
https://doi.org/10.1007/s00259-021-05569-9

ORIGINAL ARTICLE

Explainable AI to improve acceptance of convolutional neural 
networks for automatic classification of dopamine transporter SPECT 
in the diagnosis of clinically uncertain parkinsonian syndromes

Mahmood Nazari1,2 · Andreas Kluge2 · Ivayla Apostolova3 · Susanne Klutmann3 · Sharok Kimiaei2 · 
Michael Schroeder4 · Ralph Buchert3 

Received: 19 May 2021 / Accepted: 17 September 2021 
© The Author(s) 2021

Abstract
Purpose  Deep convolutional neural networks (CNN) provide high accuracy for automatic classification of dopamine trans-
porter (DAT) SPECT images. However, CNN are inherently black-box in nature lacking any kind of explanation for their 
decisions. This limits their acceptance for clinical use. This study tested layer-wise relevance propagation (LRP) to explain 
CNN-based classification of DAT-SPECT in patients with clinically uncertain parkinsonian syndromes.
Methods  The study retrospectively included 1296 clinical DAT-SPECT with visual binary interpretation as “normal” or 
“reduced” by two experienced readers as standard-of-truth. A custom-made CNN was trained with 1008 randomly selected 
DAT-SPECT. The remaining 288 DAT-SPECT were used to assess classification performance of the CNN and to test LRP 
for explanation of the CNN-based classification.
Results  Overall accuracy, sensitivity, and specificity of the CNN were 95.8%, 92.8%, and 98.7%, respectively. LRP provided 
relevance maps that were easy to interpret in each individual DAT-SPECT. In particular, the putamen in the hemisphere 
most affected by nigrostriatal degeneration was the most relevant brain region for CNN-based classification in all reduced 
DAT-SPECT. Some misclassified DAT-SPECT showed an “inconsistent” relevance map more typical for the true class label.
Conclusion  LRP is useful to provide explanation of CNN-based decisions in individual DAT-SPECT and, therefore, can 
be recommended to support CNN-based classification of DAT-SPECT in clinical routine. Total computation time of 3 s is 
compatible with busy clinical workflow. The utility of “inconsistent” relevance maps to identify misclassified cases requires 
further investigation.

Keywords  Convolutional neural network · Explainable AI · Relevance propagation · Parkinson’s disease · Dopamine 
transporter · SPECT

Abbreviations
AI	� Artificial intelligence
CNN	� Convolutional neural network
DAT	� Dopamine transporter
FP-CIT	� N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-123I-

iodophenyl)nortropane
LIME	� Local Interpretable Model-Agnostic Explainer
LRP	� Layer-wise relevance propagation
MNI	� Montreal Neurological Institute
SPECT	� Single-photon emission computed tomography
SPM	� Statistical parametric mapping
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Introduction

There is growing interest in the use of machine learning 
techniques for automatic classification of medical brain 
images to support the diagnosis of psychiatric and neu-
rological diseases [1, 2]. Fully data-driven approaches 
based on deep convolutional neural networks (CNN) are 
particularly promising for this task [3]. CNN usually work 
end-to-end with no human knowledge built in, that is, 
without prior feature extraction (“image in, classifica-
tion out”). The CNN itself learns the relevant features 
from a sufficiently large number of training cases with 
given standard-of-truth label (the clinical diagnosis after 
sufficiently long follow-up, for example). Deep CNN out-
perform conventional machine learning methods in many 
medical image classification tasks [4].

However, deep CNN are inherently black-box in nature 
so that improvement of classification accuracy by deep 
CNN comes at the price of reduced transparency. The 
multilayer nonlinear structure of CNN makes it difficult 
to identify the features automatically learned by the CNN 
during the training phase [5]. Furthermore, it is difficult 
to comprehend the basis of the CNN’s classification deci-
sion in new individual cases [5]. The lack of transparency 
is a major limitation of deep CNN, particularly in medical 
applications which require a human readable explanation 
of the automatic classification decision in each individual 
patient that allows the physician to verify that the clas-
sification decision made by the algorithm is plausible and 
coherent. The lack of transparency of deep CNN therefore 
limits their acceptance for widespread clinical use.

