension k, which
encodes each base into a vector of size k. The numerical sequence

x 2 RL�1 was mapped to a dense real-value spaceE 2 RL�k:Here, L
was 24 which represents the length of numerical sgRNA sequence
with BOS (begin of sequence) token. E is an embedding matrix, k is
a hyperparameter corresponds to the embedding dimension by the

embedding weight matrix Wk 2 R1�k. E is computed by:

E ¼ xWk ð2Þ
In the preliminary experiments, we evaluated model perfor-

mance by varying the k-mer length from 7 to 120 and observed
44 achieved the best performance. The output of the embedding
layer will be fed into the CNN layer. Supplementary Fig. S1 shows
an example of embedding for a sgRNA sequence.
Fig. 1. Schematic illustration of CRISPR-ONT framework. The sgRNA sequence is label
features are forwarded into both convolutional and attention modules for further proce
passed through three fully connected layers to produce the final output. Dropout is used
highly correlates with sgRNA on-target activity.
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2.2.2. CNN feature extraction
The one-dimensional convolution (1D-CNN) layers were intro-

duced to learn and scan a set of convolutional filters across its
input and detects patterns of the embedding matrix E. In the first
convolutional layer (Conv1), we used 256 filters with kernel size
of 5 to extract features from E. To perform dimension reduction,
one-dimensional average pooling operation (Pool1) was used,
which computes mean value within a window whose size is 2
and with step size of 1. The second convolutional layer used two
parallel convolution blocks (Conv2 and Conv3), each with identical
filters and kernel size with Conv1. Rectified linear unit (ReLU) [42]
activation function was applied in the convolution layers, which is
defined as

ReLU ¼ 0; x < 0
x; x � 0

�
ð3Þ

The sgRNA features extracted after two rounds of convolution
operation were concatenated with features of the first round of
convolution-pooling operation, so that CRISPR-ONT can learn
how sgRNA of different abstract levels determine its efficiency.
Note that several convolutional layers stacked together can benefit
for detecting motifs in different ranges. Besides, the parallel archi-
tecture can significantly reduce model complexity, which can help
to combat potential overfitting. Similar ideas have been proposed
in [43,44].

2.2.3. Incorporation of the attention mechanism
Previous studies have shown that position immediately adja-

cent to PAM is critical for its activity [30,45]. With this revelation,
we assumed that not all features in sequences are equally decisive
for sgRNA efficiency. In the field of neural machine translation, the
attention mechanism is applied to capture long-range dependen-
cies by training the network to learn which elements of the input
sequence to focus on when predicting the output sequence [46].
In sequence analysis, the attention values for individual sites
derived by the embedded attention mechanism allow the model
to pay attention to those important sites that significantly con-
tribute to the final results [47]. Here, we integrated an attention
module into CRISPR-ONT to capture the positional importance of
the input sequence, thus improving the predictive power and
model interpretability at the level of nucleotide at specific position
encoded and embedded as an input. After initial feature extraction, the encoded
ssing. After being flatten, the features of these two modules are concatenated and
for model regularization to avoid overfitting. The output is a regression score that

https://keras.io
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of sgRNA. The attention layer took the feature vectors after the sec-
ond round of convolution operations (FConv2 and FConv3) as inputs,
then computed a score reflecting whether the neural network shall
pay attention to the sequence features at that position. In our early
attempts to build the attention-based model, we compared with
five attention scores including dot, general, concat, perceptron and
add [48] as described in Formula (4) to choose the attentional
architecture.

score q;K ið Þ ¼

qTKi

qTWK i

W q;K i½ �

dot

general
concat

vTtanhðWqþ UK iÞ perceptron

UðW1qþW2K iÞ add

8>>>>>><
>>>>>>:

ð4Þ

where q 2 Rn�dk and Ki 2 Rn�dk strand for the queries and keys met-
rics, respectively. U 2 R1�6, W1 2 R6�256 and W2 2 R6�256were ran-
domly initialized weight vectors. We applied a uniform
distribution to initialize them. The add function works best among
these functions. This observation is in accordance with a previous
study, which shows that additive attention [46] achieves higher
accuracy than multiplicative attention [48]. The detailed results will
be presented in Section 3.1. Additive attention is a commonly used
attention function which computes the compatibility function using
a feed-forward network with a single hidden layer [23]. Hence, we
implemented the additive attention to calculate attention scores in
our CRISPR-ONT, thus efficiently capturing the internal correlations
of the input sequence when predicting the output. It learns to assign
different weights to the feature vector corresponding to individual
positions and then computes their weighted average to improve
prediction. This allows CRISPR-ONT to learn to focus on regions of
the sequence that convey more relevant information about sgRNA
on-target activity. Supplementary Fig. S2 depicts the attention
architecture. Here, q and Ki denote features of the jth position in
sgRNA sequence, with each dimension corresponding to a kernel
in FConv2 and FConv3, respectively. The attentional vector score
q;K ið Þ was then fed through the softmax layer to produce the pre-
dictive distribution formulates as:

ai ¼ softmax f q;K ið Þð Þ ð5Þ
where ai denotes attention weights, which reflects the similarity of
q and Ki:

aoutput ¼
Xm

i¼1
aiK i ð6Þ

Here, m ¼ 6. Larger value of aoutputindicates the corresponding
position is prior to sgRNA efficiency.

