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Abstract: Nowadays, with the ubiquitous presence of the Internet of Things industry, the application
of emerging sensor networks has become a focus of public attention. Unattended sensor nodes can
be comprised and cloned to destroy the network topology. This paper proposes a novel distributed
protocol and management technique for the detection of mobile replicas to tolerate node failures.
In our scheme, sensors’ location claims are forwarded to obtain samples only when the corresponding
witnesses meet. Meanwhile, sequential tests of statistical hypotheses are applied to further detect
the cloned node by witnesses. The combination of randomized detection based on encountering
and sequential tests drastically reduces the routing overhead and false positive/negative rate for
detection. Theoretical analysis and simulation results show the detection efficiency and reasonable
overhead of the proposed method.

Keywords: emerging sensor networks; sequential test; node clone attacks; mobility-assisted;
topology control

1. Introduction

The technology implementation of multifunctional micro-sensor benefits from the rapid
development of Micro-Electro-Mechanism System (MEMS) technology, wireless communications, and
System on Chip [1–3]. Emerging wireless sensor networks are distributed sensing network architectures
constituted by many small, cheap micro-sensors deployed in a monitoring region. These emerging
sensor networks have become more and more popular due to their ease of deployment, especially,
mobile sensor networks, which include mobile nodes with sensing, communication capacity, and
movement ability, are appealing for many applications, for instance, monitoring of animals living
in the wild, tracking patients’ heart condition, etc. At the same time, the introduction of the mobile
node can also broaden the sampling capacity in the network space [4–9], for example, mobile nodes
are utilized as information collecting nodes to collect other static nodes’ data in applications [10].
Today mobile wireless sensor networks have been extensively applied in all kinds of applicable fields.
For example, mobile information systems with the two functions of mobile communication and mobile
computing, are especially suitable for the military operational environment. The solution of the
security requirements for mobile wireless sensor networks is highly desired. All kinds of different
attacks could be launched by an adversary, which include capture attack, wormhole attack, sinkhole
attack, eavesdropping, node clone attacks, etc. Node clone attacks have always been the key issue
that affects the security of wireless sensor networks. Because the tiny sensor nodes are arbitrarily
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deployed and unprotected, generally speaking, these tiny sensor nodes are deployed in locations
readily accessible to attackers.

The adversary can capture sensor nodes which lack hardware support for tamper-resistance,
and can analyze the captured node for assorted information such as ID, code, key pairs, and then
use the credentials of the compromised node to deploy cloned nodes in different strategic locations.
The destructiveness would be indefinitely spread throughout the network. Clones with legitimate
identities would be able to paralyze the network completely by the way of inside attack, for example,
the replicas could not only capture correct data, but also inject false data. They could spy on network
traffic, and capture data from the sensor networks. A more serious threat is that the clone could
distribute false routing information or silence some nodes to control the network structure [11].
A problem-solving method to avoid cloned nodes is to make nodes tamper-resistant, but the cost
implications are prohibitive. Accordingly, detection of cloned nodes is one kind of way to solve the
problem effectively.

As far as the location of witness nodes is concerned, there are two kinds of frameworks: centralized
detection and decentralized detection. In centralized detection, the data packets including location
information are usually forwarded to the base station for detection. To assure the accuracy of detection,
the base station must be trusted and powerful. According to the principle of the centralized method,
the system has some fatal drawbacks. Firstly, the base station undertaking the arduous task of detecting
replicas must be a trusted third party. Once the trusted third party is compromised, a signal peer
invalid will appear, and the centralized detection scheme fails. Secondly, nodes surrounding the base
station possess undue data communication flaws. Once an adversary damages the communications
networks around the witness node, the detection would fail. There is another dimension, which is
the power supply of sensor node can easily run out, so the network lifetime is dramatically cut down.
Finally the high cost of expensive trusted third parties makes it hard for the centralized detection to be
widely used in many wireless sensor networks, so researchers have proposed a new method called
distributed detection [12].

In distributed detection, more than one sensor node in different locations acts as witness node,
which avoids a possible stumbling block existing in centralized detection. In 2005, Parno et al. [13]
presented a distributed scheme called the Randomized Multicast Algorithm for replicas detection.
In the presented scheme, the position information of sensor node is broadcast to

√
n random witness

nodes for detection. Parno et al. presented the other method called Line-Selected Multicast, in the
presented scheme. The position information of sensor nodes is forwarded to witness nodes which are
selected through the analysis of the routing topology. Meanwhile, geometric probability is applied for
replica detection. The two protocols share one crucial feature in common, that is the witness nodes
selected from networks for detection are random and distributed. In practice, it is hard to achieve
the efficiency and security simultaneously in the design of a protocol due to the low success rate
of detecting replicas or high communication cost. Therefore, how to select the witness nodes is a
dilemma [12]. In particular, it needs a large amount of multi-hop routing overhead to transmit the
related information to the witness node for detection in mobile sensor networks. How to reduce
routing overhead is another dilemma.

In our study, a novel distributed scheme is presented for detection of node clone attacks, which
is called Encounter-based Sequential Hypothesis Testing protocol (ESHT). The basis of the ESHT
protocol is the meeting of mobile nodes and the sequential hypothesis testing. In the ESHT scheme,√

N random tracked nodes are pre-allocated to each mobile sensor, and every tracked node has
√

N
witness nodes. When the tracked node and its witness node meet, the related location information is
transmitted to the witness node, and the witness node judges whether the tracked node is a comprised
node or a replica according to whether or not the measured speed ν is over the system-configured
νmax. However, this can easily cause many more wrong judgments, if the judgment is made based on
only one such observation. To improve the precision, a sequence of speed samples is collected and
the Sequential Probability Ratio Test is applied to provide upper bounds for the false positive and
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false negative rates. Therefore, if two witness nodes with same tracked node encounter, the related
detection information is forwarded to one of them and the sequential hypothesis testing method
is applied to detect the replica. One major advantage of the ESHT protocol is that the overhead of
maintaining a traditional multi-hop routing path is reduced to achieve energy saving effects, and an
equally important benefit of the ESHT protocol is that the mobile replicas can be found quickly with a
few samples for each tracked node.

The rest of the paper is organized as follows: we describe some of the related studies in Section 2.
The Random Waypoint Mobility Model is introduced, which is adopted in our scheme as the mobility
mode in Section 3. Section 4 illustrates the system environment, while the encounter-based protocol
for detecting mobile clones is presented, which utilizes sequential probability ratio testing. Section 5
describes the theoretical analysis of security and efficiency, and shows our experimental investigation.
Finally, the conclusions and guidelines for further research are drawn in Section 6.

2. Related Works

In emerging sensor networks, as long as the tiny sensors are arrayed, the position of the sensor
remains unchanged. This type of wireless sensor networks is called a static WSN. A commonly used
detection principle of node clone attacks in static WSNs is that the same identity with different locations
for a sensor node is impossible. This kind of scheme, called claimer-reporter-witness framework is
widely adopted to detect static replicated nodes. Two kinds of basic detection methods are often used.
One is centralized techniques [14–16], the other is decentralized techniques [17–21]. Yu et al. [15]
presented an approach utilizing the technology of compressive sensing to distinguish replicas from
normal nodes in networks. Zhu et al. [18] described a decentralized method applying Localized
Multicast to complete the inspection task. In the study by Zeng et al. [21] for clone detection, two kinds
of frameworks called Random Walk and Improved Random Walk based on Table were presented.

Those schemes are not suitable for mobile scenarios due to the continuous movement. When the
sensor nodes are mobile, the mobile sensor nodes are not fixed at any specific location. Moreover, it is
even harder to forward location claim packets to some witness nodes in a mobile WSN.