Recently developed techniques, called “explainable 
artificial intelligence,” aim at making CNN-based clas-
sification comprehensible for the user. Layer-wise rel-
evance propagation (LRP) is an explainable AI technique 
that allows generation of an individual relevance map for 
each individual patient [6]. It relies on the application of 
deep Taylor decomposition and Kirchoff’s conservation 
law to the fully trained CNN for layer-wise backprojec-
tion of relevance starting from the most activated output 
neuron to the input layer [7]. The general concept of LRP 
is to build a local redistribution rule that is applied in a 
backward pass manner to each neuron. Different redis-
tribution rules have been described for LRP [7, 8]. The 
individual relevance map generated by LRP is in the same 
space (with the same matrix) as the patient’s image used 
as input for the CNN. The voxel intensities in the rel-
evance map indicate the relevance of the voxels for the 
CNN-based classification of this image [9]. In particular, 
the voxels in the input image that were most relevant for 
the CNN’s classification decision are identified by the 
highest intensity in the relevance map.

Here, we propose LRP with a specific combination 
of different redistribution rules in different parts of the 
CNN to explain CNN-based classification of single-
photon emission computed tomography (SPECT) images 
of the dopamine transporter (DAT) availability in the 
brain of patients with a clinically uncertain parkinsonian 
syndrome.

Materials and methods

DAT‑SPECT data

The PACS of the Department of Nuclear Medicine of 
the University Medical Center Hamburg Eppendorf was 
searched using the following inclusion criteria: (I1) DAT-
SPECT had been performed to support the diagnosis of 
a clinically uncertain parkinsonian syndrome, (I2) DAT-
SPECT had been performed with a double head SPECT 
system equipped with low-energy-high-resolution parallel-
hole collimators according to standard procedure guide-
lines [10], and (I3) raw projection data were digitally 
available for consistent retrospective image reconstruction. 
No exclusion criteria were applied. This resulted in the 
inclusion of 1306 DAT-SPECT.

The projection data were reconstructed to tomographic 
SPECT images using filtered backprojection and a Shepp-
Logan filter with cutoff 1.25 cycles/cm [11]. Neither atten-
uation correction nor scatter correction was applied [12]. 
Image reconstruction was performed using the “iradon” 
function of MATLAB (www.​mathw​orks.​com). All 1306 
projection data were reconstructed fully automatically in 
a single batch using a custom MATLAB script in order to 
avoid errors by manual interaction.

Individual SPECT images were transformed (affine) 
into the anatomical space of the Montreal Neurological 
Institute (MNI) using the Statistical Parametric Mapping 
software package (version SPM12) [13] and a custom-
made FP-CIT template. Voxel intensities were scaled to 
the 75th percentile in a reference region comprising whole-
brain except striata, thalamus, brain stem, and ventricles 
[14, 15].

The DAT-SPECT images were classified as “negative” 
(normal DAT-SPECT) or “positive” (reduced striatal 
tracer uptake typical for nigrostriatal degeneration in neu-
rodegenerative parkinsonian syndromes) by two experi-
enced readers based on visual inspection of a standardized 
display of the stereotactically normalized SPECT images 
[16]. Both readers had more than 10 years of experience in 
clinical reading of DAT-SPECT (200–400 cases per year). 
Each reader classified all images twice, blinded for all 
clinical information. Images with intra-reader discrepancy 
between the two reading sessions were assessed a third 
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time by the same reader to obtain an intra-reader consen-
sus. The resulting intra-reader consensus was in agreement 
between the two independent readers in 1275 of the 1306 
cases (97.6%; Cohen’s kappa = 0.952 with standard error 
0.008, p < 0.0005). The remaining 31 DAT-SPECT (2.4%), 
in which the intra-reader consensus differed between the 
two readers, were assessed in a common reading session 
of the two readers to obtain an inter-reader consensus. The 
latter was used as standard-of-truth in the further analyses. 
Ten of the 31 DAT-SPECT with discrepant intra-reader 
consensus showed an atypical striatal reduction pattern 
most likely caused by vascular/structural pathology and 
therefore were excluded (e.g., defect of FP-CIT uptake in 
the caudate nucleus with normal putaminal FP-CIT uptake, 
or complete lack of FP-CIT uptake in the whole striatum 
in one hemisphere with normal striatal FP-CIT uptake in 
the other hemisphere). The remaining 1296 DAT-SPECT 
were included in the study.