2.2.4. Features fusion and prediction
In order to integrate the features captured by the convolution-

pooling module (FPool1) and attention mechanism (FAtten), we
employed a concatenation layer to concatenate all the values in
FPool1 and FAtten and then forward into the fully connected layers
(Dense1, Dense2 and Dense3), among which the number of hidden
layer units is 128, 64, 32, respectively. We used dropout [49] for
model regularization with a 0.4 dropout rate.

Fmerge ¼ denseðdenseðdenseðconcatðFPool1; FAttenÞÞÞÞ ð7Þ
where concat (�) and dense(�) denote concatenation and dense oper-
ations, respectively. Fmerge represents feature map of the third dense
layer (FDense3) for the merged convolution-pooling and attention
modules. Fmerge was forwarded into an output layer which consists
of one neuron corresponding to a regression score of sgRNA effi-
ciency. The linear activation was applied in the final output layer
to perform a linear transformation and made prediction of sgRNA
cleavage efficacy. That is
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Output ¼ linearðFmergeÞ ð8Þ
where linear (�) represents the linear transformation.

2.3. CRISPR-OFFT for off-target activity prediction

Fig. 2 depicts the network architecture of CRISPR-OFFT, which
proceeds in six stages. (i) The pair-wise nucleotides in the particu-
lar position are encoded as integrals range from 0 to 15 according
to the possible pairwise combinations of all single nucleotides (AA,
AC, . . ., TG, TT). For example, an ‘‘AA” in sgRNA-DNA sequence pair
is encoded as 0, and ‘‘TT” is represented as 15. Consequently, the
sgRNA-DNA sequence pair is converted into an integral sequence
with size of 23. Supplementary Fig. S3 illustrates how the encoding
scheme encodes sgRNA-DNA sequence pair into an integral
sequence with 23 (length of the sequence pair) in length and pre-
sents an example of how to encode a sgRNA-DNA sequence pair.
(ii) Word2vec is applied to map the encoded sgRNA-DNA sequence
pair to a dense real-valued high-dimensional space and being used
as the input of CNN. Here, the dimension of word embedding is
100. (iii) 1D-CNN with 20 convolutional filters of size 5 with stride
size 1 scans along the input sequence. ReLU is chosen as the acti-
vation function after each convolutional layer. The convolutional
layers mentioned hereafter all use ReLU. Following the convolution
and nonlinearity, batch normalization is applied to speed up con-
vergence [50]. Then the extracted features are forwarded into
another round of convolution and batch normalization operations,
which consists of 40 convolutional filters of length 5. Subsequently,
the extracted features are fed into the convolutional-batch normal-
ization and convolutional modules, with 80 convolutional filters of
length 5 and 80 convolutional filters of length 9, respectively. (iv)
The outputs of these two modules are passed through the attention
module for further processing. (v) After being flatten, the outputs
of the attention module are fed into two consecutive fully con-
nected layers, which consist 40 and 20 neurons, respectively. We
use dropout for model regularization with a 0.2 dropout rate. (vi)
The final output layer consists of two neurons that quantify
propensity for on- and off-target sites. The two neurons are fully
connected to the previous layer using softmax activation function,
which is commonly used in the final output layer to the previous
layer to distribute the probability throughout each of the output
nodes. More details about the CRISPR-OFFT architecture can be
found in Supplementary Notes Section S1.1.