In the study by Znaidi et al. [22] a mechanism based on a three-tier hierarchical network structure
was used. The principle of the scheme is based on the use of a Bloom filter. The process of detection can
be split into three steps: first of all, cryptographic keying materials and some relative parameters are
pre-distributed; and secondly, the cluster-head is determined by a relative algorithm; thirdly, the Bloom
filter is utilized for the cluster-heads to exchange the ID information, and a node whose ID belongs to
more than two clusters is detected as a cloned node. The storage cost of this protocol is significantly
reduced. For the additional overhead of Bloom filter and clustering, the communication cost is
relatively high. Based on the theory of similarity, the scheme presented in [23] was proposed by
utilizing the token-based authentication technology. In the scheme, the broadcast of a timestamp
indicates the start of the detection process. Once the detection process starts, a mobile sensor node
randomly selects a protected value Si ∈ {0, 1}l . When a mobile sensor node first encounters another
node in the detection period, the two nodes will swap a token with each other, and then save it in their
memories. When they meet again in the same detection period, each will request the token exchanged
in advance. If the right token is provided, the provider is a genuine node, otherwise the provider
is a cloned node. As long as the access between replicas and comprised node is set up by the smart
attacker, the token is exposed to replicas, and the scheme fails. In order to prevent conspiracy attack
which is launched by communicating with each other, Zhu et al. used a statistics method to detect
mobile clones. This principle asserts that a moving node which encounters another node too regularly
has probably been captured. Specific counters and lists for recording acquainted nodes are utilized to
calculate the total amount of meeting times. The base station is used for centralized analysis.

In the study by Ho et al. [24] the sequential probability ratio test (SPRT) is applied to detect cloned
nodes. In the scheme, those mobile sensor nodes whose speed exceeds a predefined speed threshold
are detected as replicas. A deadly vulnerability of the scheme introduces an invalid signal peer which
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is the inherent drawback of centralized techniques. Manickavasagam et al. [25] proposed a distributed
scheme based on the optimized SPRT. In the scheme, nodes’ speed is optimized to implement a
sequential probability ratio test. At the same time, the message transmission paths are explored to
position the intersection. The advantage of the scheme is that higher the node speed, the easier the
detection is. Moreover, the presented protocol needs not explicit information packets, but periodic
information packets are needed. Its communication cost and storage cost which reach O(n) and O(n)
respectively, are relatively reasonable.

Deng et al. [26] presented a method based on a polynomial based on the dispatches of key pairs.
In the study, Bloom filters are utilized for verifiable authentication and collection of the total amount of
key-pairs which is set up by each mobile node. If the total amount of pair-wise keys set up by the filters
is more than the a predefined value, then the nodes are classified as replicas. However, this centralized
protocol has a serious flaw. It guarantees nothing about whether the replicas report the right number of
keys honestly. Deng et al. [27] presented two decentralized approaches for clone detection in networks.
Both of them are based on mobility-assistance. One approach is single storage of time-location claim
and exchanges (UTLSE), the principle of the UTLSE protocol is that two nodes exchange related
time-location information of the same monitored node until they meet with each other. Then one of
the meeting witnesses is selected to detect the cloned node, and only one time-location claim is stored
in the UTLSE protocol. Another scheme is called multi-time location storage and diffusion (MTLSD).
The principle of MTLSD scheme is similar. The difference is that the second method stores more than
one time-location for every monitored node and forwards the information among witnesses. As a
result, a higher detection rate can be attained by the MTLSD scheme.

In order to find captured nodes, in the study by Conti et al. [28] two distributed approaches were
presented which were called History Information exchange Protocol (HIP) and its optimized version
(HOP). Both algorithms are based on the communication with its one-hop neighbor and the mobility.
Meanwhile, two kinds of attack modes were defined and their behavior discussed. Their differences are
listed as follows: the HIP will keenly observe and analyze node capture attacks only by the information
local to the node, but the HOP needs to analyze node cooperation to detect node capture attacks.

A study by Lou et al. [29] depended on the neighborhood community, which can be characterized
by the one-hop neighbor node list of the node to be detected. The rationale behind the scheme is that
a node cannot appear in different neighborhood communities at any time. The first step of SHP is
the fingerprint claim, where the neighbor node table is signed as the passport, and then the passport
is broadcasted to one-hop neighbors. If the witnesses receive conflicting passports, there must be
replicas present.

Wang et al. [30] presented a study for detecting replicas deployed in wireless sensor networks,
whereby some moving nodes act as patrolmen to finish the detection. For static clone nodes, when
patrollers migrate to a new region, they spread their patrol information and receive the location
messages from surrounding static nodes, and then apply the security thesis that “one benign node
only has one location” to detect replicas which have different locations with the same ID. In another
interval, the patrollers move to another zone to repeat the same operation. If the clones have been
present in a zone, the cloned nodes can be found out once the second conflicting location message is
received. In other cases, the cloned node’s answer messages are retrieved by different patrollers, and
then they would be detected by the trusted third party or by exchanging information of patrol nodes
after around. For the cloned patrol node, the basis of detection is that the speed of moving patrol node
should never exceed the predefined maximum speed Vmax. When the patroller broadcasts a patrol
claim, there will be a static period interval of length T. Once the patroller broadcasts a patrol claim for
a new location in time of [T,T + interval], mobile cloned patrollers must exist.

In short, the existing detection schemes based on location confliction are not suitable for mobile
wireless sensor networks. The research on detection of node clone attacks working in mobile
environments must be different. Due to the mobility of mobile nodes, how to choose the distributed
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witness becomes a key issue. The cost and difficulty of forwarding related information to the designated
witness node are the difficult problem for the solution design.

3. Preliminary Information

In mobile wireless networks, node mobility affects the quality of the wireless channel.
The dynamic changes of the links between nodes make it harder to design routing protocols [31].
Mobility-assisted protocols based on encounters are put forward to alleviate the situation. The main
idea behind the encounter-based protocols is that as a sensor node wants to relay message, it is not
required to look for a link to relay the message immediately but to retain the message until the node
meets the message recipients or the nodes which enable forwarding the message to the recipients,
and then the node forwards the message. This kind of message forwarding way dependent on an
encounter-based protocol does not need the overhead of maintaining traditional multi-hop routing
paths, and it has been widely used in delay tolerant networks. Research on the statistical characteristics
of node meeting, such as the expected meeting time, mean delay time and so on, is of great significance
in improving the performance of the protocol due to messaging when only when related nodes meet.
Some relevant symbols used in the mobile model definition are given in Table 1.

Table 1. Symbols and notations.

Symbol Denotation

R Transmission radius of node.

Xi(t) Position of node i at time t.

Epoch The procedure during which a node moves to somewhere at the same rate, and in the same
direction, and then stops for a while.

L The length of an epoch, which is the distance from the point of epoch beginning to the point of
epoch ending.

ν The speed of node in an epoch, which is distributed in the interval [vmin, vmax] , v is the mean speed.

Tstop
The random residence time selected by node when an epoch is over, the length of residence time is
randomly distributed in the interval [0,Tmax], Tstop is the mean value of Tstop

T
The average length of time that node spends in movement status before an epoch is over. T = L

V
,

the total time is T + Tstop.

νmm
The relative speed between node i and node j when they move in movement mode mm,

vmm =
∣∣∣vi − vj

∣∣∣, where vi is the velocity vector of the node i.

v̂mm The standard relative speed of movement mode mm. v̂mm = vmm
v .

There are two definitions given as follows:

Definition 1. If node i is mobile, whose movement mode is mm, and node j is static, then the hitting
probability is the probability that node i hits node j within the time T, which is represented as PH

mm(t),
and PH

mm(t) = P(∃τ ∈ (0, t
]

: ‖ Xi(τ)− Xj ‖ < R).

Definition 2. If node i and node j are both mobile, their movement mode are mm, then meeting probability is the
probability that node i encounters node j within the time T, which is expressed as PM

mm(t), PH
mm(t) = P(∃τ ∈

(0, t) : ‖ Xi(τ)− Xj(τ) ‖ < R).