Visual inter-reader consensus read was “negative” in 
676 (52.2%) of these DAT-SPECT; it was “positive” in the 
remaining 620 (47.8%) DAT-SPECT. This proportion of 
negative to positive cases (52.2 to 47.8%) is in line with 
the common recommendation to refer only patients with 
a clinically uncertain parkinsonian syndrome (CUPS) to 
DAT-SPECT [17], as “clinically uncertain” implies a pre-
test probability of nigrostriatal degeneration of about 50%. 
The patient sample included in this study therefore can be 
considered representative of clinical routine according to 
common guidelines.

Clinical follow-up was not available in the vast majority 
of the included patients. From the subsample of patients in 
whom clinical follow-up was available, it might be assumed 
that amongst the patients with positive DAT-SPECT, about 
90% had a disease from the spectrum of Lewy body diseases 
(Parkinson’s disease without and with cognitive impairment, 
dementia with Lewy bodies) whereas the remaining 10% 
suffered from an atypical neurodegenerative Parkinsonian 
syndrome including multiple system atrophy, progressive 
supranuclear palsy, and corticobasal degeneration [18]. The 
diagnoses of the patients with negative DAT-SPECT most 
likely included essential tremor, drug-induced parkinson-
ism, various types of dystonia, psychogenic parkinsonism, 
and various other diagnoses not associated with nigrostriatal 
degeneration [18].

Image preprocessing for automatic classification

Specific FP-CIT binding to the DAT in the unilateral puta-
men in both hemispheres was characterized by the specific 
FP-CIT binding ratio estimated by hottest voxels analysis 
as described in the Supplementary Information (section 
“Conventional semi-quantitative analysis”). Stereotactically 
normalized DAT-SPECT images in which the putaminal 

specific binding ratio was lower in the right hemisphere were 
left–right mirrored at the midsagittal plane such that the 
putaminal specific binding ratio was lower in the left hemi-
sphere in all cases. This was done in order to eliminate vari-
ability of no interest prior to automatic classification, since 
visual interpretation of the DAT-SPECT as standard-of-truth 
did not account for laterality (and was blinded for all clini-
cal information, including laterality of motor symptoms). 
In the following, “ipsilateral” and “contralateral” (to the 
hemisphere with lower specific FP-CIT binding ratio in the 
putamen) are used instead of “left” and “right” hemispheres.

Convolutional neural network

The custom CNN trained for automatic classification of 
DAT-SPECT is shown in Fig. 1. It comprised four 3-dimen-
sional convolutional layers with 16 filters, kernel size of 
3 × 3 × 3. Stride and dilation were set to 1. The convolutional 
layers were followed by two fully connected neuron layers 
of 32 and 16 neurons, respectively, followed by a 2-way 
softmax output layer for binary classification. The rectified 
linear unit was used as activation function at all hidden lay-
ers. No pooling layers were used, mainly because all input 
images were in MNI space so that translation invariance was 
not required, but also to achieve a simple form of routing 
which routes all the features in the lower layer to the higher 
layer [19]. Drop out (0.2) was implemented in the first fully 
connected layer only. The total number of trainable CNN 
parameters was 236 million.