2.4. Model training and model selection

We implemented the proposed methods in Python 3.6.12 and
Keras library 2.3.0 with a Tensorflow (2.2.0) backend. The training
and testing processes were performed on a desktop computer with
Intel (R) Xeon (R) CPU E5-2678 v3 @ 2.50 GHz, Ubuntu 20.04.1 LTS
and 62.8 GB RAM. Four NVIDIA TITAN XP 12 GB of memory per
GPU have been used to accelerate the training and testing process.
We employed the Adamax [51] with MSE loss function to train our
CRISPR-ONT. MSE loss function is formulated as follows:

MSE ¼
Xk

n¼1

ðytrue � ypredÞ2
k

ð9Þ

where k is the number of testing samples, ytrue and ypred represent
measured sgRNA efficiency and predicted score, respectively. We
aimed to optimize the parameters in the proposed CRISPR-ONT by
minimizing the loss function in the training process. The distribu-
tion of the CRISPR-ONT network parameters such as the number
and neurons per layer of CNNs were determined empirically. We
applied grid search to adjust the following hyperparameters: drop-
out rate over the choice (0.2, 0.3, 0.4, 0.5), batch size over the choice
(64, 128, 256) and number of epochs over the choice (50, 100, 150,



Fig. 2. The CRISPR-OFFT model architecture. The sgRNA-DNA sequence pair is encoded and embedded as an input. After initial feature extraction and two rounds of
convolution operations, the encoded features are fed into both linear convolution and another convolution module. Then, the outputs of these two modules are combined to
an attention module. Finally, the attention layer is followed by three fully connected layers to assess sgRNA off-target activity.
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200). For all experiments, we used 10-fold cross-validation analysis
to evaluate our models. The optimal hyperparameters were deter-
mined as: dropout rate was 0.4, epoch was 100 and batch size
was 128. The learning rate was uniformly changed. We set its initial
value of learning rate to 0.0005, and the value was reduced to 4/5 of
the original value every 100 epochs. The lower limit of the learning
rate was set to 1e-5.

Binary cross entropy (BCE) loss function is well used in binary-
label neural networks, which is defined as

LBCE ¼ �
XN

i¼1
ðytruelogðypred þ ð1� ytrueÞlogð1� ypredÞÞ ð10Þ

where N is the size of the batch. We used the Adam optimizer to
train our CRISPR-OFFT for minimizing the BCE loss function. The
learning rate was uniformly changed. An initial learning rate is set
to 0.003 to CRISPR-OFFT and a reducing factor of 0.2 after 60 itera-
tions. The lower limit of the learning rate was set to 1e-5. Similarly,
the distribution of the CRISPR-OFFT network parameters was also
determined empirically. Grid search was applied to adjust the fol-
lowing hyperparameters: dropout rate over the choice (0.2, 0.3,
0.4), batch size over the choice (64, 128, 256, 512) and number of
epochs over the choice (30, 60, 90, 120). The optimal hyperparam-
eters of CRISPR-OFFT were determined as: dropout rate was 0.2,
epoch was 60 and batch size was 256.

2.5. Evaluation metrics

We quantitatively assessed the performance of the proposed
CRISPR-ONT with two commonly used evaluation metrics includ-
ing Spearman correlation coefficient (SCC) between predicted and
measured on-target activity and the area under Receiver Operating
Characteristic (AUROC). For a sample of size n, the n raw scores xi,
yi are converted to ranks rgx, rgy. SCC is calculated by:

SCC ¼ covðrgx; rgyÞ
rgxrgy

ð11Þ

where covðrgx; rgyÞ represents the covariance of the rank variables,
rgx and rgy donate the standard deviations of the rank variables. SCC
was calculated using SciPy library (http://scipy.org). AUROC was
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calculated to comprehensively quantify the overall predictive abil-
ity. The value of AUROC is in 0.5 ~ 1, where a larger value means
the model is predictive and robust. We used 0.5 AUROC as the
baseline.

In addition, we assessed the performance of our CRISPR-OFFT
using two evaluation metrics. The ROC curve is plotted with verti-
cal axis shows sensitivity and horizontal axis shows 1-specificity,
reflecting the relationship between sensitivity and specificity at
different thresholds. The off-target datasets used in this study are
extremely imbalance. ROC curve does not change due to the distri-
bution of positive and negative samples. So, it is suitable for imbal-
anced binary classification. Precision recall (PR) curve is plotted
with Precision as the vertical axis and Sensitivity as the horizontal
axis, which reflecting the trade-off between the Precision of the
recognition of positive samples and the ability to cover positive
examples. Area under the PR curve (PRAUC) closes to 1 represents
the model is more predictive. Precision and Sensitivity are defined
as follows:

Precision ¼ TP
TPþ FP

ð12Þ

Sensitivity ¼ TP
TPþ FN

ð13Þ

where TP, FP and FN represent true positive, false positive and false
negative, respectively.
3. Results