Lemma 1. In the movement mode based on epoch, if the speed of node is randomly generated in the interval
[vmin, vmax], where vmin > 0, vmax < ∞, then the mean speed of the node satisfies:

v =
vmax − vmin

ln vmax
vmin

(1)
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3.1. Random Waypoint Mobility Model

Definition 3. In the Random Waypoint Mobility (RWP) model, the migration process of each node is as follows:
randomly select a waypoint X in the network area; randomly select a value which is in the interval [vmin, vmax]

as movement speed ν; the node moves to waypoint X with speed ν; stops in the waypoint X for a random duration
Tstop until the epoch is over, where Tstop is randomly distributed in the interval [0, Tmax] ; repeat the above
migration process.

Lemma 2. If the mobile area of a node is a rectangle, then the Random Waypoint Mobility Model is characterized
by the following:

In one epoch, the mean movement distance for a node is:

L ≈ 0.5214
√

D. (2)

The probability that a node locates in location (x,y) is unevenly distributed, and the probability density
function is:

f (x, y) ≈ 36
D3 (x2 − D

4
)(y2 − D

4
). (3)

In one epoch, the mean movement duration is:

T = L/v. (4)

The probability of the movement direction of a node doesn’t obey a uniform distribution. The direction is
pointed to the center of the network with high probability. If the center of the network is the origin, then the
probability density function of movement direction θ is:

f (θ) =
1

4
∣∣∣sin3θ

∣∣∣ (|sinθ| × g(θ) + arcsin(|sinθ|)× cosθ) (5)

where g(θ) = −2cos4θ − 2cos3θ × |cosθ|+ cos3 × |cosθ|+ cos2θ + cosθ × |cosθ|+ 1.

The location of each node is likely biased towards the center of the network with the movement of
the node in the Random Waypoint Mobility model, so this kind of non-uniform distribution of nodes
makes it difficult to analyze the Random Waypoint Mobility Model.

Hitting Probability

Lemma 3. In the Random Waypoint Mobility model, the average hitting probability of a node in an epoch is PH
rw

PH
rw =

2R× L
D

(6)

Proof. Node A moves in the Random Waypoint Mobility Model, node B is static in a randomly selected
location XB = (x, y) in the network. Further, we suppose that node A locates at the location Xs at
the beginning of some epoch, and locates at location X f at the end of the epoch, node X⊥B in the line
between the node Xs and the node X f is the node nearest to the node XB. When and only when
‖ XB − X⊥B ‖ ≤ R, node A hits node B in the current epoch. Suppose all possible collection of epochs

can be denoted as z =
{
(Xs, X f ) : Xs, X f ∈ U

}
, then all collection of epochs in which node B would

be hit can be denoted as zhit|B =
{
(Xs, X f ) : ‖ XB, X⊥B ‖≤ R

}
, so the probability that node A hits node

B can be calculated by the formula as follow:
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PH
rw(x, y) =

‖ zhit|B ‖
‖ Z ‖ =

‖ zhit|B ‖s

U
dXsdX f

=
‖ zhit|B ‖

D2 . (7)

Analogously, the set of all epochs in which node A is passed through location XB can be denoted
as z∗hit|B

{
(Xs, X f ) : ‖ XB − X⊥B ‖≤ δ, δ→ 0

}
.

The proportion of this kind of epoch to total is
‖z∗hit|B‖

D2
neglecting the boundary influence.

The probability density function of location distribution of node A in random epoch belonging
to the set z∗hit|B is 1

L
, so the probability density function of node A of location distribution in Random

Waypoint Mobility model can be expressed by another formula as follows:

f (x, y) =
‖ z∗hit|B ‖

D
× 1

L
(8)

In addition, the proportion of the epochs in the set z∗hit|B to the epochs in the set zhit|B is 1
2 R,

neglecting the influence of boundary, the below equation is derived:

‖ zhit|B ‖= 2R× ‖ z∗hit|B ‖ (9)

So:
PH

rw(x, y) = 2R× L× f (x, y) (10)

The average hitting probability of node in an epoch is PH
rw

PH
rw =

s

U
PH

rw(x, y)dxdy
s

U
dxdy

=
2R× L

D
(11)

�

3.2. Meeting Probability

The probability of the movement direction of a sensor obeys an inhomogeneous distribution in
the RWP model. It is more complicated to calculate the standard relative velocity v̂rw in the RWP
model than in the RDM model. The value of v̂rw is given as follows:

Lemma 4. In Random Waypoint Mobility Model, the standard relative velocity v̂rw between mobile nodes is
about 1.754.

Lemma 5. In Random Waypoint Mobility Model, the average of the meeting probability in an epoch is PM
rw:

PM
rw =

2R× L
D

(Pm ×Vrw + 2(1− Pm)) (12)

where pm = T
(T+Tstop)

is the probability that a node moves at any time.

Proof. Node A and node B both move in the RWP model. In the RWP model, the chance that any node
is mobile at some moment is pm, the probability that any node is static in some moment is 1− pm,
so the probability that node A and node B are both mobile is pm

2; the probability that one node moves
but another node remains static is pm(1− pm); the probability that both node A and node B are static is
(1− pm)

2. When one node moves but another node remains static, according to Lemma 3, the average
of the meeting probability of both nodes in an epoch is
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pmp
rw =

2R× v× (T + Tstop)

D
(13)

When both node A and node B are mobile, according to the relativity of motion, one node can be
assumed to be static, then another node moves at the speed of v̂rw × v, the meeting probability of both
nodes in an epoch is pmm

rw :

pmm
rw =

2R× v̂rw × v× (T + Tstop)

D
(14)

When both of node A and node B are static, the meeting probability of both nodes is 0. So the
average of meeting probability of both nodes in an epoch is PM

rw:

PM
rw = pm

2 × pmm
rw + 2pm × (1− pm)× pmp

rw (15)

Simplifying:

PM
rw =

2R× L
D

(pm × v̂rw + 2(1− pm)) (16)

�

4. Protocol Framework

4.1. Protocol Requirement

Node replication attacks are very harmful attacks to wireless sense networks. To launch this kind
of attack, the attackers need to capture and compromise a legitimate mobile node to get its ID and
secret information such as keying materials. Then one or more replica nodes are created by setting
the related information of replicas to the same ID and corresponding closet setting of compromised
legitimate mobile sensors. The cloned sensors would be deployed in arbitrary locations. During the
process of detecting node replication attacks, it is more preferable to utilize distributed monitoring
to avoid the inherent drawbacks of centralized monitoring, e.g., single points of failure. At the same
time, it is necessary to prevent an attacker from forecasting the witnesses and causing them to fail in
advance. Randomized detection, in which the witness nodes are selected randomly, is more secure due
to its randomness. The detection protocol should be designed with the characteristics of randomness
and distributivity.

The revocation mechanism would be triggered to claim the replica nodes to be illegal if the replica
node is detected. In this way, the replica nodes would not be able to communicate with other normal
nodes in the mobile wireless sensor networks. Due to their small size, sensor nodes suffer from some
inherent drawbacks, e.g., limited power and less storage space which is on the order of a few kilobytes.
To improve the detection efficiency of the protocol and reduce the power dissipation and storage usage,
the protocol should cut down the overall amount of communication and calculations. At the same
time, the performance evaluation indexes used in the protocol are the detection success rate of node
clone attacks, communication overhead, and memory overhead.

4.2. System and Network Model

A two-dimensional emerging sensor network is constituted by a mass of bulky and cheap sensors
which have mobility. Those mobile micro-sensors are arrayed at random in the network, and roam in
cyberspace in the light of the Random Waypoint Mobility Model [32].

Every sensor node has the ability to detect its own geographic position. Meanwhile, it can
authenticate the situation information of its neighbors. Any secure node localization protocol [33]
suitable for the detection of geographic location may be employed. All mobile nodes in the wireless
sensor networks use loosely synchronized clocks [34] in a centralized way or in a distributed way.
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A general communication model such as bidirectional communication is adopted in the
communication link between any two mobile nodes. During the life cycle of mobile sensor networks,
the dead nodes whose power has run out and the damaged nodes would be excluded. The base
stations in mobile sensor networks can be mobile or static, and must be safe and trusted.