From the whole set of 1296 DAT-SPECT, two-thirds 
(n = 864) were randomized into the training set for the CNN. 
Allocating two-thirds of cases for training is recommended 
if the size of the whole dataset is reasonable (n ≥ 100) and if 
the expected accuracy of the classifier is good (≥ 85%) [20]. 
From the remaining one-third of the DAT-SPECT (n = 432), 
one-third (n = 144) was randomized into the validation set, 
two-thirds (n = 288) into the test set. The rationale for choos-
ing the validation set smaller than the test set was that the 
validation set was only used to check for overfitting dur-
ing the CNN training. The validation set was not used to 
compare different CNN designs, since only a single prede-
fined CNN design was used in this study. A test set of size 
n allows estimation of the overall accuracy of the CNN for 
binary classification of DAT-SPECT with a maximum mar-
ginal error d at the 95% confidence level given by d = 1.96 * 
sqrt(acc*[1-acc])/sqrt(n), where acc is the expected accuracy 
[21]. Assuming acc = 0.9, the maximum marginal error of 
the overall accuracy of the CNN for binary classification 
of DAT-SPECT estimated from a test set of size n = 288 is 
0.03. This appeared adequate for this study, because the pri-
mary aim was not to evaluate a specific CNN for automatic 
classification of DAT-SPECT but rather to evaluate LRP for 
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the explanation of CNN-based classification of individual 
DAT-SPECT.

Randomization into training, validation, and test set was 
performed separately for females with negative DAT-SPECT 
(according to the inter-reader consensus), males with nega-
tive DAT-SPECT, females with positive DAT-SPECT, and 
males with positive DAT-SPECT, in order to achieve the 
same proportions of these four subgroups in training, valida-
tion, and test set. In order to achieve a similar age distribu-
tion in training, validation, and test set, separately for each 
of these four subgroups, a total of 100 random splits were 
generated, from which the random split with the minimum 
difference in mean age between training, validation, and test 

set over the four subgroups was selected for the analyses. 
Demographics in this random split are given in Table 1.

The CNN was trained with a batch size of 8 against the 
categorical cross-entropy loss using the Adam optimizer 
with 10−4 learning rate. Loss weighting for different classes 
was not used, because the data were balanced with respect 
to the class to good approximation.

Using an Nvidia Titan XP graphic card with 12 GB 
memory, the training of the CNN took approximately 64 s 
per epoch. The CNN could be trained without noticeable 
overfitting. The total training time until convergence was 
approximately 1.5 h.

Fig. 1   Structure of the custom 
CNN for binary classification of 
DAT-SPECT images. The LRP 
backprojection rule used at the 
different CNN layers to generate 
the relevance map (top right) 
corresponding to the CNN-
based classification (bottom) 
of the DAT-SPECT (top left) is 
given at the red arrows. (Conv, 
convolutional layer; FC, fully 
connected layer)

Table 1   Demographics in the 
whole sample of DAT-SPECT 
and in the random split for 
training, validation, and testing 
of the CNN. The age is given as 
mean value ± standard deviation 
in the subset

Negative DAT-SPECT Positive DAT-SPECT

Age Females Males Females Males

Whole sample (n = 1296) 67.7 ± 11.3
(n = 296)

68.7 ± 11.6
(n = 380)

66.7 ± 11.0
(n = 246)

66.6 ± 11.0
(n = 374)

Training set (n = 864) 67.6 ± 11.4
(n = 197)

68.7 ± 11.9
(n = 254)

66.7 ± 11.2
(n = 164)

66.4 ± 10.8
(n = 249)

Validation set (n = 144) 68.2 ± 12.2
(n = 33)

68.3 ± 9.8
(n = 42)

66.8 ± 10.1
(n = 27)

66.8 ± 11.9
(n = 42)

Test set
(n = 288)

67.6 ± 10.5
(n = 66)

68.8 ± 11.3
(n = 84)

66.7 ± 11.1
(n = 55)

66.9 ± 11.0
(n = 83)
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Layer‑wise relevance propagation