3.1. Choices of attentional architectures for CRISPR-ONT

We first conducted extensive analysis to examine the perfor-
mance of attention-based model with different alignment func-
tions including dot, general, concat, perceptron and add and shed
light on which function is best for the proposed attention architec-
ture. We applied five alternatives to calculate the attention scores
for predicting sgRNA efficiency on five independent datasets under
10-fold cross-validation. Overall, CRISPR-ONT_add achieved supe-
rior performance in terms of SCC on these datasets. Besides, it also

http://scipy.org
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showed higher AUROC scores on all datasets except for dataset
SpCas9-NG (see details in Supplementary Table S2). Together,
among different models, the attention model with add is best, as
evaluated by SCC and AUROC.
3.2. Comparison of CRISPR-ONT and state-of-the-art sgRNA efficiency
predictors

In order to access the predictive ability of CRISPR-ONT, we com-
pared it with five state-of-the-art deep learning-based methods
including attnToCrispr_CNN, DeepCas9, DeepSpCas9, DeepHF and
C-RNNCrispr across five independent datasets. Prior to this, we
briefly comment on some comparisons among these methods
(Table 1). (1) CRISPR-ONT, AttnToCrispr_CNN and DeepHF apply
k-mer computed using embedding method, while others use one-
hot encoding to represent the nucleotides. (2) The architecture
parameters are different among these methods. Specifically,
DeepSpCas9 merges three 1D-CNN layers. DeepCas9 uses one 1D-
CNN layer, whereas AttnToCrispr_CNN uses two layers of
transformer-based 2D-CNNs. DeepHF uses a single BLSTM layer,
whereas C-RNNCrispr uses a single 1D-CNN followed by a BGRU.
CRISPR-ONT uses multiple layers of 1D-CNNs with attention mech-
anism to improve the interpretability. (3) Besides sgRNA
sequences, attnToCrispr_CNN, DeepHF and C-RNNCrispr introduce
biological features to improve performance, such as gene expres-
sion profile. Other methods such as CRISPR-ONT predict sgRNA
on-target activity by considering sequence composition alone.
For more details, see Supplementary Tables S3 to S8. We compared
these models by considering sgRNA sequence. To make a fair com-
parison, we trained CRISPR-ONT based on the training data strictly
consistent with other methods. Each dataset was randomly divided
into training dataset and independent test dataset with the propor-
tion of 85%:15%. The training process was performed under 10-fold
cross-validation on each training dataset. In the testing stage, we
tested the proposed CRISPR-ONT under the same condition with
all the compared methods on each testing dataset.

On the whole, CRISPR-ONT achieved the highest SCC, with
increase by 2.6% on average compared with the second best Deep-
Cas9 (Fig. 3). It is clear that CRISPR-ONT consistently outperformed
others in terms of AUROC (Fig. 4). CRISPR-ONT achieved a mean
AUROC of 0.865 while the second best attnToCrispr_CNN achieved
0.626 on the matched training, validation and test data split. This
demonstrates the effectiveness of the proposed model for
CRISPR/Cas9 sgRNA on-target activity prediction. Hence, we con-
clude that our CRISPR-ONT is competitive against other existing
deep learning-based predictors.

We further compared the running time of CNN integrates
attention-based CRISPR-ONT, the CNN-RNN based C-RNNCrispr
and the pure RNN-based DeepHF. Table 2 reports the training time
for each predictor on five datasets over 10-fold cross-validation.
Table 1
Existing deep learning-based methods for CRISPR/Cas9 sgRNA efficiency prediction.

Model Encoding Architecture Sequence

CRISPR-ONT embedding 2 1D-CNNs,
attention

sgRNA

AttnToCrispr_CNN embedding 2 2D-CNNs,
transformer

sgRNA, gene
expression

DeepCas9 one-hot 1D-CNN sgRNA
DeepSpCas9 one-hot 3 1D-CNNs sgRNA
DeepHF embedding BLSTM melting temperatures,

stem-loop
C-RNNCrispr one-hot 1D-CNN, BGRU sgRNA, epigenetic

features

Note: BLSTM, bidirectional long short-term memory network; BGRU, bidirectional
gate recurrent unit network.
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We observed CRISPR-ONT gained superiority of running time than
the best alternate method C-RNNCrispr. More specifically, we
trained CRISPR-ONT using 4 NVIDIA TITAN XP GPUs, spending
about 3.94 h for these datasets. Due to the internal structure of
BLSTM, DeepHF needs more computational resource for model
training. Under the same settings, DeepHF took about 10 times
training time than CRISPR-ONT. As expected, the running time of
C-RNNCrispr was somewhere in between. Therefore, the substan-
tial difference in running time can be attributed to the efficiency
of CRISPR-ONT over C-RNNCrispr and DeepHF, which helps it save
computational resources, especially for large-scale prediction.
Together, these observations suggest that CRISPR-ONT achieved
superior performance in terms of accuracy and time complexity
for sgRNA efficiency prediction.