A PKI system [35] is utilized in mobile wireless sensor networks; every node is deployed with
a private/public key pair [36]. Every node can obtain other nodes’ public keys from the network
authority. The result is that it is nearly impossible for an attacker to forge new identities for sensor
nodes in the network. For the sake of detecting node clone attacks, a message freshness mechanism is
required to stop replaying attacks in the protocol.

In the system, an adversary has the capacity to catch and conquer a small percentage of legal
sensors, and then takes complete control of them to obtain some secret information including
private keys, credentials and cryptographic information. The adversary can operate with legal
status in the network after obtaining the private information. They can mount all kinds of attacks,
e.g., they can eavesdrop on packets, inject false data, and break supported protocols including sensor
node localization protocols, clock synchronization protocols, and message freshness mechanisms.
In addition, it is easy for replica nodes to launch denial-of-service attacks by way of deleting data
packets from a benign node. Supposing the ability of the attacker to subvert legitimate sensor nodes
is limited, then only a limited number of legitimate sensor nodes would be conquered. If the vast
majority of legal sensor nodes are subverted, any scheme for detecting node replication attacks may
then become defunct in the network. We are also working on the assumption that at least a one-hop
neighbor of the clone is benign. The adversary captures and compromises benign node behind the
closed doors in complete secrecy to avoid touching off automated detection for node replication attacks.
At the same time, attackers can remember the subverted nodes and do not repeat to compromise the
same nodes.

4.3. Sequential Probability Ratio Test

In a static network environment, it would be illegal for a static node to appear in different
locations, so a static sensor node is reasoned to be a replica node according to its appearance in more
than one place. When the sensor node is mobile, a legal node would be falsely regulated as a cloned
node or a captured node, so the judgment on whether a sensor is a replica node cannot be dependent
on the technique. We must try to search for other techniques for cloned node detection in mobile
environments. According to the mobility property of the sensor nodes, a normal node would not
be able to move beyond some maximum speed vmax which can be scientifically configured by the
system. On the contrary, a replica nodes’ measured speed would be faster than the ordinary speed, it
would even appear to be over the speed threshold, provided the adopted velocity measuring system
possesses a low error rate, since there are two or more than two mobile nodes with the same identity in
different places at once. Without loss of generality, provided that the speed of a mobile node exceeds
the predefined value, there is therefore a high chance that the node is detected as a cloned node. That is,
a high speed exceeding vmax means that two or more than two mobile nodes which are subverted or
cloned are found out to coexist in the sensor network.

Due to the clue of maximum speed, the method of Sequential Tests of Statistical Hypotheses [37]
has been proposed to solve the detection of node replication attacks. Wald first put forward the theory
of the Sequential Probability Ratio Test (SPRT). In fact SPRT is a particular statistical model. In 1933,
Wald further proposed a sequential analysis problem using as inspiration the results reported by
Neyman and Pearson [38].

A new detection method for node replication attacks which leverages a Sequential Probability
Ratio Test is proposed. According to the Sequential Tests of Statistical Hypotheses, the test is assumed
to be a direct line random walk between the prescribed minimum pointer and the prescribed maximum
pointer. At the start, the prescribed minimum is linked to the null hypothesis. On the other hand,
the prescribed maximum is linked to the alternate hypothesis. When the test begins, the random
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walk moves from an arbitrary point on the direct line toward the two endpoints including the lower
limit and upper limit. Its movement is in the light of the measured speed of a moving sensor node.
The lower limit should be constructed by linking with a speed that is below the predefined maximum
value vmax, and the upper limit should be considered to exceed vmax, respectively. Each time the
random walk hits or crosses the prescribed minimum, then the null hypothesis is accepted, that is the
mobile sensor node is detected as a normal node. For another aspect, when the random walk hits or
crosses the prescribed maximum, then the alternate hypothesis are accepted, that is the mobile sensor
node is detected as a replica node or captured node.

The basic principle of Sequential Tests of Statistical Hypotheses which is applied for the mobile
replica detection can be described as follows: as a moving node migrates to a new position, it is
necessary to judge whether the meeting one-hop neighbors are its witness node. If the meeting
neighbors are just the witness node, each of the neighboring witnesses asks for a signed time-location
claim and decides whether to store the received claim probabilistically. The witness node computes
the speed by the application of two consecutive time-location claims of its tracked mobile node.
Here, every speed is considered as an analysis sample of Sequential Tests of Statistical Hypotheses.
If the sample exceeds the system-configured speed vmax, the random walk would be expedited in the
direction of the prescribed minimum. Once the roam hits or crosses the prescribed maximum, and then
node replication attacks are detected. On the other hand, if the observed speed does not exceed the
maximum speed vmax, the random walk would be promoted along the lower limit. Once the random
walk hits or crosses the lower limit, the null hypotheses would be accepted, that is the mobile node is a
normal node.

4.4. Methods

Different from those methods for detecting cloned nodes in networks, in which the relevant
detection information is transferred to the designed witness node for detection, here a novel proposed
protocol which is called encounter-based sequential hypothesis testing protocol (ESHT) does not require
related routing algorithms and routing messages for the path-finding of witness nodes. The mobility
feature of sensor nodes is utilized to realize the protocol. When the tracer, that is witness node, obtains
time-location information of one-hop neighbor which is just in its tracking set, the Sequential Tests of
Statistical Hypotheses are applied for detecting cloned nodes in the mobile network. As soon as two
witness nodes which have the same tracked node encounter each other, the detection information is
transferred to one of the meeting witness nodes for detection. Table 2 shows correlative notations used
in the ESHT.

Table 2. Notations used in the proposed protocol.

Notation Denotation

vmax The predefined maximum speed.

α0
The possibility of the event that a normal node is misjudged as replica due to temporal
synchronization and positioning errors.

α1
The possibility of the event that the measured speed of a replica exceeds the predefined maximum
value vmax.

η The maximum false positive rate.

γ The maximum false negative rate.

IL
a The detection information denoted as (nL

a , ωL
a ).

vi
L The measured speed at a time Ti+1 to be trial sample in Bernoulli trial.

np The length of the queue for each tracked node.

nx The total number of speed samples of the tracked node x.

ωx The cumulative total of the amount of times a specific event that Si
x = 1 occurs in the nx samples

of the tracked node x.
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There are three stages in the ESHT protocol as follows:

4.4.1. Claim Generation and Verification

In the deployment process, every mobile node is initially associated with a set of traced nodes.
Each node is the witness node of all nodes in its tracking set. That is, the node is the tracer of all
nodes in its own tracking set. To avoiding overloading the tracer and taking advantage of the meeting
chances of nodes, it is reasonable to make tracking set scale equal to

√
N, because the probability that

the encountering nodes have at least one same tracked node according to the Birthday Paradox is
50%. When a moving sensor node L migrates to a new position and encounters a new neighboring
mobile node, and if the mobile node is in the tracking set of the neighboring node, the neighboring
node requires for verifiable time-location claim by sending a request packet including current time Tn

to the requested node L. Node L would discard the request, once the following condition holds

|TL − Tn| > ξ + τ (17)

where TL is the current time that mobile sensor node L receives the request; Tn is the time
that neighboring node starts the request; ξ is the transmission delay of time-location claim;
τ denotes a maximum error during the process of temporal synchronization. Because the
transmission distance is over transmission radius of a node, the time-location claim is not from
the neighboring node. Otherwise, node L generates its time-location claim which can be expressed as{

IDL, tL, lL, SIGSKL(H(IDL ‖ tL ‖ lL))
}

, where IDL is the identity of mobile sensor L, and lL is node
L position, tL is the time of generating this time-location claim; ‖ indicates the concatenation operation,
and SIGSKL(H(IDL ‖ tL ‖ lL) ) denotes encrypting the hash value of the data that performs a cascade
of the ID, the time-position claim generation time and the position of node L by utilizing the private
key of node L for the sake of implementing authentication of node L. The neighboring node which
acts as the tracer of node L would validate the data integrity of the received data packet by utilizing
the public key of node L and validate the plausibility of the distance between the tracer and tracked
node L. If the verification fails, the time-location claim would be ignored, whereas the claim would be
preserved with probability p.