In order to estimate the relevance of each single voxel of 
the subject’s image for the classification of the whole 
image by the CNN, LRP takes advantage of the CNN 
graph structure for layer-wise backprojection of relevance 
from the most activated output neuron up to the input layer 
(Fig. 1) [6, 22]. More precisely, LRP is based on a local 
backprojection rule to redistribute relevance from neurons 
in a given layer to the neurons in the preceding layer as 
illustrated in Fig. 2. If zij denotes the fraction of the rele-
vance R[k]

j
 at neuron j in the CNN layer k that is backpro-

jected to neuron i in the preceding layer k − 1, then the 
total relevance R[k−1]

i
 at neuron i is given by

The scaling factors 
∑

i∈[k−1] zij in the denominator on the 
right-hand side guarantee that the relevance is preserved 
during backprojection at each neuron. When the rectified 
linear unit is used as activation function, first-order Taylor 
expansion at the prediction point suggests the following 
standard choice for the backprojection coefficients [7]

where ai is the activation of neuron i for the considered 
image in the prediction phase (forward pass) and wij is the 

(1)R
[k−1]

i
=

�

j∈[k]

zij
∑

i∈[k−1]zij
R
[k]

j

(2)zij = aiwij

weight factor for the input to neuron j from neuron i fixed 
during the training phase (Fig. 2).

Several variations of the LRP rule according to Eqs. 1 
and 2 have been proposed [7, 8]. In the present study, three 
of these variations were combined for (i) improved robust-
ness of LRP by avoiding noise amplification due to the 
gradient shattering effect [23, 24], (ii) reduced spill-out 
of relevance, and (iii) discrimination between features that 
support the prediction and features that oppose it.

The propagation rule

with zij according to Eq. 2 was used for relevance back-
projection at the fully connected layers close to the output of 
the CNN (Fig. 1). Here, sign(x) denotes the sign of x, that is, 
sign(x) = 1 for x ≥ 0 and sign(x) =  − 1 for x < 0. The ε-term is 
introduced to limit noise amplification. ε = 0.0001 was used.

The propagation rule

with zij according to Eq. 2 was used for relevance back-
projection at the fourth and the third convolutional layers 
(Fig. 1). Here, “ + ” and “ − ” indicate the positive and the 
negative parts, respectively, that is

The parameter α was chosen as α = 2 in order to allow 
for both positive and negative relevance. Positive relevance 
indicates that the feature supports the classification deci-
sion whereas negative relevance indicates that the feature 
provides evidence against it.

Finally, uniform backprojection (LRP-c) defined by Eq. 1 
with zij = 1 was used at the first two layers close to the input 
of the CNN for improved control of resolution and semantics 
in the relevance maps [25] (Fig. 1).

Statistical analysis

The classification performance of the CNN was estimated 
in the test set (independent of the training set) in order to 
avoid overly optimistic performance estimates due to overfit-
ting. Overall accuracy, sensitivity specificity, and predictive 
values were used to characterize classification performance.

(3)LRP − ε ∶ R
[k−1]

i
=

�

j∈[k]

zij
∑

i∈[k−1]

�

zij + �sign
�

zij
��R

[k]

j

(4)

LRP − � ∶ R
[k−1]

i
=

�

j∈[k]

(�
z+
ij

∑

i∈[k−1]z
+

ij

+ (� − 1)
z−
ij

∑

i∈[k−1]z
−
ij

)

(5a)z+
ij
= max(0, zij)

(5b)z−
ij
= min(0, zij)

Fig. 2   LRP relevance backprojection. The neural network (top) with 
the trained weights wij is used in forward pass to calculate the output 
score f(x) for the given input x = (x0, x1). In LRP (bottom), the neu-
ron Ri receives the relevance zij from the higher-level layer neuron Rj 
(solid arrow). The dotted arrows indicate the relevance flow into the 
layer containing the neuron Rj calculated previously. The flow starts 
from the most activated output neuron
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The relevance maps generated by LRP were assessed vis-
ually for each DAT-SPECT in the test set in order to evaluate 
their interpretability.