3.3. Biological insights into CRISPR-ONT for sgRNA efficiency prediction

Next, we examined the contribution of attention mechanism.
We explored whether CRISPR-ONT can learn the important posi-
tions in the protospacer, which have significant influences on
sgRNA cleavage efficacy. If certain positions have great effects on
sgRNA efficiency, then randomizing those nucleotides is expected
to dramatically deteriorate the performance. We performed a per-
mutation nucleotide importance analysis, systematically random-
izing each position in testing sequences and examining the
resulting effect on the outputs.

As depicted in Fig. 5, the nucleotide at 1 bp upstream of the
PAM has the greatest effect on sgRNA activity, reducing SCC by
29.1% upon randomization. This observation is consistent with pre-
vious findings that nucleotides proximal to the PAMwere the most
predictive of efficiency [52]. Nucleotide positions 2, 3, 4 and 5 also
showed effects, although weaker, reducing SCC by 12.78%, 17.41%,
11.92% and 9.41%, respectively. These observations are in accor-
dance with a previous study, which corroborates that base pair
in the first 5 nucleotides adjacent to the PAM (the core region)
was found to be more important than pairing in the rest of the
region [53]. The core region sequence largely determines target
efficiency [3,54]. These findings are also reminiscent of the previ-
ously observed nucleotides at 1 ~ 5 positions are crucial for the
interaction with crRNA and subsequent being cut by Cas9 [53].
Intriguingly, we observed a second largest reduction at position
3 bp upstream of the PAM. This is likely caused by the factor that
cleavage tend to be located at this position [55]. Chakrabarti
et al. found that HNH usually cuts at position 3, while RuvC flexibly
Fig. 3. Heatmap of SCC between CRISPR-ONT and other methods on various
datasets under 10-fold cross-validation. The prediction models are placed vertically,
whereas the test sets are arranged horizontally.



Fig. 4. Comparison of AUROC of CRISPR-ONT and the state-of-the-art deep learning-based methods on five datasets under 10-fold cross-validation.

Table 2
Overall training time cost comparison of CRISPR-ONT, C-RNNCrispr and DeepHF on five datasets under 10-fold cross-validation.

Model Sinper SpCas9 xCas ESP HF

CRISPR-ONT 2640 2145 2616 4093 2691
C-RNNCrispr 10,419 9288 10,354 16,140 15,643
DeepHF 24,017 19,314 24,275 37,899 36,292
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cuts at either 3, 4, 5 or even further upstream of the PAM [56].
Another study also demonstrated that 2~5 nucleotides upstream
of the PAM are critical for the cleavage precision of the target site
[57]. Interestingly, we also found 3 base pairs in the PAM distal
region are also crucial for sgRNA activity, which in agreement with
a previous finding [58]. Similar results were observed in terms of
AUROC. Taken together, we conclude that CRISPR-ONT can reflect
the local sgRNA efficiency characteristic, thus providing important
biological insights into sgRNA cleavage efficacy.

3.4. Visualization of sequence features learned by CRISPR-ONT

We further explore the ability of CRISPR-ONT to capture infor-
mative sequence features. Using the similar approach in previous
studies [59–61], we visualized the specific sequence features from
the first convolutional layer. Each filter in the first convolutional
layer can be regarded as a specific sequence motif discriminator.
The first convolutional layer of CRISPR-ONT contains 256 filters
with kernel size of 5 to extract the sequence features. While feed-
ing the encoded sgRNA sequence to the well-trained CRISPR-ONT,
the filters of the first convolutional layer scan the 5-nt long subse-
quence from the beginning to the end of the input sequence with
stride of 1. Each filter computes the 1D-CNN with the 5-nt subse-
quence and produces an activation value for this sequence frag-
ment. If a 5-nt subsequence achieves a larger activation value for
a specific filter, it means that this sequence fragment is more likely
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to be the pattern that the convolution unit tends to find. We fed all
the test sequences of dataset ESP through the first convolutional
layer of the model. For each filter, we extracted all 5-nt sequence
fragments that activate the filter and use only activations that
has the maximum value. After all the 5-nt subsequences were
extracted, they were stacked and the nucleotide frequencies were
counted to produce a position frequency matrix. Sequence logos
of the corresponding subsequences from convolution units were
then generated by WebLogo [62]. Fig. 6 depicts the top 9 highly
activated convolution units that were most related to CRISPR/
Cas9 sgRNA efficiency. Interestingly, T were disfavored at position
17 (4 bp upstream of the PAM), which also observed by Chuai et al.
[12]. In addition, we observed many patterns are G-rich, indicating
that G enrichment is likely to be an important feature. Moreover, C
was found to be informative at position 18, which reflects that
cleavage site usually resides 3 bp upstream of the PAM.