4.4.2. Encountering and Detection

When one mobile node a encounters some node L which belongs to the tracking set of node a
once more, the claim generation and verification procedure are repeated. The mobile node would
receive more than one time-location claim which would be denoted by C1

L, C2
L . . ., and then extract

interrelated information such as the time information ti
L and the location information li

L from claim
Ci

L. On the basis of Euclidean distance, the Euclidean distance between the point li
L and the point li+1

L
could be computed:

di
L = sqrt(∑

j
(xj

Li+1
− xj

Li
)
∧

2) (18)

where xj
Li+1

denotes the jth dimensional coordinate of the point li+1
L , xj

Li
denotes the jth dimensional

coordinate of the point li
L. Let the measured speed vi

L at time Ti+1 be a trial sample in a Bernoulli trial:

vi
L =

di
L∣∣∣ti+1

L − ti
L

∣∣∣ (19)

The Bernoulli random variable is denoted by Si
L:

Si
L =

{
0, i f vi

L ≤ vmax

1, i f vi
L > vmax

(20)
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When the measured speed is over vmax, it indicates the mobile node is a cloned node and Si
L is set

to 1. Instead, when the measured speed is not over vmax, it indicates the mobile node is a normal node
and Si

L is set to 0. The probability of success is expressed as α:

α = Pr(Si
L = 1) = 1− Pr(Si

L = 0) (21)

There a pre-defined threshold α′ is used to judge whether node L is a replica. If the probability of
success α is more than or equal to the predefined threshold α′, then it can be inferred that the mobile
node L is a cloned node. Conversely, when the success rate α is below the predefined threshold α′,
the moving node is considered a normal node. The problem of detecting node replication attacks
can be reduced to a sequential probability ratio test. In this test, a good sampling strategy is adopted
to tolerate the maximum chance errors. To do it, the sequential probability ratio test can be further
reduced to a test which contains null hypotheses and alternate hypotheses of α ≤ α0 and α ≥ α1

respectively, where α0 ≤ α1. When the null hypotheses is accepted and α ≥ α1, this will cause false
negative error. On the other hand, When the alternate hypotheses is accepted and α ≤ α0, this will
result in false positive error. In order to try to void those two error types, the maximum false negative
rate γ and the maximum false positive rate η are configured as the threshold to guarantee that the false
negative rate is not more than γ and the false positive rate does not exceed η.

The sequential probability ratio test defines two kinds of hypotheses, one is the null hypothesis
H0, another is the alternate hypothesis H1. The null hypothesis means the node is normal. On the
contrary, the alternate hypothesis means the node is a clone. In the sampling plan, the measured
speed is the sample. It is an important problem that how to judge whether the mobile node has been
cloned according to the observed n samples. To comprehend the principle of the sampling scheme, the
logarithmic probability ratio on n sample is defined as Ln:

Ln = ln
Pr(Sl

L, · · · , Sn
L

∣∣∣H1)

Pr(Sl
L, · · · , Sn

L

∣∣H0)
(22)

In the Bernoulli experiment, each sample is measured independently, so Si
L is i.i.d. random

variable sequences. Therefore Equation (22) can be reformulated to obtain:

Ln = ln ∏n
i=1 Pr(Si

L|H1)

∏n
i=1 Pr(Si

L|H0)

=
n
∑

i=1
ln

Pr(Si
L|H1)

Pr(Si
L|H0)

(23)

Let ωL
a represent the cumulative total of the number of times a specific event that Si

L = 1 occurs
in the nL

a samples of the tracked node L whose witness node is node a, then Equation (23) can be
reformulated to obtain:

Ln = ωL
a × ln

α1

α0
+ (nL

a −ωL
a )× ln

1− α1

1− α0
(24)

where α0 = Pr(Si|H0) and α1 = Pr(Si|H1) , the fundamental principle of the parameter setting of α0

and α1 is described below: α0 should be set according to the possibility of the event that a normal node
is misjudged as cloned node due to time synchronization and localization errors. Another dimension
to consider is the fact that α1 should be configured according to the possibility of the event that the
measured speed of a cloned node is over the predefined maximum value vmax. On the basis of above
analysis, the former should be less than the later.

Sequential probability ratio test takes advantage of the log-probability ratio Ln to determine
whether to accept the hypothesis H0 or the hypothesis H1 or not. The decision process is given
as follows:

Ln ≤ ln γ
1−η ; The hypothesis H0 is correct and the detection is over;
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Ln ≥ ln 1−γ
η ; The hypothesis H1 is correct and the detection is over;

ln γ
1−η < Ln < ln 1−γ

η ; Continue the detection process with sample,

where γ is the maximum false negative rate, and η is the maximum false positive the next rate. Then
we substitute Equation (24) into the decision process to reformulate the process:

ωL
a ≤ Ψ0(nL

a ); The hypothesis H0 is correct and the detection is over;
ωL

a ≥ Ψ1(nL
a ); The hypothesis H1 is correct and the detection is over;

Ψ0(nL
a ) < ωL

a < Ψ1(nL
a ); Continue the detection process with the next sample,

where Ψ0(nL
a ) =

ln γ
1−η +nL

a×ln 1−a0
1−a1

ln a1
a0
−ln 1−a1

1−a0

, Ψ1(nL
a ) =

ln 1−γ
η +nL

a×ln 1−a0
1−a1

ln a1
a0−ln 1−a1

1−a0

At the same time, the detection

information IL
a = (nL

a , ωL
a ), which belongs to the tracked node L whose tracer is node a, is stored in

a queue associated with the node L. Once a mobile node is detected as a replicated node, then the
witness node makes use of broadcast security protocol [39] to notify all nodes in the wireless sensor
networks to ignore the malicious node. The protocol is over, otherwise, the protocol proceeds to the
third phase, the forwarding and detection stage.

4.4.3. Forwarding and Detection

When one mobile node a encounters a mobile node b, and the two nodes have the same
tracked nodes, in other words, Da ∩ Db 6= ∅ (Dx is the tracking set of node x). If IDa > IDb,
for ∀x ∈ Da ∩ Db node a submits a testing request to node b. A testing request Rx

a involves
{nx

a , ωx
a , ta, SIGSKa(H(IDa ‖ nx

a ‖ ωx
a ‖ ta))}, where nx

a represents the total number of samples of
tracked node x whose witness node is node a; ωx

a represents the cumulative total of the amount
of times a specific event that Si

x = 1 occurs in the nx
a samples of the tracked node x whose

witness node is node a; ta represents the time in which the detection request is submitted to node
b. SIGSKa(H(IDa ‖ nx

a ‖ ωx
a ‖ ta) denotes encrypting the hash value of the data which performs a

concatenation of the ID of node a, the total number of samples of node x, the total number of times an
event has occurred that Si

x = 1, and the time of starting to send the detection request by utilizing the
private key of node a for the sake of implementing integrity verification of the message. In Bernoulli
experiment, every measured speed sample is independent, once node b receives the detection request
from node a, the total number of speed samples of the tracked node x is nx:

nx = nx
a + nx

b (25)

nx is the sum of the number of speed samples of the tracked node x whose witness nodes are
node a and node b, respectively. Let ωx represent the cumulative total of the number of times a specific
event that Si

x = 1 occurs in the nx samples of the tracked node x:

ωx = ωx
a + ωx

b (26)

Substituting Equations (25) and (26) into Equation (24) we obtain:

Ln = ωx × ln
α1

α0
+ (nx −ωx)× ln

1− α1

1− α0
(27)

Then we apply Equations (25)–(27) in the second stage of the decision process to reformulate
the process:

ωx
a + ωx

b ≤ Ψ0(nx
a + nx

b); The hypothesis H0 is correct and the detection is over;
ωx

a + ωx
b ≥ Ψ1(nx

a + nx
b); The hypothesis H1 is correct and the detection is over;

Ψ0 × (nx
a + nx

b) < ωx
a + ωx

b < Ψ1× (nx
a + nx

b); Continue the detection process with the next sample,
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where Ψ0(nx) =
ln γ

1−η +(nx
a+nx

b )×ln 1−α0
1−α1

ln α1
α0−ln 1−α1

1−α0
, Ψ1(nL

a ) =
ln 1−γ

η +(nx
a+nx

b )×ln 1−α0
1−α1

ln α1
α0−ln 1−α1

1−α0
.