Results

CNN-based classification in the test set resulted in 148 true 
negative cases, 128 true positive cases, ten false negative 
cases, and two false positive cases. Thus, overall accuracy, 
sensitivity, specificity, positive, and negative predictive 
values of the CNN for classification of the DAT-SPECT in 
the test set were 95.8%, 92.8%, 98.7%, 98.5%, and 93.7%, 
respectively. The CNN performance was similar to the per-
formance of conventional semi-quantitative analysis and of 
classification and regression tree analysis (Supplementary 
Information).

A representative transaxial slice of the mean relevance 
map is shown in Fig. 3, separately for the true negative and 
the true positive DAT-SPECT (all transaxial slices of the 
mean relevance maps are given in supplementary Fig. 1). 
The mean relevance map of the true negative cases was the 
inverse (sign flip) of the mean relevance map of the true 
positive cases to good approximation. This suggested the 
computation of a “heat map” by computation of the voxel-
based difference of the mean relevance map of the true nega-
tive cases minus the mean relevance map of true positive 
cases in order to simplify identification of the brain regions 

with the highest relevance for the CNN-based classifica-
tion (Fig. 3). The ipsilateral putamen (with the strongest 
reduction of FP-CIT uptake in the positive cases) showed 
the highest relevance (heat) followed by the contralateral 
putamen and the ipsilateral caudate nucleus (Fig. 3). The 
most relevant single voxel was located in the striatum (or 
very close) in all cases.

Figure 4 shows the individual relevance maps of the 
DAT-SPECT misclassified by the CNN. The two false posi-
tive DAT-SPECT showed borderline FP-CIT uptake in the 
striatum so that the standard-of-truth label might be ques-
tioned and the CNN-based classification might actually be 
correct in these cases. The ten false negative DAT-SPECT 
all presented clear reduction of the FP-CIT uptake in the 
ipsilateral putamen (in line with the standard-of-truth) indi-
cating that they were actually misclassified by the CNN. It 
is striking that seven of the ten false negative cases showed 
an “inconsistent” relevance map with positive relevance in 
the striatal region, most pronounced in the ipsilateral puta-
men, which is typical for true positive cases. This suggests 
that the striatal signal in the relevance maps might be imple-
mented to improve the classification accuracy. In order to 
test this, the mean relevance in the ipsilateral putamen was 
determined for all DAT-SPECT in the test set. The same 
hottest voxels analysis was used for this purpose as for the 
estimation of the putaminal specific FP-CIT binding ratio 
(Supplementary Information). The distribution of the mean 
relevance in the ipsilateral putamen in the test set is shown in 
Fig. 5. When the mean relevance in the ipsilateral putamen 

Fig. 3   Representative transaxial 
slice through the striatum of the 
mean DAT-SPECT image (top 
row) and of the mean relevance 
map (bottom row) in nega-
tive (left column) and positive 
(middle column) cases correctly 
classified by the CNN. All slices 
of the mean relevance maps 
are shown in supplementary 
Fig. 1. The right column shows 
the custom-made DAT-SPECT 
template used for stereotactical 
normalization (top) and the heat 
map defined as the difference 
of the mean relevance map in 
true positive cases minus the 
mean relevance map in true 
negative cases (bottom). (I / C, 
Ipsilateral / Contralateral to the 
hemisphere with lower specific 
FP-CIT binding ratio in the 
putamen)
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was dichotomized with cutoff zero and then used for clas-
sification of the DAT-SPECT (negative and positive mean 
relevance in the ipsilateral putamen indicating negative and 
positive DAT-SPECT, respectively), it provided very simi-
lar performance as the CNN-based classification (overall 
accuracy, sensitivity, specificity, positive, and negative pre-
dictive values of 96.9%, 97.8%, 96.0%, 95.7%, and 98.0%, 
respectively).