3.5. Comparison of CRISPR-OFFT and existing sgRNA off-target
predictors

To evaluate the predictive ability of CRISPR-OFFT, we compared
it with four computational off-target predictors including CFD,
CNN_std, AttnToMismatch_CNN and CnnCrispr on the above off-
target datasets. For each cell line, we randomly selected 20% of
the data as the independent test set. The remaining 80% of data
for two cell lines were merged as the training data to train



Fig. 5. Contribution of protospacer nucleotides to sgRNA efficiency. The effect of nucleotide randomization on dataset ESP is shown as reduction of SCC and AUROC. ‘1’
signifies position of the nucleotide with 1 base pair upstream of the NGG protospacer adjacent motif (PAM).
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CRISPR-OFFT and tune the hyperparameters during cross-
validation procedure. Notably, the labels of the whole dataset were
highly imbalanced, so we applied the bootstrapping sampling algo-
rithm to the mini-batches for model training. For any given data-
set, the training procedure is as follows: (i) the negative samples
of each dataset were randomly divided into n parts, where
n ¼ N=256, N is the number of negative samples and 256 is the
mini-batch size. (ii) 256 samples were randomly selected with
replacement from positive data in the training set and being com-
bined with the negative sample in (i) to construct a mini-batch
training dataset. (iii) Repeat step (ii) N times to get a total of N bal-
anced mini-batch training set. A similar idea has been adopted in
previous studies [12,16]. This strategy ensures that mini-batches
make the ratio of positive and negative examples 1:1 in the train-
ing data, thus avoiding gradient update instability and substan-
tially improving the predictive power.

When evaluated on datasets HEK293T, K562 and Total, CRISPR-
OFFT achieved substantially superior performance compared to
others, reaching AUROCs of 0.973, 0.994 and 0.980, respectively
(Fig. 7). This implies CRISPR-OFFT achieves the highest true posi-
tive rate among all predictors when the false positive rate is fixed.
Besides, it can also be observed that CRISPR-OFFT performs better
than other methods on datasets HEK293T and Total in PRAUC, with
values of 0.790 and 0.759, respectively. CRISPR-OFFT achieved
comparable performance with CnnCrispr on dataset K562, with
PRAUCs of 0.816 and 0.817, respectively, reflecting that CRISPR-
OFFT can dramatically decrease the false positives. In summary,
our CRISPR-OFFT outperforms the others on specific cell lines.

3.6. Testing the generalizability of CRISPR-OFFT

To examine the generalizability of CRISPR-OFFT for off-target
prediction, we tested the compared models on the above datasets
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under 10-fold cross-validation. We randomly split all 30 sgRNAs
into 10 groups for testing, each contained 3 sgRNAs. For each test
set, we chose 27 sgRNAs from total 30 sgRNAs as a training set,
which have no overlaps with current selected testing sgRNAs. We
applied the bootstrapping method as mentioned in Section 3.7 to
eliminate data imbalance of positive samples and negative sam-
ples. Fig. 8 shows the distribution of AUROCs and PRAUCs for
CRISPR-OFFT and other methods. Overall, we observed that our
CRISPR-OFFT consistently outperforms others. We obtained mean
AUROCs of 0.970, 0.927, 0.610, 0.896 and 0.922 for CRISPR-OFFT,
CnnCrispr, CNN_std, AttnToMismatch_CNN and CFD, respectively.
Besides, the above methods yielded PRAUCs of 0.440, 0.317,
0.015, 0.107 and 0.300, respectively. On average, CRISPR-OFFT
achieved 4% and 12% higher than the second best CnnCrispr. These
observations indicated that CRISPR-OFFT has better generalizabil-
ity than other tools.

3.7. Advantages of transfer learning for small-size cell line sgRNAs off-
target prediction

In CRISPR/Cas9 sgRNA specificity analysis, a most common issue
is that the number of valid off-target data is limited and small.
Training a fully deep network structure with small number of data
may lead to overfitting, which is the main cause of low perfor-
mance and generalization ability. Transfer learning [63] is a good
way to tackle this challenge where the learned parameters of
well-trained model on a large dataset are shared to the targeted
network model. Hence, the parameters’ transfer of the pre-
trained model may provide the new target model a powerful fea-
ture extraction ability and reduce computation cost.