To accelerate the speed of detection, an intuition is to maintain one queue for each node in the
tracking set, which can hold more than two pieces of corresponding detection information. The more
samples are measured, the more accurate the detection, but the longer the queue, the higher the space
costs, so making the size of each queue equal to 3 would be meeting demand. As soon as two nodes
with the same tracked node meet, for example, node a meets node b (if IDa > IDb), for ∀x ∈ Da ∩ Db,
node a submits a testing request to node b. There is a queue Q for node x including three relational
detection information in node b, if Ix

a already exits, the latest Ix
a updates the existing Ix

a . If Ix
a doesn’t

exit and there is some space available in the queue, then the received Ix
a should be written into the

queue. If Ix
a doesn’t exit and there is no space available in the queue, then the received Ix

a should
overwrite the detection information existing longest in the queue for node x. In the process of detection,
assume there are three detection information Ix

a , Ix
b and Ix

c in the queue, the total number of speed
samples for the tracked node x, nx = nx

a + nx
b + nx

c , ωx = ωx
α + ωx

b + ωx
c , substitute nx and ωx into the

decision process.
Once a mobile node is detected as a replicated node, then the witness node makes use of broadcast

security protocol to notify any other nodes in the network to dismiss the malicious node.

5. Performance Analysis

The detection probability is the probability that the replica nodes are accurately detected.
The effect of different amount of epochs on the success rate has been an important performance
index. Here an epoch is a random time interval, in this time interval a node keeps moving in the
identical direction and at a constant velocity. The movement pattern adopted in the proposed protocol
is Random Waypoint Mobility Model. Some random characteristics of RWP are adopted in the security
analysis. In the following, the lower bound of detection probability would be analyzed.

Theorem 1. Assume node e is a compromised node, and e1 is a cloned node of e, e runs into one of its witness
node with the time-location claim {IDe, te, le, SIGSKe(H(IDe ‖ te ‖ le))}, e1 encounters the same witness with
the time-location claim

{
IDe1, te1, le1, SIGSKe1(H(IDe1 ‖ te1 ‖ le1))

}
, then the chance of the witness node

detecting the node replication attacks by utilizing the two time-location claims is:

Pd(t) = 1− π

D
× (vmax × t)2 (28)

in which t =|te − te1|.

Proof. Assume f (x, y) is the probability density function that a node appears in a position (x, y) in
the networks, and nodes in the network are uniformly distributed, therefore f (x, y) = 1/D. Node e is
in the position (xe, ye), the conditional probability that node e and node e1 are contradictory in their
locations is:

Pd(t|le = (xe, ye)) =
x

U

f (x, y)dxdy (29)

where U =

{
(x, y) ∈ S

∣∣∣∣√(x− xe)
2 + (y− ye)

2 > vmax × t
}

, and:

Pd(t) = Pd(t|le)P(le)
= P(|le − le1 | > vmax × t)

=
s

U
f (xe, ye)× P× d(t|le = (xe, ye))dxedye

(30)

Then:
Pd(t) = 1− π

D
× (vmax × t)2 (31)

�
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Assume there are only two nodes with the same identity, they are the compromised node e and
its cloned node e1. Only one witness node is pre-distributed to detect the node replicas attacks. Let Nd
denote the amount of epochs until the witness node detects the replica sensor. Nm indicates the number
of epochs that is the only time the witness node encounters malicious node before the witness node
detects the replica node, then:

P(Nm = i) = (
2
1
)(1− p)i−1 p(1− p)k−i = (

2
1
)(1− p)k−1 p (32)

where p is the probability that any two nodes encounter in one epoch.
Let P(Nd = k) indicate the chance that the node replication attacks are found out until the kth

epoch, only if the witness node receives two time-location claims coming from the different nodes
with the same identity, the malicious nodes can be detected with a specified probability, and half
time-location claims are useful. The probability:

P(Nd = k) =
1
2

k

∑
i=1

k

∑
j=i

P(Nm = i)P(Nm = j)Pd(i, j) (33)

where Pd(i, j) denotes the probability that the witness node detects node replication attacks when
the witness node encounters node e at ith epoch and encounters node e1 at jth epoch. According to
Theorem 1, Pd(t) represents the probability that the witnesses detect node replication attacks by
utilizing the two time-location claims received from e and e1 respectively. When the two time-location
claims are retrieved in different epoch, Pd(t) is 0. In the meantime, the time te and te1 which are
included in the two time-location claims are assumed to obey the uniform distribution in the same
epoch, so the average difference of the two times is:

E(|te − te1 |) =
T + Tstop

3
(34)

Therefore:

Pd(i, j) =

{
Pd × ((T + Tstop)/3) , i = j

0 , i 6= j
(35)

Then we substitute Equations (28) and (35) into Equation (33) to obtain:

P(Nd = k) = 2(2k−1) × (1− p)2(k2−k) × p2k × (1− π

D
× vmax

2 ×
(T + Tstop)

2

9
) (36)

After n epochs, the witness node detects the two malicious nodes with the following probability:

P2(n) =
n

∑
k=1

(
κ−1

∏
ω=0

(1− P(Nd = w))× P(Nd = k))P2(n) =
n

∑
k=1

P(Nd = k) (37)

The real probability that one witness node detects replicas is larger than P2(n), since the witness
nodes have some probability of sampling more than one measured speed before the kth epoch but
until the kth epoch, the witness node detects the node replication attacks.

In the proposed scheme, each node has
√

N witness nodes, the detection probability after n epochs
in step 2 is Pd2(n):

Pd2(n) ≥ 1− (1− P2(n))
√

N (38)

When the node replication attacks are not detected at the second stage of the detection protocol,
the protocol proceeds to the third phase. We assume there are only two witness nodes which would
detect the compromised node e and its cloned node e1. Let Nm

′ denote the number of epochs before
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the malicious node is detected in the second phase of the protocol. Let P(Nm
′ = k) represent the

probability that the node replication attacks are not detected until the kth epoch in the second stage of
the protocol, under the premise that there is one speed sample gained from the malicious nodes:

P(Nm
′ = k) =

1
2

k

∑
i=1

k

∑
j=i

P(Nm = i)× P(Nm = j)× (1− Pd(t)) (39)

P3(n) represents the maximum probability that the witness node detects the two malicious nodes
in the third phase of the protocol after n epochs:

P3(n) =
n

∑
k=1

p× (1− p)k−1 × P(Nm
′ = k) (40)

where p is the probability that any two mobile nodes encounter in an epoch. According to the
principle of Sequential probability ratio test, we assume that p f p is the false positive rate and p f n
is the false negative rate, in the light of Wald’s theory [40], the predefined maximum boundary of
p f p is computed by p f p ≤

η
1−γ . Similarly the truth, the predefined maximum boundary of p f n is

computed by p f n ≤ γ
1−η . The sum of the false positive rate p f p and the false negative rate p f n meets

the following inequality:
p f p + p f n ≤ γ + η (41)

Since p f n is the false negative, therefore the detection probability for node replication attacks is
1− p f n. The lower bound of 1− p f n is given as follows:

1− p f n ≥
1− γ− η

1− η
(42)

Because each witness node has some probability to sample more than one measured speed before
the kth epoch, and the witness node detects the node replication attacks until the kth epoch, so the
real probability that one witness node detects replicas is larger than P3(n). Let Pd3

′(n) denote the
probability that the node replication attacks are detected in the third stage of the protocol when there
are only two witness nodes. Then we can substitute the lower bound of replica detection probability
into Equation (40) to obtain:

Pd3
′(n) ≥ P3(n)× ( 1−γ−η

1−η )

≥
n
∑

k=1
p× (1− p)k−1 × P(Nm

′ = k)× ( 1−γ−η
1−η )

(43)

Considering the balance between storage cost and detection efficiency, every node has
√

N witness
nodes, and thus the detection probability after n epochs in step 3 is:

Pd3(n) ≥ 1− (1− Pd3
′(n))

(

√
N

2
)

(44)

The metrics used to evaluate efficiency of the proposed protocol are:

• Communication overhead: the average amount of packets which are transmitted and received
by each node when the protocol for detecting node clone attacks works in networks, which is
expressed as Ccom.