Discussion

Deep CNN are increasingly used for automated classification 
of medical images to assist the physician in their interpreta-
tion [4]. They are however black-box in nature, that is, they 
do not provide any kind of explanation for their decisions, in 
contrast to many conventional classification methods, e.g., 
decision trees. This makes it difficult to identify their mecha-
nism of making decisions and to comprehend their decision 
in individual cases. This limits the acceptance of deep CNN 
for widespread clinical use. Recent efforts to address this 

Fig. 4   Individual relevance 
maps of the 12 amongst the 288 
test cases that were misclas-
sified by the CNN. The mean 
DAT-SPECT and the mean rel-
evance map in true negative and 
true positive cases (from Fig. 3) 
are shown for comparison. (I 
/ C, Ipsilateral / Contralateral 
to the hemisphere with lower 
specific FP-CIT binding ratio in 
the putamen)

Fig. 5   Outer contour of the 
large putamen ROI used to com-
pute the mean relevance in the 
ipsilateral putamen by hottest 
voxels analysis (left). The ROI 
is overlaid to the mean DAT-
SPECT of the true negative 
cases. The right part shows the 
histogram of the mean relevance 
of the ipsilateral putamen in the 
test set. The color indicates the 
CNN-based classification (TN, 
true negative; TP, true positive; 
FN, false negative; FP, false 
positive; I / C, Ipsilateral / Con-
tralateral to the hemisphere with 
lower specific FP-CIT binding 
ratio in the putamen)
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limitation, combined under the umbrella term “explainable 
AI”, resulted in the development of several methods to pro-
vide transparency of black-box models [26–29]. LRP is one 
of these new methods [6]. It allows tracking back the clas-
sification result from the output layer of the deep CNN to 
its input layer in order to generate an individual relevance 
map. The voxels with the highest relevance (highest absolute 
value) had the strongest impact on the CNN’s decision in 
this case. Thus, individual relevance maps allow the user 
to understand and check the CNN-based classification in 
individual patients. This is expected to improve acceptance 
of CNN-based classification for clinical use, provided that 
LRP works reliably in images from clinical routine. The pre-
sent study tested this for DAT-SPECT to detect or exclude 
nigrostriatal degeneration in patients with clinically uncer-
tain parkinsonian syndromes [17]. Previous LRP applica-
tions in medical brain imaging include MRI-based diagnosis 
of Alzheimer’s disease [9] and multiple sclerosis [30].

In DAT-SPECT, visual interpretation of the images by 
a trained physician is sufficient for clinical reporting in the 
majority of cases [31]. However, quantitative analysis and/
or automatic classification is a useful adjunct when used 
as an objective second reader, particularly in borderline 
cases and for less experienced readers [32]. Conventional 
machine learning methods using support vector machines 
[33–43], decision trees [44, 45], or cluster analyses [46] 
based on a (small) set of predefined image-derived features 
have been proposed for this purpose. However, recent work 
suggests that artificial neural networks, particularly deep 
CNN, outperform conventional approaches for the auto-
matic classification of DAT-SPECT [18, 47–58], partly 
because artificial neural networks can be less sensitive 
to camera- and site-specific variability of image quality 
(e.g., with respect to spatial resolution) [18]. Thus, deep 
CNN are very promising to support interpretation of DAT-
SPECT in clinical routine so that there is a high clinical 
need for methods to explain CNN-based classification in 
individual patients.

The custom CNN used in the present study achieved high 
overall accuracy of 95.8%, in line with previous studies dem-
onstrating excellent performance of artificial networks for 
automatic classification of DAT-SPECT [18, 47–58]. Speci-
ficity was somewhat higher than sensitivity. In order to test 
whether this is a characteristic of the custom CNN design 
and/or the patient sample used in this study, CNN training 
and testing was repeated several times (using the same ran-
dom split for training, validation, and testing, but with differ-
ent initialization of the CNN weights prior to the training). 
The overall accuracy was very similar in all repeats, but the 
ordering of sensitivity and specificity (“sensitivity > speci-
ficity” or “specificity > sensitivity”) varied between repeats 
(results not shown). This suggests that there was no bias in 
favor of sensitivity or specificity in this study.