We applied a transfer learning strategy to enhance the predic-
tive power of CRISPR-OFFT for unseen sgRNAs. More narrowly,
we randomly selected 15 sgRNAs from datasets HEK293T and



Fig. 6. Examples of sequence motifs detected by first layer convolutional modules learned by CRISPR-ONT. X-axis represents the position of the protospacer sequence. Here,
position 20 is referred to the nucleotide 1 bp upstream of the PAM.
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K562 to construct a benchmark dataset for model pre-training. The
remaining 15 sgRNAs were randomly partitioned into 3 groups,
each group contains 5 sgRNAs. The training and test data for each
dataset were generated in the sameway as described in Section 3.7.
We first trained our CRISPR-OFFT on the benchmark for feature
extraction. During fine-tuning, we optimized the BCE loss function,
only updating the weight parameters in the last two fully con-
nected layers (862 free parameters) again with the remaining
sgRNAs. For any given sgRNA of interest, the training process pro-
ceeds in four stages. (i) Pre-train the CRISPR-OFFT with the bench-
mark dataset for 20 epochs. (ii) Freeze the convolution, attention
and the first fully connected layers. (iii) Train the last two fully
connected layers of the model with the training data from the
sgRNAs of interest for another 50 epochs. (iv) Evaluate the model
on the test data.

In order to estimate the effect of transfer learning, we compared
two strategies: training CRISPR-OFFT from scratch based on new
sgRNAs alone and transferring the well-trained CRISPR-OFFT to
fit new sgRNAs data via fine-tune. As depicted in Fig. 9, fine tune
improved the predictive power compared to model training from
scratch, leading to 0.7% and 24% improvements on average in terms
of AUROC and PRAUC, respectively. These observations indicated
1453
that transfer learning precedes the naive training way in terms of
sgRNA-specific prediction.
4. Discussion

Accurate prediction of CRISPR/Cas9 sgRNA on-target activity is a
major goal in genetic manipulation research. Besides, the potential
homologous off-target binding and cleavage are important con-
cerns for this system and they are highly depending on the selec-
tion of sgRNA. In this study, we developed two attention-based
CNN frameworks, namely CRISPR-ONT and CRISPR-OFFT, for
CRISPR/Cas9 sgRNA efficiency and specificity prediction, respec-
tively. Both the proposed algorithms use CNNs frameworks to
extract the contextual sequence features and have built-in atten-
tion modules to focus on the specific part of the input to help
extract interpretable Cas9 binding sgRNA patterns. Comprehensive
tests on public datasets showed the superior performance of the
proposed methods.

The architecture of CRISPR-ONT allows it to combine features of
different abstraction levels extracting from the one round
convolution-pooling and two rounds convolution-pooling modules
with attention for boosting the predictive power for sgRNA effi-



Fig. 7. Performance comparison of CRISPR-OFFT and different computational models in terms of ROC curves (up) and Precision-Recall curves (bottom) on three independent
datasets.

Fig. 8. Performance comparison of CRISPR-OFFT and different computational models in terms of AUROC (left) and PRAUC (right) on dataset under 10-fold cross-validation.
AttnToMismatch: AttnToMismatch_CNN.
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ciency prediction. Furthermore, dropout regularization was
applied to combat overfitting of CRISPR-ONT. We compared vari-
ous alignments functions and showed attention with add function
is superior for sgRNA on-target prediction. Given the black box nat-
ure of deep learning, we try to interpret our CRISPR-ONT through
three aspects. First, to embed the explainability in our framework,
we introduced the attention mechanism, which has been widely
applied in deep learning to indicate important positions in the
input. As demonstrated earlier, using attention module makes
model pay attention to some more important segments in the
sequence. It can also be understood that the influence of nucleo-
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tides differs at different positions of sgRNA sequence on its effi-
ciency, therefore, applying the attention module may contribute
to the prediction accuracy. Second, we applied the in-depth per-
mutation nucleotide importance analysis to analyze the effect of
nucleotide at particular position for sgRNA efficiency, thus reveal-
ing the underlying biological mechanisms of our model. Third, we
interpret our model by converting the convolutional filters into
sequence logos to find the informative sequence patterns for
sgRNA activity. We visually inspected the convolution units of
the first convolutional layer of the pre-trained CRISPR-ONT to find
the important sequence patterns that can affect the sgRNA effi-



Fig. 9. Impact of transfer learning via fine tune on AUROC (left) and PRAUC (right). Baseline corresponds to training the CRISPR-OFFT from scratch only with the sgRNAs of
interest, and fine tune corresponds to pre-training the CRISPR-OFFT on the benchmark dataset followed by updating the fully connected layers on sgRNAs of interest.
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ciency. In fact, these three approaches are complementary to each
other in generating biological insights from CRISPR-ONT frame-
work. To sum up, CRISPR-ONT is a computational tool for accurate
sgRNA target efficacy prediction which has the potential to provide
novel biological hypotheses. We also showed that CRISPR-ONT is
competitive with the state-of-the-art methods when tested against
prokaryotes (Supplementary Table S9). Additionally, our work
could be applied for CRISPR/Cas12a system by adjusting the input
shape of the model.