• Storage overhead: the average amount of copies of the time-location claims or detection
information that need to be stored in a sensor when the protocol for detecting node clone attacks
works in networks, which is expressed as Cmem.
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• Computation overhead: the average amount of public key signing and verification operation for
each node, which is denoted as Ccp.

In the ESHT scheme, the communication overhead Ccom is calculated as:

Ccom= Ct + C f + Ce (45)

where Ct is the communication overhead of receiving time-location claim requests from the encountered
track nodes, and C f is the communication cost of replying time-location claims to the track nodes, Ce is
the communication cost of forwarding the detection information between the trace node.

The probability that each node encounters i trace nodes in one epoch is Pt(i):

Pt(i) =

( √
N
i

)(
N −
√

N
pN − i

)
(

N
pN

) (46)

where p is the chance that any two nodes encounter in one epoch, N denotes the amount of sensor
nodes in the mobile wireless sensor networks, pN denotes the average number of nodes which one
sensor node encounters in one epoch . We assume a sensor node encounters i witnesses in one epoch,
and then this sensor node would receive i time-location claim requests and reply i time-location claims
to those witnesses. Assume E(i) is the average amount of packets which are transmitted and received
by each node when a sensor encounters its witnesses:

E(i) =

√
N

∑
i=0

2i×Pt(i) (47)

Substituting Equation (46) into (47) to obtain Ct:

Ct = E(i) = 2p×
√

N (48)

The probability that each node encounters j traced nodes in one epoch is Pf (j):

Pf (j) =

( √
N
j

)(
N −
√

N
pN − j

)
(

N
pN

) (49)

In the same way, the communication cost of replying time-location claims to the track nodes is
obtained as:

C f = E(j) = 2p×
√

N (50)

The probability that any two sensor nodes have k same tracked nodes in one epoch is Pe(k):

Pe(k) =

( √
N

k

)(
N − k√
N − k

)(
N −
√

N√
N − k

)
(

N√
N

)2 (51)
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We assume two sensor nodes have k same tracked nodes. One of them would send or receive k
detection information to another, so we assume E(k) is the average number of detection requests:

E(k) =

√
N

∑
k=0

k×Pe(k) (52)

Substituting Equation (51) into (52) to obtain Ce:

E(k) = 1 (53)

Since one sensor node encounters an average of pN nodes, so the average number of sending or
receiving packets including detection request and detection information is Ce:

Ce = p× N × E(k) = p× N (54)

Substituting Equations (48), (50) and (54) into (36) to obtain Ccom:

Ccom= p× (N + 4
√

N) (55)

so the communication cost of ESHT scheme is O(N). In our protocol, each node needs to use a digital
signature when it sends a packet. Conversely, as soon as a node retrieves a claim, it is needed to
verify up to the signature. So the computation cost is in proportion to the communication cost, the
computation cost is O(N).

In the ESHT scheme, in order to detect replica attacks, each witness node need to obtain sample, a
sample vi

L is computed from two consecutive time-location claims of node uL, according to Equation (3),
when a sample vi

L is retrieved, the former time-location claim Ci−1
L is abandoned, and only present

time-location claim Ci
L is stored to wait for the next time-location claim Ci+1

L . At the same time, to detect
replica attacks in the third stage, a queue in which the detection information is stored is maintained.
So the fixed length of storage space including a time-location and a queue is required for each node.
Every node has

√
N tracked nodes. Conversely, every node has

√
N trace nodes, so the storage cost

of every node is O(
√

N). The comparison of system overhead between [15,24,25] and our proposed
scheme is summarized in Table 3.

Table 3. Comparison with [15,24,25].

Yu et al. [15] Ho et al. [24] Manickavasagam et al. [25] Proposed Scheme

Method Distributed Centralized Distributed Distributed

Communication
overhead O(N2) O(N

√
N) O(N) O(N)

Computation
overhead / O(N) O(

√
N) O(N)

Storage overhead O(N) O(1) O(N) O(
√

N)

An analogue test is carried out to test the feasibility and accuracy of the scheme by using
OMNeT++ platform. OMNeT++ is a scalable, modular simulink and framework, mainly for
constructing network emulators. In the testing, N sensor nodes distribution are relatively uniform
within a square area of size 1000 m × 1000 m, where N varies from 100 to 1000. The communication
range of each node varies from 50 m to 100 m. The Random Waypoint Mobility Model (RWP) is
adopted as the movement model. We use the code of Ganeriwal et al. [41] to construct the movement
model based on Random Waypoint Mobility mode with steady-state distribution.
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In the movement model, every node randomly selects a speed which is in the interval of 2~8 m/s
to move toward a specific waypoint. At the close of each speech, a node stops for a random duration
Tstop after moving for T unit time, where Tstop varies from 0 s to 20 s.

In the simulation experiment, only one comprised node and its one replica are deployed in
the network. The communication between different nodes applies the standard unit-disc two-way
communication pattern. At the same time, the IEEE 802.11 protocol is adopted as the medium access
control protocol for each node. Assume the user-configured false negative rate γ = 0.01 and the
user-configured false positive rate η = 0.01. Every experiment is carried out for 1000 simulation
seconds, and the average value of 10 experimental results is discussed.