LRP provided relevance maps that were easy to interpret 
in each individual patient, although the study did not impose 
specific eligibility criteria on the DAT-SPECT images. In 
particular, there were no requirements with respect to the 
total number of counts in order to restrict the analyses to 
images with high statistical image quality. This demon-
strates that CNN-based classification and LRP are stable 
with respect to variability of the statistical quality of DAT-
SPECT images encountered in clinical routine. This is an 
important requirement for widespread clinical use.

The putamen in the hemisphere most affected by nigros-
triatal degeneration was identified as the most relevant brain 
region for CNN-based classification in each individual 
patient. Much less relevance was attributed to extrastriatal 
brain regions by LRP, in line with the fact that extrastriatal 
signal in DAT-SPECT most likely represents tracer binding 
to serotonin transporters (not dopamine transporters), which 
are relatively preserved in Parkinson’s disease [59].

The mean relevance map of true negative cases was very 
similar to the mean relevance map of the true positive cases 
except for a sign flip (Fig. 3). That the same image vox-
els are the most relevant independent of the class (nega-
tive or positive), is a specific characteristic of binary image 
classification tasks. In the present case, FP-CIT uptake in 
the ipsilateral putamen was the most prominent difference 
between negative and positive DAT-SPECT. Thus, it was to 
be expected that the CNN attributed the highest relevance 
to the ipsilateral putamen independent of the class: normal 
FP-CIT uptake in the ipsilateral putamen was the strongest 
indicator of a negative DAT-SPECT; reduced FP-CIT uptake 
in the ipsilateral putamen was the strongest indicator of a 
positive DAT-SPECT.

A few of the cases misclassified by the CNN showed an 
“inconsistent” relevance map (peak relevance values in the 
ipsilateral putamen with the “wrong” sign) more typical for 
the true classification, suggesting that individual relevance 
maps might be useful to identify misclassified cases. This 
requires further investigation, although re-classification of 
DAT-SPECT based on the ipsilateral putaminal signal in 
the individual relevance maps in this study provided some 
evidence for it.

The relevance map of an individual DAT-SPECT image 
is not intended to provide new insights into the pathophysi-
ology of clinically uncertain parkinsonian syndromes but 
rather to explain the classification of the CNN for this DAT-
SPECT image. However, on the group level, LRP might 
be useful to extract information from a trained CNN about 
extrastriatal signal in DAT-SPECT that might contribute 
to the differentiation between neurodegenerative and non-
neurodegenerative etiologies. This might contribute to a 
better understanding of clinically uncertain parkinsonian 
syndromes.
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Magesh and coworkers recently suggested the Local 
Interpretable Model-Agnostic Explainer (LIME) method 
to explain automatic classification of DAT-SPECT with the 
VGG16 network [60] adapted for this task by transfer learn-
ing [48]. The LIME method identifies “supervoxels” in the 
SPECT images for visual control. The authors concluded 
that the VGG16 network combined with LIME-based expla-
nation is useful to support interpretation of DAT-SPECT 
[48].

The following limitation of this study should be noted. 
The CNN was trained to reproduce the visual interpretation 
of DAT-SPECT by experienced readers and, therefore, might 
not provide the correct etiological/biological diagnosis in all 
cases. We also do not claim that the specific CNN used in 
this study is superior to other CNN for the classification of 
DAT-SPECT described previously. However, the primary 
aim of this study was not to propose a specific CNN for 
automatic classification of DAT-SPECT but rather to evalu-
ate layer-wise relevance propagation to explain CNN-based 
classification of DAT-SPECT in individual cases. LRP is 
a novel explainable AI technique. It is not restricted to the 
specific CNN used in the present study but it is easily imple-
mented for other CNN with different structure (e.g., different 
number of layers).

In conclusion, layer-wise relevance propagation is useful 
to provide explanation of CNN-based decisions in individual 
DAT-SPECT and, therefore, can be recommended to support 
CNN-based classification of DAT-SPECT in clinical rou-
tine. Total computation time of 3 s is compatible with busy 
clinical workflow. The use of relevance maps to improve 
the classification by identifying misclassified cases requires 
further investigation.
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