In spite of widely used of CRISPR/Cas9 for genome editing, gen-
eral principles that govern genome-wide off-target activity remain
largely unknown. We proposed an attention-based CNN architec-
ture named CRISPR-OFFT to predict sgRNA off-target activity.
CRISPR-OFFT automatically trains the sequence features of
sgRNA-DNA pairs, and embeds the trained word vector matrix into
CNN with attention mechanism. Extensive tests on public datasets
demonstrated that CRISPR-OFFT outperforms other methods in
terms of AUROC and PRAUC. More importantly, we applied transfer
learning via fine tune to train CRISPR-OFFT by taking advantage of
data from 15 sgRNAs from total off-target dataset and their com-
monalities. To our knowledge, this is the first study for investigat-
ing the effect of transfer learning for sgRNA off-target activity
prediction. Applying this strategy, CRISPR-OFFT achieved clearly
superior performance than training from scratch. This is not sur-
prising given that there are commonalities across sgRNAs. Hence,
we conclude that the representations learned from other sgRNAs
are effectively transferred and exploited for the target dataset.
When transfer learning is applied, fewer annotations are needed
to achieve satisfactory performance. Our results suggest that there
is promise in the idea of sharing information between tasks and
between cell lines for off-target prediction and may help overcome
the limitations of training deep learning models on small size
datasets.

Generalization is a drawback of deep learning-based CRISPR/
Cas9 activity and specificity prediction methods, namely a model
only preforms well in a specific dataset but not in an unseen data-
set [64]. These techniques are data-driven, however, there are sev-
eral challenges for achieving sufficient unbiased training dataset to
adequately fit the on- and off-target prediction models. On the one
hand, data heterogeneity is a common issue for on-target predic-
tion. Datasets from different cell types, organisms, and platforms
are heterogeneous and could not be simply mixed [65]. Feature
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learning on heterogeneous datasets may improve the performance
by accounting for more influencing factors, such as energetic or
epigenetic factors [16]. For example, Chari et al. identified epige-
netic status to be an additional modulator of sgRNA activity con-
sidering DNase-seq and H3K4 trimethylation data [66]. Although
adding epigenetic information may improve model accuracy, it
also leads to decreasing the generalizability compared to
sequence-only models. This is because epigenetic features are
highly variable cross-species and depend on the cell type and cell
state, restricting the application of these methods for species-
specific and cell type-specific predictions [67]. They hence opted
for considering only sequence information for their sgRNA Scorer
and sgRNA Scorer 2.0 methods [66,67]. On the other hand, com-
pared to the datasets for on-target prediction, the amount of off-
target raw data might be less sufficient [12]. Additionally, data
imbalance [68] is a common pitfall for off-target prediction. A
majority of the available sgRNA off-target data are detected via
high-throughput sequencing. For each target site, the homologous
off-target sequences with cleavage efficiency can be genome-wide
detected. The detected homologous sgRNAs are defined as positive
data, and all possible nucleotide mismatch loci are regarded as
negative data [12,16,65,69]. The homologous sgRNA target sites
with undetected cleavage outnumber that of the detective ones.
Deep learning models trained on imbalanced data tend to achieve
high accuracies for the majority class. But the learning models gen-
erally perform worse for the minority class, which is noteworthy in
this case. These issues could be mitigated by applying proper nor-
malization and regularization techniques to penalize and reduce
data-associated noise and biases. Continuous efforts are required
to further improve the accuracy and robustness methods for
CRISPR/Cas9 on- and off-target predictions.

Our future work will focus on prediction of sgRNA off-target
activities with insertions or deletions of sgRNA-DNA pairs. Cur-
rently, the proposed CRISPR-OFFT only uses sgRNA-DNA pairs to
evaluate CRISPR/Cas9 sgRNA specificity. A previous study has
shown that DNA sequences contain insertions (DNA bulge) and
deletions (RNA bulge) are an integral part of the CRISPR system,
which are important for comprehensive off-target analysis [70].
Abadi et al. proposed a machine learning-based method named
CRISTA for CRISPR cleavage propensity prediction and found that
DNA/RNA bulges are predictive features for boosting the perfor-
mance [16]. Recently, a RNN-based CRISPR-Net has been developed
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to predict off-target activities with insertions and deletions from
sgRNA-DNA pairs [27]. However, the improvement in the predic-
tive power comes at the expense of training time due to the
RNN-based model structure. Therefore, it is still room for develop-
ing more accurate and faster deep learning-based models for
CRISPR/Cas9 specificity by considering both DNA and RNA bulges,
which is deserved to be explored in future.
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