The lower bound of detection probability is analyzed in the earlier part of Section 5,
the comparison between theoretical analysis and experimental results for the detection probability is
shown in Figures 1 and 2, respectively. We vary the amount of mobile sensor nodes in sensor networks
and the communication range between different sensor nodes. When N = 1000 and R = 40, the result
of comparison is shown in Figure 1. When N = 500 and R = 100, the result of the comparison is
shown in Figure 2. As is shown in both of Figures 1 and 2, the experimental detection probability is
higher than the low bound of detection probability discussed before.
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The detection time is an important metric to evaluate the proposed scheme. Because the
communication range reflects the encounter probability, and the encounter probability decides the
time elapsed between each meeting, so that we would discuss the change of detection probability with
over time on the effects of different communication ranges. As is shown in Figure 3, the detection
probability under R = 50 is 51.1% and the detection probability under R = 100 is 82.1% about 250 s
later; the detection probability under R = 100 is above 90% about 350 s later. To achieve the same
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result in the case of R = 50, it takes at least 550 s to reach 90% detection probability. So the larger the
communication range, the higher the detection probability.Sensors 2016, 16, 1955 22 of 29 
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Simulations are conducted to demonstrate the impact of time synchronization and localization
errors on the proposed protocol. We use ideal temporal synchronization and positioning method
to measure the speed, and then the measured speed v is modified as v′, v′ is selected uniformly at
random from the range of v− vθ and v + vθ, where θ is defined as the maximum speed error rate.
α0 and α1 are set in accordance with the maximum speed error rate. Figure 4 shows how to take
different values of α0 and α1 according to the maximum speed vmax which is scientifically configured
by the system. As shown in Figure 4, when the system-configured maximum speed vmax is in the
interval of 10~60 m/s, and the maximum speed error rate is 0.01 or 0.02. α0 and α1 are set to 0.1 and
0.95 respectively. When the predefined maximum value vmax is in the interval of 60~80 m/s and the
maximum speed error rate is 0.01 or 0.02, α0 and α1 are set to 0.05 and 0.9 respectively. When the
system-configured maximum speed vmax is in the interval of 80~100 m/s and the maximum speed
error rate is 0.01 or 0.02, α0 and α1 are set to 0.01 and 0.8 respectively. When the system-configured
maximum speed vmax is in the interval of 10~60 m/s and the maximum speed error rate is 0.1, α0 and
α1 are set to 0.2 and 0.9 respectively. When the predefined maximum value vmax is in the range of 60 to
80 and the maximum speed error rate is 0.1, α0 and α1 are set to 0.15 and 0.85 respectively. When the
system-configured maximum speed vmax is in the interval of 80~100 m/s and the maximum speed
error rate is 0.1, α0 and α1 are set to 0.1 and 0.8 respectively. So it is deduced that the configurations of
α0 and α1 are inversely proportional to variety in the system-configured maximum speed vmax.
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The average amount of samples for every tracked node is the amount of samples required for the
witness node to judge whether a node has been cloned or not. We evaluate the average number of
samples for each tracked node under different system-configured maximum speed when a malicious
node is accurately found out as cloned node. As shown in Figure 5, the average amount of samples
achieves a maximum value at 8, when the maximum speed vmax = 10 and the maximum speed error
rate θ = 0.1. The average number of samples reaches a minimum value at 4.25 when the predefined
maximum value vmax = 100 and the maximum speed error rate θ = 0.01. There is another dimension,
Figure 6 shows the average amount of samples for each tracked node under different maximum speed
when a benign node is accurately detected as a normal node. As shown in Figure 6, the average amount
of samples achieves a maximum value at 5.2, when the predefined maximum speed vmax = 100 and
the maximum speed error rate θ = 0.1. The average amount of samples reaches a minimum value at 3
when the predefined maximum speed vmax = 10 and the maximum speed error rate θ = 0.01. As the
whole, with the increase of the predefined maximum value, the average number of samples for each
tracked node rises or drops slightly. The witness node would detect whether a mobile sensor node has
been replicated or not with a smaller number of samples in both cases. Meanwhile, it is obvious that
an increase of the maximum speed error rate θ results in the growth of the average amount of samples
for each tracked node. It can be further reasoned that the faster the movement speed, the higher the
chance that the measured speed of a normal node is erroneous detected to be over the predefined
maximum speed. On the contrary, the faster the movement speed, the less chance that the measured
speed of a malicious node is erroneous detected to be below the system-configured maximum speed.

The probability distribution of the amount of samples for each malicious node detected accurately
is shown in Figure 7. When the maximum speed error rate θ = 0.1 and the maximum speed vmax = 20,
about 79% of all the case falls in the range of [4, 9] as shown in the figure. This also indicates that the
probability distribution of the amount of samples satisfies the rule reflected in Figure 5. The amount
of samples for each tracked node is less than or close to the average amount for each tracked node.
The probability distribution of the amount of samples for each benign node detected accurately is
shown in Figure 8. When the maximum speed error rate θ = 0.1 and the system-configured maximum
speed vmax = 20, about 87% of all the case falls in the range of [3, 7] as shown in the figure. This also
indicates that the probability distribution of the amount of samples satisfies the rule reflected in
Figure 6. The amount of samples for each benign node is below or close to the average amount for
each benign node. As we can see from Figures 5 and 6, it is obvious that whether a mobile sensor node
is malicious node can be decided quickly with a few samples for each tracked node.Sensors 2016, 16, 1955 24 of 29 
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In the process of detection, one queue for each tracked node in the tracking set is maintained,
which can hold more than two corresponding detection information. Because the more samples are
measured, the more accurate the detection, the length of the queue denoted as np is set to a higher
value to accelerate the speed of detection. But the longer the queue, the more space costs, to avoid
overload for the tracking node, therefore making the size of each queue equal to 3 is meeting demand.
As is shown in Figure 9, under the same amount of nodes compromised, the scheme with np = 3
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shows stronger resilience than the scheme with np = 1. For example, the detection probability under
np = 3 is 37.1% and the detection probability under np = 1 is 23.3%, when the detection time is 100 s;
the detection probability under np = 3 is 95.9% and the detection probability under np = 1 is 88.1%,
when the detection time is 500 s. At the beginning of detection, the growth rate of detection probability
under np = 3 is higher than that of detection probability under np = 1. About 400 s later, the growth
rate of detection probability under np = 3 is gradually slower than that of detection probability under
np = 1. Generally speaking, the detection probability under np = 3 is higher than the detection
probability under np = 1 just as shown in Figure 9.
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We further consider a special case, if the comprised node and its replica remain static at a certain
distance, it is possible for the malicious node to avoid being discovered, for example, the comprised
node and its replica are not detected with high probability when D ≤ Dmax

2 and Vmax = Dmax/s,
because the detection is based on speed. Assume D indicates the distance between the comprised
node and the cloned node, we evaluate the distance D in such a way that D varies from Dmax

2 to 2Dmax,
where Dmax is set according Vmax. We evaluate the detection ability of our proposed protocol in the
case of D is relatively short. We consider the D is in the interval of

[
Dmax

2 , 2Dmax

]
and Vmax is in the

range of [10, 50]. As is shown in Figures 10 and 11, the average amount of samples for malicious node
increases with the maximum speed error rate θ. As far as the affect of D on the amount of samples for
a abnormal node, when D grows from Dmax

2 to 2Dmax, the average amount of samples for an abnormal
node increases obviously. Overall, the average amount of samples for an abnormal node is below 9.5 in
all cases, and the comprised node and its replica can be detected with a reasonable amount of samples.
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In our scheme, the average amount of messages that each node transmitted and received
in one epoch is utilized to estimate the communication overhead. Figure 10 shows that the
communication overhead changes over the number of nodes uniformly distributed in wireless sensor
networks. The communication overheads under different communication ranges are compared.
When the communication range of sensor node increases, the set of node’ one-hop neighbors enlarges.
The probability that two tracking nodes with same tracked node encounter increases, and the detection
information forwarded to witness node for detection increases accordingly, so the communication
overhead becomes higher. As is shown in Figure 12, the average amount of messages sent and received
under R = 100 is 62, and the average amount of messages sent and received under R = 15 is 29, as
the network size is 500 nodes. The average amount of messages sent and received under R = 100
is 113 and the average amount of messages transmitted and received under R = 15 is 56 when the
network size is 1000 nodes, so the larger the communication range, the higher the communication
overhead, further a gap of the average amount of messages transmitted and received under the two
communication range becomes more and more large with the network pattern’s augmentation.
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nodes is made full use of, and sensor’s time-location claims are forwarded to obtain samples for
detection when the corresponding tracking nodes meet. Meanwhile, Sequential Tests of Statistical
Hypotheses are applied to further detect the cloned nodes using witness nodes. This is able to resist
the smart attacks of cloned node. On the one hand, the overhead of maintaining traditional multi-hop
routing path is saved to achieve energy saving effects, while on the other hand, our simulation shows
that whether a mobile sensor node is malicious node can be decided quickly with a small amount of
samples for each tracked node. At the same time, the false positive rate and false negative rates are
low. Theoretical analysis and empirical results demonstrate the success probability of clone detection
is high enough. Regarding communication cost and memory cost, the system overhead of our scheme
is reasonable. In the future work, the performance of our scheme could be evaluated when applied in
other mobility models. Beyond that, various kinds of attacks such as witness-void replication attacks
which are directly against our scheme and the related policy which can defend these attacks would
be studied.
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